
Citation: Chen, Y.; Xue, Z.; Song, S.

The Direct Alloying of Steel through

Silicothermic Self-Reduction of

Chromite Ore Utilizing Si-Containing

Solid Waste. Metals 2024, 14, 138.

https://doi.org/10.3390/

met14020138

Academic Editor: Carlos

Capdevila-Montes

Received: 25 December 2023

Revised: 18 January 2024

Accepted: 22 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

The Direct Alloying of Steel through Silicothermic
Self-Reduction of Chromite Ore Utilizing Si-Containing
Solid Waste
Yiliang Chen 1,2, Zhengliang Xue 1,2 and Shengqiang Song 1,2,*

1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,
Wuhan 430081, China; chenyiliang@wust.edu.cn (Y.C.); xuezhengliang@wust.edu.cn (Z.X.)

2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,
Wuhan University of Science and Technology, Wuhan 430081, China

* Correspondence: songs@wust.edu.cn

Abstract: Organosilicon materials generate copious amounts of Si-containing solid waste during
production, leading to severe environmental pollution and substantial resource squandering. In
pursuit of the resource utilization of Si-containing solid waste, this study conducted experimental
research on the direct alloying of molten steel through the silicothermic self-reduction of chromite
ore using Si-containing solid waste as a reducing agent. Additionally, thermodynamic analysis
was performed, employing the thermodynamic calculation software FactSage 8.2 (Thermfact Ltd.,
Montreal, QC, Canada and GTT-Technologies, Aachen, Germany), to examine the equilibrium
reactions of the silicothermic reduction of chromite ore and the variations in the thermodynamic
equilibrium compositions of slag and metal phases. The results indicate a reduction sequence for
the reducible components in chromite ore as Fe2O3 → Cr2O3. The introduction of CaO and Al2O3

into the silicothermic self-reduction compacts altered the forms of Fe and Cr oxides in equilibrium,
significantly reducing the standard Gibbs free energy (∆G0) of the silicothermic reduction reaction.
The initial slag melting point decreased from 1700 ◦C without the addition of CaO and Al2O3

to 1500 ◦C with the addition of CaO and Al2O3. Correspondingly, the slag viscosity at 1600 ◦C
decreased from 134.1 Pa·s without CaO and Al2O3 addition to 1.81 Pa·s with CaO and Al2O3

addition. The addition of CaO and Al2O3 accelerated the reduction of Cr oxide in chromite ore and
enhanced the recovery of Cr, consistent with the thermodynamic calculation results. In the process of
steelmaking through the direct alloying of chromite ore silicothermic self-reduction compacts, the
final recovery rate of Cr increased from 86.4% without CaO and Al2O3 addition to 95.4% with CaO
and Al2O3 addition.

Keywords: Si-containing solid waste; chromite ore; silicothermic self-reduction; direct alloying;
thermodynamics

1. Introduction

Organosilicon materials are predominantly polymeric structures with Si-O-Si as the
main chain, renowned for their exceptional corrosion resistance, oxidation resistance,
and high-temperature endurance. Consequently, they find widespread applications in
aerospace, electronics, chemical and light industries, solar power generation, automo-
tive and mechanical engineering, construction, agriculture, pharmaceuticals, and health-
care [1–5]. The fundamental raw materials for synthesizing organosilicon materials are
organosilicon monomers. Approximately 90% of organosilicon monomers in the market
are synthesized directly through the Rochow–Müller process, using chloromethane and
industrial Si [6–8]. However, the production of organosilicon monomers results in a sub-
stantial generation of Si-containing solid waste, primarily composed of high-boiling-point
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residues, unreacted Si powder, copper powder, and other constituents carried out by flu-
idized beds [9,10]. Disposing of or incinerating these solid wastes directly not only leads to
heavy metal pollution in the soil and groundwater, including copper, zinc, and tin, but also
generates strong acid mist and liquid during combustion, causing secondary environmental
pollution. Most importantly, it results in the significant wastage of silicon resources [7].

