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Abstract: V-4Cr-4Ti alloy is one of the candidate structural materials for future fusion reactors
due to its desirable characteristics. In our previous research, MAX-phase-dispersion-strengthened
vanadium alloy (V-4Cr-4Ti-1.5Y-0.3Ti3SiC2), prepared through mechanical alloying, showed excellent
thermal stability and creep resistance and was expected to have good radiation resistance. This study
investigates the effects of 2.5 MeV V2+ ion irradiation on V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 and V-4Cr-4Ti
alloys at 500 ◦C, with peak damage of 0.8, 3.5, and 6.1 dpa. Transmission electron microscopy
and nanoindentation were used to examine the changes in microstructure and hardness before and
after irradiation. The microscopic analysis reveals that dispersed nanoparticles maintained good
stability under irradiation. Defect clusters grow with increasing irradiation doses in both materials.
The nanoindentation results show that V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 has higher initial hardness and
lower irradiation hardening, indicating better resistance to radiation hardening than V-4Cr-4Ti. This
research serves as a valuable reference for the assessment of the irradiation resistance of Ti3SiC2-
dispersion-strengthened V-4Cr-4Ti alloy.
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1. Introduction

Vanadium alloy is one of the candidate structural materials for future fusion reac-
tors due to its low neutron irradiation activation, non-ferromagnetism, excellent high-
temperature strength, and good compatibility with liquid coolant lithium [1]. Nowadays,
further strengthening of alloys has become a major focus of research. In this context, oxide
dispersion strengthening technology has received increasing attention as a method for
further enhancing the high-temperature performance of alloys [2,3]. Studies have shown
that it can significantly enhance the operating temperature, mechanical properties, and
radiation resistance of vanadium alloy, leading to an extension of service life [4–6]. Due
to the special environment of liquid Li in which vanadium alloys will operate, and the
greater affinity of vanadium alloys for C compared to O in liquid Li environments, carbides
are more suitable for dispersion strengthening of vanadium alloys [7–9]. Recent studies
have confirmed that introducing binary carbide TiC through mechanical alloying can
effectively strengthen the vanadium alloy, improving its creep performance at high temper-
atures [10,11]. The MAX phase is a ternary layered ceramic with carbon or nitrogen as the
key elements, and based on its excellent chemical stability [12–16], our group introduced
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MAX phase, “Ti3SiC2” nanoparticles, for the dispersion strengthening of the V-4Cr-4Ti
alloy by mechanical alloying. Y is also added to reduce impurity elements such as O in the
matrix [17,18]. Furthermore, the addition of Y can also enhance mechanical performance
and reduce irradiation hardening [19–21]. Prior research reveals that a V-4Cr-4Ti alloy with
“Y + Ti3SiC2” has a higher hardness after annealing at various high temperatures when
compared to an alloy with “Y + TiC” and “Y + SiC”, demonstrating the exceptional thermal
stability of this dispersion strengthening phase [22].

Vanadium alloy undergoes long-term high-energy neutron irradiation during service,
resulting in the generation of a large number of point defects, such as interstitial atoms
and vacancies. The aggregation of these point defects leads to the formation of dislocation
loops, voids, and other defects, resulting in material swelling and hardening. These
irradiation effects shorten the material’s service life and even jeopardize the safe operation
of fusion reactors. Therefore, a comprehensive understanding of irradiation damage to
MAX-phase-strengthened vanadium alloys is essential. Ion irradiation is commonly used
to simulate neutron irradiation due to the disadvantages of neutron irradiation, such as
the long experimental period, high price, and radioactivity of irradiated samples. Previous
studies indicate that the dispersion of Ti3SiC2 can effectively strengthen vanadium alloy,
improving thermal stability and creep resistance. However, comprehensive studies on
the irradiation damage of Ti3SiC2-strengthened vanadium alloys are still lacking. A study
by Y.F. Zhang et al. [23] has demonstrated that the irradiation hardening of the V-4Cr-4Ti-
1.8Y-0.4Ti3SiC2 alloy is significantly lower than that of V-4Cr-4Ti under deuterium ion
irradiation. This study provides a valuable reference for the strong radiation resistance
of Ti3SiC2-strengthened vanadium alloys. However, deuterium ion implantation may
introduce impurities, potentially influencing the comprehensive performance test results.

