Improved Corrosion Properties of Mg-Gd-Zn-Zr Alloy by Micro-Arc Oxidation
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure
3.2. Corrosion Behavior
4. Conclusions
- (1)
- The main phase compositions of MAO coatings were MgO and Mg2SiO4. With the increase in voltage, the porosity in the MAO coating decreases and the film becomes thicker.
- (2)
- The corrosion current density decreases and then increases, the radius of the capacitive arc increases and then decreases, and the impedance modulus (|Z|f = 0.01 Hz) increases and then decreases with the increase in voltage. Meanwhile, the polarization resistance (Rp) also increases and then decreases. Due to the increase in thickness and the decrease in porosity, the anodic reaction is suppressed to a large extent, and the corrosion resistance is improved by six orders of magnitude under 450 V voltage compared to the substrate without MAO treatment.
- (3)
- The GZ31K alloy in SBF shows uniform corrosion characteristics, and after MAO treatment, the specimens still exhibit a uniform corrosion mode, indicating that MAO treatment does not change the corrosion characteristics of the substrate, which is the desired performance for biodegradable implanted applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.X.; Yang, D.L.; Li, X.L.; Hu, S.W. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. J. Mater. Res. Technol. 2019, 8, 1538–1549. [Google Scholar] [CrossRef]
- Meysam, N.A.; Abolfazl, Z.; Oluwole, K.B.; Bankole, I.O. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 2022, 11, 1–26. [Google Scholar] [CrossRef]
- Nie, Y.J.; Dai, J.W.; Li, X.; Zhang, X.B. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures. J. Magnes. Alloys 2021, 9, 1123–1146. [Google Scholar] [CrossRef]
- Lin, Z.S.; Wang, T.L.; Yu, X.M.; Sun, X.T.; Yang, H.Z. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: A review. J. Alloys Compd. 2021, 879, 160453. [Google Scholar] [CrossRef]
- Sankara Narayanan, T.S.N.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Lim, T.S.; Ryu, H.S.; Hong, S.H. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corros. Sci. 2012, 62, 104–111. [Google Scholar] [CrossRef]
- Pan, Y.K.; He, S.Y.; Wang, D.G.; Huang, D.L.; Zheng, T.T.; Wang, S.Q.; Dong, P.; Chen, C. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications. Mater. Sci. Eng. C 2015, 47, 85–96. [Google Scholar] [CrossRef]
- Toorani, M.; Aliofkhazraei, M. Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment. Surf. Interfaces 2019, 14, 262–295. [Google Scholar] [CrossRef]
- Chen, C.A.; Jian, S.Y.; Lu, C.H.; Lee, C.Y.; Aktuğ, S.L.; Ger, M.D. Evaluation of microstructural effects on corrosion behavior of AZ31B magnesium alloy with a MAO coating and electroless Ni-P plating. J. Mater. Res. Technol. 2020, 9, 13902–13913. [Google Scholar] [CrossRef]
- Wu, W.X.; Wang, W.P.; Lin, H.C. A study on corrosion behavior of micro-arc oxidation coatings doped with 2-aminobenzimidazole loaded halloysite nanotubes on AZ31 magnesium alloys. Surf. Coat. Technol. 2021, 416, 127116. [Google Scholar] [CrossRef]
- Waizy, H.; Diekmann, J.; Weizbauer, A.; Reifenrath, J.; Bartsch, I.; Neubert, V.; Schavan, R.; Windhagen, H. In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J. Biomater. Appl. 2013, 28, 667–675. [Google Scholar] [CrossRef]
- Zhuang, J.J.; Guo, Y.Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R.G. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte. Appl. Surf. Sci. 2015, 357, 1463–1471. [Google Scholar] [CrossRef]
- Lin, X.; Tan, L.L.; Zhang, Q.; Yang, K.; Hu, Z.Q.; Qiu, J.H.; Cai, Y. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomater. 2013, 9, 8631–8642. [Google Scholar] [CrossRef]