Therefore, the recycling of Si-containing solid waste generated during the production
of organosilicon monomers has become an urgent issue in the organosilicon production
industry. Consequently, some scholars have conducted research on the recycling of Si-
containing solid waste through laboratory experiments. Wang et al. [11] effectively con-
verted by-products such as low-boiling-point residues and methyltrichlorosilane produced
by the Rochow–Müller process into high-value dimethyldichlorosilane using [BMIM]Cl-
nAlCl3 ionic liquid catalysts. Yu et al. [12] synthesized a novel Si/C anode composite
material by utilizing Si powder extracted from solid Si waste generated in organosilicon
production, combined with graphite and amorphous carbon. This approach demonstrated
the feasibility of enhancing the commercial graphite anode of lithium-ion batteries using
low-cost Si particles from industrial solid Si waste. Lu et al. [13] successfully prepared
a series of MnOx-promoted Ni catalysts with Al2O3-modified Si waste contact bodies as
carriers, using the deposition–precipitation method for CO methanation. The catalyst
exhibited excellent catalytic performance as well as a higher resistance to coking and sinter-
ing. Liu et al. [14] developed a simple and effective method to recover copper from solid
waste generated from the preparation of organosilicon by the Rochow–Müller process,
preparing efficient multi-component Cu-Cu2O-CuO catalysts which can be reused for the
Rochow–Müller process. The final copper recovery rate reached 96.4%, providing an effec-
tive pathway for the recovery of valuable metals. Guo et al. [15] also effectively extracted
copper from Si-containing solid wastes by direct leaching with hydrogen peroxide and
established the leaching kinetics. Cai et al. [16] proposed an optimized removal method
combining low-temperature oxidative roasting and mixed acid leaching, with up to 99% of
removal of Cl, Ca, and Fe, and greater than 94% of removal of Al and Ti in the solid wastes,
which provided a feasible solution for the recovery of silicon resources.

The aforementioned studies have achieved a certain degree of recycling of Si-containing
solid waste through various experimental methods. However, due to factors such as high
costs and challenging process control conditions, the large-scale recycling of Si from Si-
containing solid waste has not yet been realized. Si is a highly reducible element and
is typically used as a reducing agent and deoxidizer in the steelmaking process. Some
scholars have studied the reduction of oxides by the silicothermic method. Salina et al. [17]
investigated the effects of basicity w(CaO)/w(SiO2) and ferro-silico-nickel dosage on the
amount of Cr reduction and metal and slag chemical compositions in chromite ore based
on the thermodynamic software of HSC Chemistry 6.12. The simulation results showed
that increasing the slag basicity and increasing the dosage of ferro-silico-nickel can increase
the reduction of Cr. In addition, Salina et al. [18,19] performed thermodynamic simulations
of the silicothermic reduction processes of Cr, Fe, Mn, and Ni in multicomponent CaO-SiO2-
Cr2O3-FeO-MgO-MnO-Al2O3 and CaO-SiO2-MgO-Al2O3-FeO-NiO-P2O5 multicomponent
oxide systems. The thermodynamic possibilities for the reduction of Cr, Fe, Mn, and Ni in
oxide systems were demonstrated. The yield of the metals increased with the increase in Si
concentration in the reducing agent ferrosilicon. Heo et al. [20,21] investigated the effect
of temperature and ferrosilicon addition on the behavior of the silicothermic reduction of
MnO. The results showed that the recovery of Mn is thermodynamically proportional to
the Si activity in the alloy melt, and the higher the temperature, the more favorable the
reduction of MnO.

In light of this, this study takes pre-treated Si-containing solid waste, after impurity
removal, as a reducing agent. It is mixed with chromite ore powder, compressed into
silicothermic self-reduction compacts, and utilized in the direct alloying of molten steel in a
converter, replacing the use of high-carbon ferrochromium for steel alloying. This approach
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explores a novel pathway for the resource utilization of Si-containing solid waste generated
in the preparation of organosilicon.

2. Materials and Methods
2.1. Raw Materials

The experimental raw materials comprise Si-containing solid waste obtained through
pre-treatment operations such as washing and steam distillation, South African chromite
ore, industrial pure iron (purity ≥ 99.9%), and chemical reagents CaO (purity ≥ 98%) and
Al2O3 (purity ≥ 99%). Chemical composition analysis of Si-containing solid waste and
chromite ore is performed using X-ray fluorescence spectroscopy (XRF, Thermo Scientific,
ARL 9900, Waltham, MA, USA). The mass fractions of C and S in the Si-containing solid
waste are determined using an infrared carbon–sulfur analyzer (LECO, CS-996, St. Joseph,
MI, USA). The specific chemical compositions of the Si-containing solid waste and chromite
ore are presented in Tables 1 and 2, respectively.

Table 1. Typical chemical composition of Si-containing solid waste (Wt.%).

Si Fe O Cl Cu C Al Ti Ca P Zr V Mn

68.56 9.52 7.90 4.29 3.39 2.60 1.25 1.05 0.64 0.14 0.13 0.13 0.11

Table 2. Typical chemical composition of chromite ore (Wt.%).