In order to study the effect of greater irradiation damage on the materials without
introducing impurity elements, V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 and V-4Cr-4Ti were irradiated
with 2.5 MeV V2+ self-ions at 500 ◦C. To ensure the study of hardness and microstructure
was as continuous as possible, the irradiation fluences were set to 1 × 1015, 4 × 1015, and
7 × 1015 ions cm−2 (corresponding to peak damage obtained at 900 nm depths of 0.8,
3.5, and 6.1 dpa, respectively). The microstructure and hardness variations of the two
materials under different levels of irradiation damage were studied using transmission
electron microscopy and nanoindentation techniques, and the possible mechanism of the
experimental phenomenon was explained.

2. Materials and Methods
2.1. Sample Preparation

The purity and size of the initial powder were as follows: V, Cr, and Ti were 99.95%
and 300 mesh, respectively; Y was 99.99% and 325 mesh; Ti3SiC2 was 99.5% and 200 mesh.
These powders were then mixed to yield the compositions of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2
in an argon atmosphere (99.9999%). A Retsch PM 400 mill (Retsch, Haan, Germany) was
used as the MA equipment, with the MA vessels and balls made of WC/Co. The ball-
to-material weight ratio was 5:1, and the total milling time was 140 h at a rotation speed
of 170 rpm. Subsequently, the powders were canned in steel capsules, and hot isostatic
pressing (HIPing) was applied at 150 MPa pressure in an argon atmosphere at 1050 ◦C for
3 h. The samples were then annealed at 750 ◦C for 5 h to eliminate residual stress. The
V-4Cr-4Ti sample was a high-purity vanadium alloy smelted using an electron beam and
annealed at 750 ◦C for 5 h to achieve the same experimental conditions. The V-4Cr-4Ti-
1.5Y-0.3Ti3SiC2 and V-4Cr-4Ti samples were cut into sheets of 3 mm × 3 mm × 1 mm.
The samples were first roughly polished with 400 #, 800 #, 1000 #, 2000 #, and 3000 #
silicon carbide (SiC) paper successively and then finished with 1 # and 0.5 # grinding paste
successively. Finally, they were electrochemically polished with 25% sulfuric acid and 75%
ethanol polishing solution (in volume percent) at room temperature at a voltage of 10V for
60 s.
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2.2. Self-Ion Irradiation

Ion-irradiation experiments were performed with 2.5 MeV V2+ ions at 500 ◦C using
the 2 × 1.7 MV tandem accelerator in the Accelerator Laboratory of Wuhan University.
Specific irradiation procedures and instruments can be found in the reference [24]. The
irradiation fluences were 1 × 1015 ions cm−2, 4 × 1015 ions cm−2, and 8 × 1015 ions cm−2,
and the irradiation time was 1.5 h, 6 h, and 10.5 h respectively. The vacuum degree was
kept at 2.2 × 10−4 Pa, and the temperature error was kept at ±5 ◦C during the irradiation.
According to the SRIM2013 “Rapid Calculation of Ion Distribution and Damage” model,
the peak damage was about 0.8, 3.5, and 6.1 dpa (corresponding to 900 nm from the surface),
respectively, and the displacement threshold energies of V, Cr, and Ti were 40 eV, 40 eV, and
30 eV, respectively [23]. At the peak of the damage (900 nm), the damage dose rate was
about 1.6 × 10−4 dpa/s. The corresponding SRIM calculation results are shown in Figure 1,
and the experimental conditions are shown in Table 1 below.
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Figure 1. (a) SRIM calculation of damage under 2.5 MeV V2+ irradiation. (b) The neutron irradiation
temperature corresponding to the ion irradiation temperature of 773 K as a function of the ratio of
dose rates.

Table 1. Experimental conditions.

Sample Material Irradiation Fluence
(ions cm−2)

Peak Damage
(dpa)

Y + MAX-unirr V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 unirradiated -
Y + MAX-0.8 dpa V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 1 × 1015 0.8
Y + MAX-3.5 dpa V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 4 × 1015 3.5
Y + MAX-6.1 dpa V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 7 × 1015 6.1
V-4Cr-4Ti-unirr V-4Cr-4Ti unirradiated -

V-4Cr-4Ti-0.8 dpa V-4Cr-4Ti 1 × 1015 0.8
V-4Cr-4Ti-3.5 dpa V-4Cr-4Ti 4 × 1015 3.5
V-4Cr-4Ti-6.1 dpa V-4Cr-4Ti 7 × 1015 6.1

It is important to note that, in order to achieve the same irradiation dose, the tempera-
ture for ion irradiation will need to be higher than that for neutron irradiation due to the
significantly larger dose rate associated with ion irradiation. For a given change in dose
rate, we can obtain the shift in temperature required at a constant dose to keep the number
of defects absorbed at sinks invariant according to Equation (1) [25].