- Liang, J.; Bala Srinivasan, P.; Blawert, C.; Dietzel, W. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochim. Acta 2010, 55, 6802–6811. [Google Scholar] [CrossRef]
- Wang, L.Q.; Zhou, J.S.; Liang, J.; Chen, J.M. Corrosion mechanism of plasma electrolytic oxidation coated magnesium alloy with laser surface melting pretreatment. J. Electrochem. Soc. 2014, 161, C20–C24. [Google Scholar] [CrossRef]
- Huang, Y.W.; Sun, X.L.; Song, J.L.; Chen, J.H.; Gao, J.; Xiao, K. Study on corrosion protection behavior of magnesium alloy/micro-arc oxidation coating in neutral salt spray environment. Int. J. Electrochem. Sci. 2023, 18, 100179. [Google Scholar] [CrossRef]
- Cui, X.J.; Lin, X.Z.; Liu, C.H.; Yang, R.S.; Zheng, X.W.; Gong, M. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros. Sci. 2015, 90, 402–412. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, Y.; Ibrahim, M.; Etim, I.P.; Tan, L.; Yang, K. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy. Colloids Surf. B 2019, 179, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Fischerauer, S.F.; Kraus, T.; Wu, X.; Tangl, S.; Sorantin, E.; Hänzi, A.C.; Löffler, J.F.; Uggowitzer, P.J.; Weinberg, A.M. In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats. Acta Biomater. 2013, 9, 5411–5420. [Google Scholar] [CrossRef] [PubMed]
- Wolters, L.; Besdo, S.; Angrisani, N.; Wriggers, P.; Hering, B.; Seitz, J.M.; Reifenrath, J. Degradation behaviour of LAE442-based plate–screw-systems in an in vitro bone model. Mater. Sci. Eng. C 2015, 49, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.Q.; Duan, W.C.; Liu, W.H.; Zhang, Z.Q. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys. Corros. Sci. 2019, 166, 108419. [Google Scholar] [CrossRef]
- Geng, X.; Jiang, J.H.; Zhang, X.B. Corrosion Behavior of Mg-xGd-1Zn-0.4Zr Alloys with Different Gd Additions for Biomedical Application. Metals 2022, 12, 1763. [Google Scholar] [CrossRef]
- Qian, B.Y.; Miao, W.; Qiu, M. Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg–8Li–2Ca Alloy. Acta Metall. Sin. 2019, 32, 194–204. [Google Scholar] [CrossRef]
- Li, H.Z.; Wang, Y.F.; Geng, J.J.; Li, S.L.; Chen, Y.N. Study on Microstructure and Properties of Black Micro-Arc Oxidation Coating on AZ31 Magnesium Alloy by Orthogonal Experiment. Materials 2022, 15, 8755. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.D.; Kuang, S.Z.; Li, J. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy. JOM 2015, 67, 2133–2144. [Google Scholar] [CrossRef]
- Zhang, X.B.; Dai, J.W.; Zhang, R.F.; Ba, Z.X.; Birbilis, N. Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults. J. Magnes. Alloys 2019, 7, 240–248. [Google Scholar] [CrossRef]
- Song, D.D.; Wan, H.X. Key factor for the corrosion resistance of MAO coating on Mg alloy. Mater. Chem. Phys. 2023, 305, 127963. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Li, Y.; Lu, F.; Li, L.L.; Zhu, W.J.; Pan, H.B.; Tan, G.X.; Lao, Y.H.; Ning, C.Y.; Ni, G.X. Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid. Prog. Nat. Sci.—Mater. 2014, 24, 516–522. [Google Scholar] [CrossRef]
- Yagi, S.; Kuwabara, K.; Fukuta, Y.; Kubota, K.; Matsubara, E. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation. Corros. Sci. 2018, 73, 188–195. [Google Scholar] [CrossRef]
- Li, Z.J.; Jing, X.Y.; Yuan, Y.; Zhang, M.L. Composite coatings on a Mg–Li alloy prepared by combined plasma electrolytic oxidation and sol–gel techniques. Corros. Sci. 2012, 63, 358–366. [Google Scholar] [CrossRef]
- Dong, Q.S.; Jia, Y.Q.; Ba, Z.X.; Tao, X.W.; Wang, Z.Z.; Xue, F.; Bai, J. Exploring the corrosion behavior of Mn-implanted biomedical Mg. J. Alloys Compd. 2021, 873, 159739. [Google Scholar] [CrossRef]