Cr2O3 Fe2O3 Al2O3 MgO SiO2 CaO

46.02 26.10 13.60 10.25 0.98 0.28

As evident from Table 1, the main components of the Si-containing solid waste are
Si, with traces of Fe, O, Cl, Cu, and other elements. Phase analysis of the Si-containing
solid waste and chromite ore is conducted using X-ray diffraction (XRD, X’Pert Pro, Bruker,
Ettlingen, Germany), as shown in Figure 1. Figure 1 reveals that the primary phase in the
Si-containing solid waste is elemental Si, along with impurities such as ferrosilicon and
cuprous chloride. In contrast, Cr in the chromite ore is present in spinel, indicating a single
phase composition [22].
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Figure 1. The X-ray diffraction pattern: (a) Si-containing solid waste; (b) chromite ore.

Microscopic morphology and energy spectrum analysis of Si-containing solid waste
are carried out using a scanning electron microscope (SEM, ZEISS ASIN EVO10, Carl Zeiss
AG, Jena, Germany) equipped with an energy-dispersive spectrometer (EDS, X-Max 80,
Oxford Instruments, Abingdon, UK), as depicted in Figure 2a. From the figure, it is evident
that the Si-containing solid waste is primarily composed of two types of particles. One
type consists of particles with a higher Si content, typically enveloped in an oxide film on
the surface and exhibiting unevenly sized pits. These pits result from the erosion of the
catalyst during the preparation of organosilicon monomers through the Rochow–Müller
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process [23,24]. The second type is a mixture of various elements, including Si, O, Fe, Cl, Cu,
etc., with a lower Si content. Simultaneously, particle size distribution of the Si-containing
solid waste is analyzed using an MS2000 laser particle size analyzer (Malvern Panalytical,
Worcestershire, UK), as shown in Figure 2b. The average particle size of the Si-containing
solid waste is measured to be 50.1 µm.
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Figure 2. SEM analyses and particle size distribution of Si-containing solid waste: (a) SEM analyses;
(b) particle size distribution.

2.2. Experimental Research Methodologies
2.2.1. Preparation of Silicothermic Self-Reduction Compacts

Prior to commencing the smelting process, the Si-containing solid waste and chromite
ore are meticulously comminuted in a sample pulverizer. The objective is to augment the
specific surface area of the reducing agent and chromite ore, facilitating thorough interaction
between chromite ore and the reducing agent. Subsequently, the milled composite is
moistened with water and molded at a pressure of 25 MPa to yield φ15 mm silicothermic
self-reduction compacts. These compacts can be categorized into two types: one solely
comprising pressed chromite ore and Si-containing solid waste (S1, without CaO, Al2O3
addition), and the other incorporating not only chromite ore and Si-containing solid waste
but also supplemented with CaO and Al2O3 reagents (S2, with CaO, Al2O3 addition). Refer
to Table 3 for specific compositional details. According to the content of oxygen in Cr2O3
and Fe2O3 in chromite ore, the ratio between chromite ore and Si-containing solid waste is
determined by material proportioning according to the Si/O molar ratio of 0.8. In order to
obtain higher Cr yields as much as possible, the addition of Si is in excess. Post molding,
the silicothermic self-reduction compacts are placed in a forced-air drying chamber and
subjected to a temperature of 120 ◦C for 2 h to ensure adequate dryness for later use.

Table 3. The raw material ratio of silicothermic self-reduction compacts (Wt.%).

Components Chromite
Ore

Si-Containing
Solid Waste Al2O3 CaO

S1 62.4 37.6 - -
S2 34.7 21.0 16.6 27.7

2.2.2. Direct Alloying Experiment

The direct alloying experiment of molten steel is conducted in the CY-SP35-VIM
temperature-controlled high-frequency induction furnace, as depicted in Figure 3. The
graphite crucible is placed inside the quartz tube and heated by the induced current gener-
ated by the induction coil, and the temperature is monitored by the B-type thermocouple at
the bottom of the graphite crucible. Initially, a MgO crucible containing industrial pure iron
is placed inside the graphite crucible. Under a high-purity argon atmosphere (99.999%) and
a flow rate of 0.25 L·min−1, the temperature is incrementally raised at a rate of 25 ◦C·min−1.
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Once the temperature reaches 1600 ◦C, silicothermic self-reduction compacts are introduced
into the melt through a top alumina feeding tube.
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Figure 3. Schematic of high-frequency induction furnace setup.

Sampling operations are executed for the first two tests (Test 1 and Test 2), as illustrated
in Figure 4. Upon reaching 1600 ◦C, silicothermic self-reduction compacts are added to
the molten pool. The addition of silicothermic self-reduction compacts elicits a vigorous
reaction, accompanied by flames near the feeding port. Following the completion of the
reaction (approximately 1 min), the first sample (T1A1 and T2A1) is extracted using a 4 mm
diameter quartz tube, followed by subsequent samples at intervals of 5 min or 10 min, and
numbered sequentially. After sampling, the molten steel is cooled to room temperature at a
rate of 30 ◦C·min−1, yielding the final samples after direct alloying.