Ti − Tn =

kT2
n

Em
v

ln
(

Gi
Gn

)
1 − KTn

Em
v

ln
(

Gi
Gn

) (1)
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where k is Boltzmann’s constant and Em
v is the vacancy migration energy. For vanadium

alloy, Em
v = 0.75 eV [26]. Ti is the ion irradiation temperature chosen for our experiment

(773 K), and Tn is the neutron irradiation temperature corresponding to Ti when the dose is
kept constant. Gi and Gn correspond to point defect generation rates for ion and neutron
irradiation, respectively, and Gi/Gn represents the ratio of ion and neutron irradiation
dose rates. According to Equation (1), one can obtain the temperature shift from the 773 K
required at a constant dose in order to maintain the same point defect absorption at the
sinks as a function of the ratio of dose rates as shown in Figure 1b. The dose rate of our
experiment is about 3–4 orders of magnitude larger than the neutron irradiation dose rate
of the fusion reactor [27]. Figure 1b shows that when the ion irradiation dose rate is 1000 to
10,000 times greater than that of neutron irradiation, the corresponding neutron irradiation
temperature is about 480–425 K (207–152 ◦C). The optimal irradiation temperature for
studying irradiation hardening and the evolution of defects such as dislocation loops in
vanadium alloys is considered to be less than 0.4 Tm [27], where Tm represents the melting
point of the vanadium alloy, estimated at about 1890 ◦C. Additionally, vanadium alloys
are widely recognized to exhibit significant irradiation hardening at neutron irradiation
temperatures below 400 ◦C. Hence, selecting 500 ◦C as the ion irradiation temperature is
reasonable for studying irradiation hardening and the evolution of irradiation defects.

2.3. TEM Observation

The irradiated samples were prepared using the focused ion beam (FIB) method,
which was performed with Scios 2 Dual Beam (Thermo Fisher Scientific, Waltham, MA,
USA). The process began with the deposition of a Pt film in the selected area, followed by
the use of a 30 keV Ga+ beam to groove the deposited area. Subsequently, the 2 µm thin
sheet was then cut from the samples and attached to the TEM grid. Through a series of
lower-energy ion beams, the thin layer was reduced to a thickness of 100 nm. A final step
involved cleaning the sample with a 2 keV Ga+ beam to minimize the FIB defects. The
size of FIB samples in this experiment was 4 µm × 4 µm. All FIB samples were observed
using a JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan) at the Wuhan
University Analysis and Testing Center.

2.4. Nanoindentation Test

A nanoindentation test was performed using the Nano Indenter*G200 (Agilent Tech-
nologies, Santa Clara, CA, USA). The continuous stiffness measurement (CSM) mode
was used to obtain the continuous curve of nanoindentation hardness (HIT) relative to
indentation depth (nm). The indentation depth was set as 1200 nm, the strain rate was
set as 0.05 s−1, the test temperature was room temperature (25 ◦C), and a minimum of
10 indentation points per sample were tested. The surface roughness of the sample greatly
impacts the results of the nanoindentation test. Therefore, a flat and smooth area was man-
ually selected for the indentation test. In order to avoid the interaction between different
indentations, the distance between indentations was greater than 50 µm.