- Dong, Q.S.; Zhou, X.X.; Feng, Y.J.; Qian, K.; Liu, H.; Lu, M.M.; Chu, C.L.; Xue, F.; Bai, J. Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioact. Mater. 2021, 6, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Saady, A.; Rais, Z.; Benhiba, F.; Salim, R.; Ismaily, A.K.; Arrousse, N.; Elhajjaji, F.; Taleb, M.; Jarmoni, K.; Kandri, R.Y.; et al. Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo [4,5-b] pyridine derivatives against mild steel corrosion. Corros. Sci. 2021, 189, 109621. [Google Scholar] [CrossRef]
- Xie, J.S.; Wang, L.L.; Zhang, J.H.; Lu, L.W.; Zhang, Z.; He, Y.Y.; Wu, R.Z. Developing new Mg alloy as potential bone repair material via constructing weak anode nano-lamellar structure. J. Magnes. Alloys 2023, 11, 154–175. [Google Scholar] [CrossRef]
- Xue, K.; Tan, P.H.; Zhao, Z.H.; Cui, L.Y.; Kannan, M.B.; Li, S.Q.; Liu, C.B.; Zou, Y.H.; Zhang, F.; Chen, Z.Y.; et al. In vitro degradation and multi-antibacterial mechanisms of β-cyclodextrin@curcumin embodied Mg(OH)2/MAO coating on AZ31 magnesium alloy. J. Mater. Sci. Technol. 2023, 132, 179–192. [Google Scholar] [CrossRef]
- Lu, J.P.; Cao, G.P.; Quan, G.F.; Wang, C.; Zhuang, J.J.; Song, R.G. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy. J. Mater. Eng. Perform. 2018, 27, 147–154. [Google Scholar] [CrossRef]
- Tang, M.Q.; Shao, Y.F.; Feng, Z.Q.; Wang, W.; Li, G.; Yan, Z.W.; Zhang, R.Z. Self-sealing Microarc Oxidation Coating Mainly Containing ZrO2 and Nano Mg2Zr5O12 on AZ91D Mg Alloy. Int. J. Electrochem. Sci. 2020, 15, 12447–12461. [Google Scholar] [CrossRef]
Component | NaCl | CaCl2 | KCl | NaHCO3 | MgCl2·6H2O | Glucose | Na2HPO4·2H2O | KH2PO4 | MgSO4·7H2O |
---|---|---|---|---|---|---|---|---|---|
Concentration/g·L−1 | 8.00 | 0.14 | 0.40 | 0.35 | 0.10 | 1.00 | 0.06 | 0.06 | 0.06 |
Specimen | Substrate | 400 V | 425 V | 450 V | 475 V |
---|---|---|---|---|---|
Ecorr (V) | −1.59 ± 0.02 | −1.76 ± 0.02 | −1.58 ± 0.01 | −1.29 ± 0.02 | −1.57 ± 0.01 |
Icorr (A/cm2) | 2.67 ± 0.13 × 10−5 | 2.31 ± 0.05 × 10−8 | 5.23 ± 0.22 × 10−9 | 2.75 ± 0.36 × 10−10 | 8.23 ± 0.15 × 10−7 |
Specimen | Substrate | 400 V MAO | 425 V MAO | 450 V MAO | 475 V MAO |
---|---|---|---|---|---|
Rs /Ω·cm2 | 89.4 | 81.0 | 54.5 | 78.1 | 79.3 |
Yf/Ω−1·cm−2·snf | 3.08 × 10−5 | 6.62 × 10−7 | |||
nf | 0.835 | 0.751 | |||
Rf/Ω·cm2 | 1.35 × 103 | 1.14 × 10−2 | |||
Yf2/Ω−1·cm−2·snf2 | 1.73 × 10−7 | 2.76 × 10−8 | 1.48 × 10−7 | ||
nf2 | 0.762 | 0.801 | 0.763 | ||
Rf2/Ω·cm2 | 2.52 × 103 | 1.78 × 104 | 2.11 × 105 | ||
Yf1/Ω−1·cm−2·snf1 | 88.5 × 10−8 | 1.41 × 10−7 | 8.53 × 10−8 | ||
nf1 | 0.79 | 0.77 | 0.81 | ||
Rf1/Ω·cm2 | 3.21 × 105 | 6.23 × 105 | 6.49 × 106 | ||
Ydl/Ω−1·cm−2·sn | 9.85 × 10−4 | 4.18 × 10−7 | 1.54 × 10−7 | 1.18 × 10−7 | 2.27 × 10−7 |
n | 0.892 | 0.786 | 0.895 | 0.823 | 0.978 |
Rct /Ω·cm2 | 3.71 × 102 | 7.12 × 105 | 1.08 × 107 | 9. 34 × 108 | 3.74 × 105 |
Rp /Ω·cm2 | 1.72 × 103 | 7.13 × 105 | 1.11 × 107 | 9. 35 × 108 | 7.08 × 106 |
Error | 5.19 × 10−3 | 4.50 × 10−4 | 8.12 × 10−4 | 8.69 × 10−4 | 3.78 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Dong, Q.; Zhang, X. Improved Corrosion Properties of Mg-Gd-Zn-Zr Alloy by Micro-Arc Oxidation. Metals 2024, 14, 236. https://doi.org/10.3390/met14020236
Geng X, Dong Q, Zhang X. Improved Corrosion Properties of Mg-Gd-Zn-Zr Alloy by Micro-Arc Oxidation. Metals. 2024; 14(2):236. https://doi.org/10.3390/met14020236
Chicago/Turabian StyleGeng, Xue, Qiangsheng Dong, and Xiaobo Zhang. 2024. "Improved Corrosion Properties of Mg-Gd-Zn-Zr Alloy by Micro-Arc Oxidation" Metals 14, no. 2: 236. https://doi.org/10.3390/met14020236
APA StyleGeng, X., Dong, Q., & Zhang, X. (2024). Improved Corrosion Properties of Mg-Gd-Zn-Zr Alloy by Micro-Arc Oxidation. Metals, 14(2), 236. https://doi.org/10.3390/met14020236