Metals 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. Schematic of high-frequency induction furnace setup. 

 
Figure 4. Schematic for silicothermic self-reduction compacts addition and sampling process. 

3. Results and Discussion 
3.1. Thermodynamic Analysis 

Assuming that only Fe2O3 and Cr2O3 are reducible components in chromite ore, ther-
modynamic analysis of the Si reduction of Fe2O3 and Cr2O3 in chromite ore was conducted. 
Using FactSage 8.2 software (with databases FactPS, FToxid, and FTmisc), the standard 
Gibbs free energy (ΔG0) of various reduction reactions was calculated within the temper-
ature range of 400 to 1800 °C, as depicted in Figure 5. The calculations reveal that, when 
Si serves as the reducing agent, reduction reactions can occur in the temperature range of 
400 to 1600 °C, all exhibiting strongly exothermic characteristics. Furthermore, based on 
the ΔG0 of the reduction reactions, the reduction sequence is Fe2O3 → Cr2O3. In the pres-
ence of CaO and Al2O3, the ΔG0 of the reduction reactions is significantly reduced. Ther-
modynamically, the addition of CaO and Al2O3 facilitates the reduction of Cr2O3 in 

Figure 4. Schematic for silicothermic self-reduction compacts addition and sampling process.



Metals 2024, 14, 138 6 of 15

Another set of experiments (Test 3) involves immediately shutting down the heating
power upon introducing silicothermic self-reduction compacts with CaO, Al2O3 addition
and allowing the furnace to cool to room temperature. The purpose of Test 3 is to observe the
morphology and analyze the energy spectrum of the cooled slag sample through scanning
electron microscopy, determine the initial phase composition and chemical composition
when the self-reduction compacts are added to the surface of the steel, determine the degree
of reduction of chromite ore in the early stage, and explore the reaction mechanism of
silicothermic self-reduction. The mass fraction changes of Cr and Si in the process samples
are determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES,
ThermoiCAP6000, Thermo Fisher Scientific, Waltham, MA, USA), and the final recovery
rate of Cr is calculated using Equation (1) after performing XRF chemical composition
analysis on the final slag.

η =
Σmiwi
mRwR

× 100Pct (1)

where η represents the recovery rate of Cr; mi denotes the final mass of the steel sample;
wi is the final mass fraction of Cr in the steel sample; mR is the mass of the self-reduction
compacts; and wR is the mass fraction of Cr in the self-reduction compacts.

3. Results and Discussion
3.1. Thermodynamic Analysis

Assuming that only Fe2O3 and Cr2O3 are reducible components in chromite ore,
thermodynamic analysis of the Si reduction of Fe2O3 and Cr2O3 in chromite ore was
conducted. Using FactSage 8.2 software (with databases FactPS, FToxid, and FTmisc), the
standard Gibbs free energy (∆G0) of various reduction reactions was calculated within the
temperature range of 400 to 1800 ◦C, as depicted in Figure 5. The calculations reveal that,
when Si serves as the reducing agent, reduction reactions can occur in the temperature
range of 400 to 1600 ◦C, all exhibiting strongly exothermic characteristics. Furthermore,
based on the ∆G0 of the reduction reactions, the reduction sequence is Fe2O3 → Cr2O3. In
the presence of CaO and Al2O3, the ∆G0 of the reduction reactions is significantly reduced.
Thermodynamically, the addition of CaO and Al2O3 facilitates the reduction of Cr2O3 in
chromite ore, with CaO exerting a stronger influence. Additionally, the figure includes
calculations of the ∆G0 for the reduction reactions of Cr2O3 using Al and C as reducing
agents. The variation in ∆G0 indicates that Al exhibits the highest reduction capability,
followed by Si, while C has the least within 1600 ◦C. However, considering cost, carbon is
the preferred reducing agent in alloy smelting and steelmaking processes [25,26]. Therefore,
utilizing Si-containing solid waste as a reducing agent for chromite ore reduction in the
direct alloying of molten steel not only transforms waste into a valuable resource but also
eliminates the need for smelting chromite alloy, thereby reducing costs, saving energy, and
minimizing environmental pollution.