3. Results
3.1. TEM Observation of Microstructure
3.1.1. Nanoparticles in V-4Cr-4Ti-1.5Y-0.3Ti3SiC2

TEM observations were performed on the unirradiated region and “Y + MAX-0.8 dpa”,
“Y + MAX-3.5 dpa”, and “Y + MAX-6.1 dpa” samples of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2, as de-
picted in Figure 2a1–d1. The observations revealed the presence of irregularly shaped
nanoparticles with a dispersed distribution within the sample, and the typical small-sized
nanoparticles are highlighted in red circles. In a previous study by our group, the small
nanoparticles were identified as Y2O3 and Ti3SiC2 using high-resolution transmission elec-
tron microscopy, with the possibility of the presence of a small amount of large-size TiC [22].
The number density and size of nanoparticles in both the unirradiated area and the region
with peak damage depth (600–800 nm) at three irradiation doses were counted. For each
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sample, at least three regions measuring 300 nm × 300 nm × 100 nm were selected for
statistical analysis. The statistical results revealed that the number density of nanoparticles
in the unirradiated area was approximately 8.2 × 1021 m−3, with an average size of about
15.4 nm. Similarly, the “Y + MAX-0.8 dpa”, “Y + MAX-3.5 dpa”, and “Y + MAX-6.1 dpa”
samples exhibited number densities of 7.9 × 1021 m−3, 8.1 × 1021 m−3, and 7.7 × 1021 m−3,
with average sizes of 13.6 nm, 14.8 nm, and 14.3 nm, respectively. To ensure accuracy, only
nanoparticles larger than 5 nm were counted, excluding the effects of black spot defects
caused by FIB and small-size dislocation loops due to irradiation. Figure 2a2–d2 show the
size distribution of nanoparticles. As can be seen from Figure 2a2–d2, all samples predomi-
nantly featured small-sized nanoparticles below 15 nm, and no significant differences were
observed in size distribution at different irradiation doses.
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Figure 2. (a1,b1,c1,d1) TEM micrographs of the unirradiated region, Y + MAX-0.8 dpa, Y + MAX-
3.5 dpa, and Y + MAX-6.1 dpa, respectively; (a2,b2,c2,d2) corresponding nanoparticle size distributions.

3.1.2. Irradiation-Induced Defects

In order to avoid surface effects and a high concentration of self-ion implantation near
the damage peak, the analysis was performed in a specific depth range of 400–600 nm
(corresponding to damage ranges of 0.5–0.7 dpa, 2.0–2.8 dpa, and 4.0–5.5 dpa). The number
of observed dislocation loops varied under different g conditions based on the invisibility
criterion of g · b = 0. To exclude the influence of diffraction direction, uniform observation
was performed at g = 110. The bright-field image in Figure 3 depicts the “Y + MAX” alloy
under various irradiation doses, with a large number of defect clusters visible at all three
irradiation doses, including some typical dislocation-loop-like defect structures (shown in
red circles in Figure 3). It should be noted that it cannot be ruled out that some of the defect
clusters are caused by FIB, which makes it difficult to precisely quantify dislocation loops.
However, the TEM image still clearly indicates that the microstructure primarily consisted
of visible black dots or small dislocation loops after irradiation at 0.8 dpa (Figure 3a). The
size of the dislocation loops and defect clusters increases significantly with the irradiation
dose. At 3.5 dpa and 6.1 dpa, large numbers of aggregates formed by the merging of two or
more dislocation loops are observed (indicated by yellow circles in Figure 3). Especially
at 6.1 dpa, the microstructure is dominated by large-size dislocation loop aggregates and
defect clusters. It is worth noting that the visibility of irradiation defects in the TEM image
is closely related to the material’s microstructure uniformity. Generally, the contrast of
irradiation defects is more apparent in grains with a single lattice orientation, facilitating
easy observation. Due to the presence of diffuse nanoparticles and their varied orientations
and small sizes in the V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 sample, observing irradiation defects in
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this material is more challenging. Therefore, irradiation defects are observed inside the
larger-size grains.
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location loops, yellow circles are merged dislocation loops): (a) Y + MAX-0.8 dpa, (b) Y + MAX-
3.5 dpa, (c) Y + MAX-6.1 dpa.

The bright-field image of V-4Cr-4Ti under the same observation conditions is shown
in Figure 4, revealing a growth trend of defect clusters similar to Y + MAX alloys. Dif-
ferent from the Y + MAX alloy, the defect clusters of V-4Cr-4Ti exhibit a higher number
density and smaller size, especially at 0.8 dpa and 3.5 dpa. At 6.1 dpa, this difference
becomes insignificant.
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Figure 4. TEM bright-field image of V-4Cr-4Ti alloys (red circles are typical dislocation loops, yellow
circles are merged dislocation loops): (a) V-4Cr-4Ti-0.8 dpa, (b) V-4Cr-4Ti-3.5 dpa, (c) V-4Cr-4Ti-
6.1 dpa.