Furthermore, thermodynamic equilibrium analysis of the Si reduction of oxide com-
ponents in chromite ore was conducted. Based on the principle of minimizing the Gibbs
free energy, the relationship between the equilibrium quantities of oxides and metals in
silicothermic self-reduction compacts and the molar quantity of Si was calculated at a
constant temperature of 1600 ◦C using the “Equilib” module of FactSage 8.2 software (with
databases FactPS, FToxid, and FTmisc), as depicted in Figure 6. From Figure 6, it is observed
that in the absence of added Si and without CaO and Al2O3 addition, Fe and Cr in chromite
ore primarily exist in the form of Fe2O3 and Cr2O3, respectively, with a small amount of
Al2Fe2O6. Upon the addition of CaO and Al2O3, Fe and Cr in chromite ore exist in the
forms of calcium diiron oxide (Ca2Fe2O5) and calcium chromate (CaCr2O4), respectively,
indicating that the addition of CaO alters the forms of Fe and Cr. With the addition of Si, Fe
oxides are initially reduced to FeO, which is further reduced to metallic Fe. When the Si
addition is 0.024 mol, all FeO is reduced to metallic Fe, and at this point, Cr oxides begin to
be reduced to metallic Cr. This corresponds to the earlier reduction of Fe2O3 compared to
Cr2O3, as indicated by the ∆G0 of the reduction reactions. In the absence of slag, Cr2O3
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in chromite ore is directly reduced to metallic Cr, and by the time the Si addition reaches
0.068 mol, all Cr2O3 is completely reduced to metallic Cr. The Si added in this experiment
is 0.1 mol, so it is enough to completely reduce Fe and Cr from chromite ore. In the case of
silicothermic self-reduction compacts with CaO and Al2O3 addition, calcium chromate is
not only reduced to metallic Cr but also generates intermediate products (Ca2Cr3)Cr10O20
and Cr2O3. After the complete reaction of calcium chromate, these oxides are then reduced
to metallic Cr. Consequently, the addition of CaO can alter the forms of Fe and Cr during the
reduction process, potentially affecting the final recovery rate. However, with a continuous
increase in Si addition to 0.2 mol, the products of Fe and Cr converge, with Fe ultimately
transforming into FeSi, and Cr gradually transforming into Cr3Si and Cr5Si3, until the final
product CrSi2.
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3.2. Analysis of the Results of Direct Alloying

Figure 7 illustrates the variation in Cr and Si content over time in samples collected
during the direct alloying process using silicothermic self-reduction compacts with and
without CaO and Al2O3 addition. In the experiment, the masses of chromite ore and Si-
containing solid waste in the compacts, as well as the mass of steel, are identical. From the
graph, it is evident that the use of Si-containing solid waste as a reducing agent effectively
facilitates the reduction of Cr from chromite ore.
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In Test 2, the Cr and Si content stabilizes after 10 min of introducing silicothermic
self-reduction compacts into the melt, whereas in Test 1, it takes 20 to 30 min to reach a
plateau. This indicates that the rate of Cr reduction in the direct alloying process is faster
with silicothermic self-reduction compacts with CaO and Al2O3 addition compared to
those without CaO and Al2O3 addition. Additionally, the Cr content measured in Test 2
is consistently higher than that in Test 1, while the final Si content is lower in Test 2. This
implies that silicothermic self-reduction compacts with CaO and Al2O3 addition achieve a
higher Cr recovery rate, with the final recovery rates for Cr being 95.4% and 86.4% for with
CaO and Al2O3 addition and without CaO and Al2O3 addition self-reduction compacts,
respectively. Clearly, the addition of CaO and Al2O3 enhances the reduction rate of Cr
oxide in chromite ore, thereby increasing the recovery rate of metallic Cr. This observation
aligns with previous research findings [27–31].

The direct alloying process of Cr comprises two consecutive steps: (a) the reduction
of chromite ore and (b) the diffusion of Fe and Cr into the molten steel [30]. Step (a) can
be achieved under appropriate thermodynamic and kinetic conditions. Firstly, based on
the thermodynamic analysis results, the reduction reactions of Fe2O3 and Cr2O3 by Si
exhibit relatively low ∆G0, confirming the feasibility of using silicothermic self-reduction
for chromite ore. CaO and Al2O3, by reducing the activity of the reduction product SiO2,
decrease the ∆G0 of the reduction reaction of Cr2O3, making it more favorable for the
reduction of chromite ore. Secondly, from a kinetic perspective, favorable kinetic conditions
not only promote the reduction of chromite ore but also accelerate the diffusion of Fe and
Cr. Studies by Takamitsu and Tsomondo [28,29,32] suggest that the reduction of chromite
ore and the transfer of metals are controlled by the diffusion of the furnace slag. Under
conditions of sufficiently high temperature and a long enough reduction time, obtaining
a final liquid slag with low viscosity and good wetting is crucial to ensuring a high Cr
recovery rate. Therefore, adjusting the composition of the furnace slag is necessary. This is
primarily achieved by adding a certain amount of CaO and Al2O3 to the mixture to lower
the melting point and viscosity of the slag. This adjustment enhances the diffusion rate of
the reducing agent, oxides, and reduction products in the slag, creating favorable kinetic
conditions for the reduction of chromite ore [30].

However, the inevitable dissolution of the MgO crucible in the slag occurs. Figure 8
shows images of samples after reduction in Tests 1~3, as well as XRD and SEM-EDS
spectrum analysis of the final slag. From the figures, it is evident that the phases in the final
slag of Test 1 and Test 2 both include forsterite (Mg2SiO4) and spinel (MgAl2O4), indicating
that the slag is saturated with respect to A12O3, MgO, and SiO2. This implies that a portion
of the MgO crucible has dissolved in the slag. In Test 1, the primary phase in the final slag
is Mg2SiO4, while in Test 2 with added A12O3 and CaO, the major phases in the final slag
are MgAl2O4 and CaMgSiO4.
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Additionally, Test 3 reveals that after the introduction of silicothermic self-reduction
compacts into the crucible, rapid reactions occur, and metallic Cr is almost completely
reduced from the chromite ore. It forms an approximately spherical Cr-Fe-Si alloy, with Si
and Fe. Since the power is immediately turned off after the introduction of silicothermic
self-reduction compacts, causing rapid cooling of the molten steel and slag, deteriorating
the metal transfer conditions, the reduced Fe and Cr remain in the slag without sufficient
diffusion into the molten steel. Therefore, it can be concluded that the direct alloying
process of Cr is controlled by the diffusion of metals in the slag.

Figure 9 displays the morphology of the final slag observed under backscattered
electron (BSE) mode in scanning electron microscopy (SEM), along with the corresponding
EDS elemental distribution maps. By observing the boundary of the final slag and crucible
of Test 1 and Test 2, from a microscopic point of view, the dissolution of the MgO crucible
to the slag is clear, and after one hour of holding, the crucible has eroded and there are a
lot of small cracks, but from the macroscopic photos (Figure 8), the boundary of the slag
and crucible is obvious, and erosion and cracks of the crucible are not clearly observed.
The chemical distribution map of the Mg element indicates that Mg is distributed in
almost all slag phases, corresponding to the XRD results mentioned earlier, where major
phases contain Mg. In Test 3, the elemental distribution maps of Cr and Fe almost overlap,
indicating that both elements coexist after reduction and form a Cr-Fe-Si alloy with Si. The
chemical distribution map of the Si element also reveals unreacted elemental Si (bright
yellow region). Compared to Test 1 and Test 2, the MgO content in the final slag of Test
3 is lower, with MgO percentages of 37.79%, 27.52%, and 3.5% based on XRF chemical
composition analysis. This suggests that in Test 3, the dissolution of the MgO crucible
into the slag is a relatively slow process, as evidenced by the lower MgO content in the
final slag.

However, in previous studies, it was suggested that the dissolution of the MgO cru-
cible increases the viscosity of the furnace slag, deteriorating the reduction kinetics and,
therefore, adversely affecting the reduction of Cr2O3 [31,33]. Clearly, the dissolution of the
MgO crucible in the slag can influence the physicochemical properties of the slag, thereby
affecting the reduction of chromite ore. To investigate the impact of the dissolution of the
MgO crucible on the melting point and viscosity of the slag in Test 1 and Test 2, phase
diagrams of Al2O3-MgO-SiO2 and Al2O3-MgO-SiO2-20 pct CaO within the temperature
range of 1200 to 1800 ◦C were plotted using the “Phase Diagram” module of FactSage
8.2 software with the “FToxid” database. Additionally, viscosity calculations for selected
compositions at the experimental temperature of 1600 ◦C were simulated using the “Vis-
cosity” module with the “Melt” database, as depicted in Figure 10. The viscosity of the
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solid–liquid mixture (oxides that make up the slag, such as CaO, SiO2, Al2O3, and MgO)
was approximately calculated based on the Einstein–Roscoe formula [34]:

Viscosity(solid+liquid mixture) ≈ Viscosity(liquid) × (1 − solid f raction)−2.5 (2)

where Viscosity(solid+liquid mixture) is the viscosity of the solid–liquid mixture; Viscosity(liquid)
is the viscosity of the liquid phase, calculated directly from the composition of the liquid
slag using the “Viscosity” module with the “Melt” database; and solid fraction is the vol-
ume fraction of solids in the mixture (solid oxides present in the slag). Due to technical
difficulties, few studies have been conducted to experimentally determine the volume
fraction of the solid phase in the slag. To simplify the calculations, FactSage calculations
can be performed using mass fraction instead of volume fraction to understand the trend
of viscosity at different MgO contents [35]. The mass fraction of solids in the mixture is also
calculated using the “Equilib” module.
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As mentioned earlier, rapid reactions occur when silicothermic self-reduction compacts
are introduced into the crucible, assuming that the reaction has reached its limit, i.e., the
mass of SiO2 in the slag remains constant. This can be confirmed through Figure 9, where
in Test 3, Cr and Fe elements are concentrated in the alloy, and no significant distribution
of Cr and Fe elements is observed in the slag phase. The dissolution of the MgO crucible
into the slag is a slow process. Based on the Al2O3 and SiO2 ratios in the final slag, the slag
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composition path will follow the black straight line in Figure 10. The composition points
for Test 1 and Test 2 final slags are represented by points F and E, respectively.