3.2. Irradiation Hardening

Figure 5a shows the indentation modulus results for V-4Cr-4Ti, and V-4Cr-4Ti-1.5Y-
0.3Ti3SiC2 before and after the 2.5 MeV V2+ ion irradiation. As can be seen in the figure, the
indentation modulus of irradiated materials exhibits a clear depth dependence. It is widely
accepted that the elastic properties are less affected by irradiation damage compared to
plastic properties like hardness and yield stress [28]. Therefore, the deep dependence of the
indentation modulus is considered to be the effect of irradiation on the pile-up or sink-in
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behavior during indentation. To minimize the effects of pile-up or sink-in, indentation
hardness is corrected using elastic-modulus-based correction (EMC) [28,29], described by

HEMC = HIT × (EEMC
∗/E∗)2 (2)

1
E∗ =

(
1 − νs

2)
EIT

+

(
1 − νI

2)
EI

(3)

1
EEMC

∗ =

(
1 − νs

2)
Es

+

(
1 − νI

2)
EI

(4)

where HIT and HEMC are hardness values from nanoindentation testing and EMC modeling,
E* and EEMC

* are the reduced modulus values, EI and Es are the elastic modulus of the
indenter tip and test material, and νs and νI are the Poisson’s ratios of the indenter tip and
test material, respectively. EIT is the measured and apparent modulus of the material tested
using the Nano Indenter*G200 testing machine. In the nanoindentation tests, EI = 1141 GPa
and νI = 0.07 [30] were used for the diamond tip, and Es = 147 GPa and νs = 0.33 were used
for Vanadium alloys [31]. Figure 5b portrays the average value of nanoindentation hardness
as a function of depth, and Figure 5c shows the hardness values before and after irradiation
calculated using the EMC. In comparison, after EMC correction, the hardness of V-4Cr-4Ti
increases slightly, while the hardness of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 decreases slightly.

In the nanoindentation test, the hardness value H is larger when the indenter depth is
shallow, and the hardness value gradually decreases with the increase in the indentation
depth, which is called the indentation size effect (ISE). Consequently, hardness data within
a depth of 100 nm are disregarded due to the indentation size effect [31,32]. The Nix–Gao
model is established, as shown in Equation (5), to eliminate the indentation size effect based
on the Geometrically Necessary Dislocation (GND) theory [33].

H2 = H0
2
(

1 +
h∗

h

)
(5)

where H0 is the hardness of the material at infinite depth (equivalent to the real hardness of
the material), H is the hardness value corresponding to the indentation depth of h, and h* is
the characteristic length related to the material and the shape of the indenter. According
to Equation (1), the curve shown in Figure 6 is obtained by plotting the square of the
nanoindentation hardness (HEMC

2) and the reciprocal of the indentation depth (h−1).
As depicted in Figure 6, the irradiated samples exhibit two clear linear relationships.

The curve remains relatively flat within the range of 100–173 nm (h−1: 0.0058–0.0100).
Above 167 nm (h−1: 0.0010–0.0058), H2 decreases rapidly with the decrease in 1/h, indicat-
ing a notable decline in hardness with increasing depth. This behavior can be attributed to
the soft substrate effect (SSE), which occurs when the unirradiated area undergoes plastic
deformation before the indentation arrives. Thus, the impact of the unirradiated area on
hardness measurement must not be disregarded [31]. To mitigate the impact of the soft
substrate effect, data within the range of 0.0058–0.0100 nm−1 (100–173nm) are selected
for linear fitting of irradiated materials. The fitting result is extrapolated to infinity depth
(intersection with the y-axis) to obtain the hardness data. Since there is no soft matrix
effect, there is only one linear relationship for the unirradiated samples, and the hardness
of the unirradiated samples is extrapolated from this linear relationship in the range of
0–0.0100 nm−1.
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4. Discussion
4.1. Effect of Irradiation Dose on Nanoparticles

The average size and number density of nanoparticles in the irradiated samples exhibit
a slight decrease compared to those in the non-irradiated area, and the proportion of small-
sized nanoparticles increased slightly. However, these changes with the increase in the
irradiation dose are not deemed significant. Overall, the nanoparticles in the sample are
found to remain stable in the range of irradiation conditions in this work.