From the graph, it is evident that the addition of silicothermic self-reduction compacts
significantly reduces the melting point of the initial slag (point A). Without the addition
of slag, the melting point of the initial slag is 1700 ◦C, while with the addition of Al2O3
and CaO, the melting point of the initial slag drops to 1500 ◦C. Viscosity calculation results
indicate that without CaO and Al2O3 addition and with CaO and Al2O3 addition, the
viscosity at point A at 1600 ◦C is 134.09 Pa·s and 1.81 Pa·s, respectively. This indicates a
significant reduction in the viscosity of the initial slag with the addition of Al2O3 and CaO.
Without the addition of slag, a large amount of high-melting-point mullite precipitates at
point A, resulting in a liquid fraction of only 0.81. Meanwhile, in the liquid composition,
the SiO2 content exceeds 70%, significantly increasing the viscosity of the slag. In contrast,
with the addition of Al2O3 and CaO, point A is in the low-melting-point calcium feldspar
(CaAl2Si2O8) phase region. The slag is in a completely liquid state at 1600 ◦C, with good
flowability and low viscosity. This provides favorable kinetic conditions for the reduction
of chromite ore and the diffusion of metals, resulting in a faster and more stable reduction
of Cr with a higher recovery rate during the direct alloying process (Figure 7).

As the MgO crucible dissolves, the melting points of the two types of slag show
different trends. In the Test 1 slag, as the composition point changes from A to C, the
dissolved MgO reacts with the existing Al2O3 and SiO2 in the original slag to form a liquid
slag, significantly lowering the melting point. Apparently, MgO is a chain-breaker; it breaks
silicate chains by creating oxide bridges. With further increases in MgO content, when
the composition point reaches D, the slag melting point begins to rise. In Test 2 slag, the
increase in MgO content leads to the precipitation of spinel with a higher melting point,
causing the slag melting point to increase. The change in slag viscosity does not follow the
same trend as the melting point; from the graph, it can be observed that the viscosity of the
Al2O3-MgO-SiO2 and Al2O3-MgO-SiO2-20 pct CaO slag systems decreases first and then
increases with increasing MgO content.

In other words, the initial dissolution of the MgO crucible reduces the slag viscosity.
Unlike the results reported by Hu [31] and Nakao [33], under the experimental conditions
of this study, the viscosity of Test 1 and Test 2 slags increases only when the composition
points reach E and D, respectively. This means that the viscosity of the slag increases only
when the MgO content in the slag exceeds 36% and 29.1% for Test 1 and Test 2, respectively.

In conclusion, the addition of Al2O3 and CaO can significantly reduce the melting
point and viscosity of the initial slag, thereby promoting the reduction of chromite ore.
Although the dissolution of the MgO crucible can lower the melting point and viscosity of
the early slag, its dissolution is a relatively slow process compared to the rapid silicothermic
self-reduction reaction. During the rapid reduction phase, the reduction of chromite ore
has already reached its limit. Therefore, the Cr recovery rate depends on the composition
of the initial slag after rapid reduction. When chromite spinel particles enter the slag,
their chances of encountering a reducing agent are immediately minimized, leading to the
interruption of the final reduction. The reduction of chromite ore in the slag is limited, and
consequently, Cr losses in the slag are inevitable [36].

3.3. The Mechanism of Silicothermic Self-Reduction

Figure 11 illustrates the schematic diagram of the silicothermic self-reduction reaction
mechanism. Thermodynamic analysis indicates that Fe2O3 is initially reduced to FeO,
which is then further reduced to metallic Fe. The reduction of Cr2O3, however, commences
only after the reduction of Fe oxides. Previous studies suggest that the reduction kinetics
of Fe oxides in chromite spinel are more favorable than those of Cr oxides. Theoretically,
when Si is employed as a reducing agent, the reduction of Fe2O3 to FeO occurs between
600 and 750 ◦C, with the temperature range of 750 to 900 ◦C for the conversion of FeO to
metallic Fe. However, the reduction rate is relatively low at lower temperatures, and the
complete transformation of Fe2O3 to Fe necessitates temperatures ranging from 1100 to
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1300 ◦C, approximately reaching 1300 ◦C for the conversion of Cr2O3 to metallic Cr [36,37].
As shown in Figure 11a, the self-reduction compacts are first added to the surface of the
molten steel, and as the temperature reaches the reduction temperature of iron oxides,
a direct reduction reaction is initiated at the interface between chromite ore and Si, and
Fe2O3 is reduced to FeO (Figure 11b). The temperature continues to increase, as shown
in Figure 11c, and metallic Fe is first reduced, at which point the reduced Fe forms a
low-melting-point Fe-Si alloy with unreacted Si. As the temperature is further increased to
the Cr2O3 reduction temperature, the metallic Cr is reduced, and the newly formed Cr can
be rapidly dissolved into the Fe-Si alloy, creating a Cr-Fe-Si alloy melt enriched in both Fe
and Cr (Figure 11d). Figure 12 illustrates the liquidus isotherm projection phase diagram
of the Cr-Si-Fe system, along with the EDS compositional analysis of the reduced Cr-Fe-Si
alloy observed in Test 3. From the figure, it is evident that the temperatures during the
reduction process and the composition of the final alloy lie below 1400 ◦C in the liquidus
region. Therefore, at the steelmaking temperature of 1600 ◦C, the reduced alloy exists in a
liquid state, facilitating the aggregation and growth of metallic droplets. Ultimately, the
reduced Cr and Fe diffuse into the steel from the slag, achieving the direct alloying of Cr.
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other investigators who examined the impact of varying Fe-to-Cr ratios on the reduction
of chromite ore. Their findings affirm that chromite ores with elevated total Fe contents
undergo reduction at an accelerated pace, yielding a higher Cr recovery [25,38]. This can
be chiefly ascribed to the existence of a molten alloy. On the one hand, a profusion of Fe-Si
alloy droplets emerges prior to the reduction of Cr2O3. These droplets, formed through the
dissolution of Cr liberated during reduction, serve to diminish the thermodynamic activity
of newly reduced Cr in chromite ore. This reduction proves advantageous in lowering the
∆G0 of the reaction, thereby expediting the swift reduction of Cr. On the other hand, an
excess of metallic Si exerts its influence by fostering the formation of low-melting-point
phases such as Cr-Si or Cr-Fe-Si (refer to Figure 12), thereby attenuating the activity of Cr
in the Cr-Fe-Si alloy. This sustained reduction in Cr activity, in turn, serves to propel the
reduction process, enhancing its overall efficacy.

4. Conclusions

1. Within chromite ore, Fe2O3 is preferentially reduced by Si over Cr2O3. The intro-
duction of CaO and Al2O3 serves to alter the equilibrium states of Fe and Cr oxides,
concurrently diminishing the activity of the reduction product SiO2. This leads to a
conspicuous reduction in the ∆G0 of the reduction reaction.

2. The addition of CaO and Al2O3 significantly lowers the melting point and viscosity of
the initial slag. The melting point and viscosity of the initial slag, originally 1700 ◦C
and 134.09 Pa·s without additives, are markedly decreased to 1500 ◦C and 1.81 Pa·s,
respectively, upon the addition of slag.

3. The incorporation of CaO and Al2O3 expedites the reduction of Cr and enhances the
Cr recovery rate. The final recovery rates of Cr in the silicothermic self-reduction
compacts, with and without CaO and Al2O3 addition, directly alloying the molten
steel, are 95.4% and 86.4%, respectively. Therefore, employing Si-containing solid
waste as a reductant for the direct reduction and alloying of chromite ore is deemed
viable. This not only addresses the environmental pollution and resource wastage
resulting from Si-containing solid waste but also transforms it into a valuable resource,
concurrently reducing the cost associated with Cr alloying in molten steel. However, to
achieve the goal of the efficient and economical direct reduction alloying of chromium
oxide, the optimum reductant ratio and the different w(CaO)/w(Al2O3) ratio, as well
as the amount of CaO and Al2O3 additions, still need to be further investigated.

4. However, a side-effect of steel alloying by silicothermic self-reduction is that the
reduction product SiO2 reduces the basicity in the LF refining furnace, and in practice,
it is necessary to supplement the LF furnace with activated lime to ensure that the
basicity remains unchanged. In addition, to achieve higher metal yields, excess
reductant Si must be added, which results in the introduction of additional Si into
the steel, a factor that needs to be taken into account when deoxidizing or alloying
with ferrosilicon. In terms of industrial relevance, the steel industry can provide
for the consumption of Si-containing solid waste generated by the silicone industry.
Silicothermic self-reduction direct alloying steelmaking is useful for the smelting of
ultra-low carbon steels, such as 301L (12Cr17Ni7) stainless steel, to avoid the carbon
increase in steel due to the introduction of carbon from high-carbon ferrochromium.
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