4.2. Effect of Irradiation Dose on Defect Clusters

Both materials exhibit the growth of defect clusters with increasing irradiation dose.
Such growth is characteristic of the microstructural evolution of metallic materials under
ion irradiation [34]. The rapid growth of a dislocation loop occurs via the absorption of
mobile clusters and point defects or merging with other dislocation loops [35,36]. This
growth in turn leads to a decrease in the number density of dislocation loops. The number
density of the dislocation loop in the V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 is shown to be smaller at
the same irradiation damage. This difference can be attributed to the boundary between
the nanoparticle and the material matrix serving as a trap for adsorbing irradiation defects,
such as interstitial atoms, vacancy clusters, and dislocation loops. This was reconfirmed
by H. Oka et al. [37], who observed the nucleation process of dislocation loops at the
boundary between the nanoparticles and the matrix in ODS steel using in situ transmission
electron microscopy. It must be admitted that the accurate and quantitative evaluation of
dislocation loops generated by irradiation is hindered by the defects introduced by FIB in
this study. In the future, achieving more accurate TEM observation is a critical concern,
and the “Flash-polishing” method should be tried to eliminate FIB defects.

4.3. Effect of Irradiation Dose on Hardness

Figure 7a presents a histogram of the hardness obtained using the Nix–Gao model to
visually compare the hardnesses of the two materials as a function of irradiation dose. Both
materials exhibit significant irradiation hardening, with hardness values increasing as the
irradiation damage rises. The V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 alloy demonstrates a larger initial
hardness value but a smaller hardness value after irradiation compared to the V-4Cr-4Ti
alloy. This higher initial hardening of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 alloys can be attributed to
the dispersion-strengthening effect of nanoparticles, as observed in previous studies [22,23].
Figure 7b shows the trend of hardness increment (∆H = HEMC

irr − HEMC
unirr) for both

samples as a function of dose. The results clearly show that the hardness increment of
V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 is significantly lower than that of V-4Cr-4Ti, and the hardness
increment of V-4Cr-4Ti does not vary significantly with the dose. Conversely, the hardness
increment of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 exhibits a dose-dependent trend, with a notable
increase in hardness from 3.5 dpa to 6.1 dpa. Notably, the hardness value of “V-4Cr-4Ti-
0.8 dpa” surpasses that of “Y + MAX-6.1 dpa”. These results suggest that the V-4Cr-4Ti
alloy may have already reached a saturation point for irradiation hardening before reaching
0.8 dpa, while V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 may not have reached saturation even at 6.1 dpa. It
is evident that V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 exhibits superior resistance to radiation hardening
compared to V-4Cr-4Ti. In the study of Luo et al. [19], the initial hardness of V-4Cr-4Ti
prepared using the arc melting method was approximately 2.3 GPa, and the hardening
value of V-4Cr-4Ti was approximately 9.8 GPa after being irradiated to 35 dpa with Fe2+ ions
at 550 ◦C. The results of their study are comparable to our experimental results, indicating
that V-4Cr-4Ti reaches a hardening saturation value of approximately 10 GPa under ion
irradiation at around 500 ◦C.
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The source of irradiation hardening lies in the fact that the interstitial atoms and
vacancies, dislocation loops, voids, and other defects caused by irradiation are different
from the matrix lattice arrangement; this results in the distortion of the crystal lattice and
thereby hinders the dislocation motion. The significant increase in sink strength due to the
dispersed nanoparticles suppresses the concentration of interstitial atoms and vacancies,
thereby suppressing the formation and growth rate of irradiation defects [27,38]. At the
same time, the boundary between the nanoparticles and the matrix during irradiation also
captures irradiation defects [37,39], further suppressing irradiation hardening.

5. Conclusions

The irradiation hardening and microstructure of V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 and V-4Cr-
4Ti alloys were investigated after irradiation with 2.5 MeV V2+ ions at 500 ◦C with varying
doses. The key findings are as follows:

(1) After irradiation, defect clusters are present in both materials. The growth and
merging of defect clusters with irradiation dose are observed in both materials.

(2) Both materials exhibit significant irradiation hardening, and hardness increases as the
irradiation dose rises. V-4Cr-4Ti reaches hardening saturation before 0.8 dpa, whereas
V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 may not saturate even at 6.1 dpa.

(3) Compared with V-4Cr-4Ti, V-4Cr-4Ti-1.5Y-0.3Ti3SiC2 had a larger initial hardening
value and smaller irradiation hardening value. This can be attributed to the fact that
the boundary between the nanoparticles and the matrix significantly increases the
sink strength, suppressing defect evolution and irradiation hardening.
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