Dynamic Recrystallization, Texture Evolution, and Improved Mechanical Properties of Mg-Y-Zn-V Alloy during Forging and Subsequent Extruding Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Prior to Forging
3.2. Microstructure after Deforming
3.2.1. SEM Analysis of Deformed Alloys
3.2.2. EBSD Analysis of Deformed Alloys
3.3. Mechanical Properties of the Deformed Alloys
4. Discussion
4.1. Analysis of the DRX Mechanism
4.2. Analysis of Twinning, Slip Behavior, and Texture Evolution
4.3. Analysis of the Strengthening Mechanism
- (1)
- Fine-grain strengthening
- (2)
- Load-transfer strengthening
- (3)
- Dislocation strengthening
- (4)
- Texture strengthening
5. Conclusions
- (1)
- As the degree of strain increased, the DRX region expanded, and the DRX mechanism transformed from DDRX into DDRX and CDRX.
- (2)
- During deformation, {10–12} tensile twins participated in plastic deformation as the main twins. As the degree of strain increased, a variety of {10–12} twin variants appeared and exhibited a meta-position relationship.
- (3)
- At the beginning of deformation, basal <a> slip dominated the slip mode and exhibited a strong basal texture. With increasing strain, prismatic <a> and pyramidal <c+a> slip initiated, and the basal texture transformed into the (0001)//TD component. Formed DRX grains and twins reorientated during deformation and weakened the texture.
- (4)
- Through deformation, the UTS and YS of the Mg-Y-Zn-V alloy were enhanced to 370.5 MP and 340.1 MPa, respectively. The enhancement of the strength was the result of the synergistic effect of multiple strengthening mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A 2007, 464, 1–7. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Li, H.; Mason, D.; Bieler, T.; Boehlert, C.; Crimp, M. Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis. Acta Mater. 2013, 61, 7555–7567. [Google Scholar] [CrossRef]
- Lu, S.H.; Wu, D.; Chen, R.S.; Han, E.H. The effect of twinning on dynamic recrystallization behavior of Mg-Gd-Y alloy during hot compression. J. Alloys Compd. 2019, 803, 277–290. [Google Scholar] [CrossRef]
- Prakash, P.; Toscano, D.; Shaha, S.K.; Wells, M.A.; Jahed, H.; Williams, B.W. Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy. Mater. Sci. Eng. A 2020, 794, 139923. [Google Scholar] [CrossRef]
- Hong, S.G.; Park, H.; Lee, C.S. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010, 58, 5873–5885. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, L.; Cooper, C.; Yu, K.; Zhang, D.; Rupert, T.J.; Mahajan, S.; Beyerlein, I.J.; Lavernia, E.J.; Schoenung, J.M. Toughening magnesium with gradient twin meshes. Acta Mater. 2020, 195, 468–481. [Google Scholar] [CrossRef]
- Gui, Y.W.; Cui, Y.J.; Bian, H.K.; Li, Q.A.; Ouyang, L.X.; Chiba, A. Role of slip and {10–12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature. J. Mater. Sci. Technol. 2021, 80, 279–296. [Google Scholar] [CrossRef]
- Wang, Y.N.; Huang, J.C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater. 2007, 55, 897–905. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Clausen, B.; Tome, C.N.; Brown, D.W.; Agnew, S.R. Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 2008, 56, 2456–2468. [Google Scholar] [CrossRef]
- GB/T 228.1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. China Quality Press: Shanghai, China, 2016.
- Li, M.; Zhang, K.; Li, X.G.; Yuan, J.W.; Li, Y.J.; Ma, M.L.; Shi, G.L.; Li, T.; Liu, J.B. Effect of Zn on the microstructure and mechanical properties of as-cast Mg–7Gd–3Y–1Nd–0.5Zr alloy. Mater. Sci. Eng. A 2015, 638, 46–53. [Google Scholar] [CrossRef]
- Hao, J.Q.; Zhang, J.S.; Li, B.Q.; Xie, R.Z. Effects of 14H LPSO phase on the dynamic recrystallization and work-hardening behaviors of an extruded Mg–Zn–Y–Mn alloy. Mater. Sci. Eng. A 2021, 804, 140727. [Google Scholar] [CrossRef]
- Saadati, M.; Khosroshahi, R.A.; Ebrahimi, G.; Jahazi, M. Formation of precipitates in parallel arrays on LPSO structures during hot deformation of GZ41K magnesium alloy. Mater. Charact. 2017, 131, 234–243. [Google Scholar] [CrossRef]
- Lu, F.; Ma, A.; Jiang, J.; Yang, D.; Yuan, Y.; Zhang, L. Formation of profuse long period stacking ordered microcells in Mg-Gd-Zn-Zr alloy during multipass ECAP process. J. Alloys Compd. 2014, 601, 140–145. [Google Scholar] [CrossRef]
- Yamasaki, M.; Hagihara, K.; Inoue, S.L.; Hadorn, J.P.; Kawamura, Y. Crystallographic classification of kink bands in an extruded Mg-Zn-Y alloy using intragranular misorientation axis analysis. Acta Mater. 2013, 61, 2065–2076. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, C.; Wan, Y.; Yang, P.; Shu, X. Microstructures and mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr (wt.%) alloy. J. Alloys Compd. 2011, 509, 8832–8839. [Google Scholar] [CrossRef]
- Yamasaki, M.; Sasaki, M.; Nishijima, M.; Hiraga, K.; Kawamura, Y. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. Acta Mater. 2007, 55, 6798–6805. [Google Scholar] [CrossRef]
- Dietrich, L.; Turski, K. A new method of thin sheets testing under compression. Eng. Trans. 1978, 26, 91. [Google Scholar]
- Zhang, L.; Yuan, S.; Wang, J.; Chen, L.; Jin, P. Hot deformation behavior, processing map, microstructure evolution and dynamic recrystallization mechanism of Mg-5Al-0.6Sc alloy. J. Alloy Compd. 2022, 922, 166244. [Google Scholar] [CrossRef]
- Victoria-Hernández, J.; Yi, S.; Letzig, D. Role of non-basal slip systems on the microstructure and texture development of ZXK-Mg alloy deformed in Plane Strain Compression at elevated temperature. Scr. Mater. 2022, 208, 114322. [Google Scholar] [CrossRef]
- Ma, D.; Yuan, S.; Luan, S.; Jin, P.; Hu, H.; Wang, J.; Li, X. Hot deformation behavior, microstructure evolution and slip system of Mg-2Zn-0.5Mn-0.2Ca alloy. J. Mater. Res. Technol. 2022, 21, 164354. [Google Scholar] [CrossRef]
- Cai, W.; Wang, C.; Sun, C.; Qian, L.; Fu, M.W. Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Mater. Sci. Eng. A 2022, 851, 143657. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Chen, X.; Bao, J.; Chen, Z. Effect of Sn addition on the deformation behavior and microstructural evolution of Mg-Gd-Y-Zr alloy during hot compression. Mater. Sci. Eng. A 2021, 826, 142026. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Zhang, Y.Q.; Yu, H.; Wang, H.X.; Niu, X.F.; Wang, L.F.; Li, H.; Cheng, W.-L. Revealing the deformation behavior and resultant texture evolution in extruded dilute Mg-Bi-Sn-Ca alloy during hot compression. Mater. Sci. Eng. A 2022, 853, 143788. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Xu, J.Y.; Yu, J.; Liu, X.F. Intragranular cross-level twin pairs in AZ31 Mg alloy after sequential biaxial compressions. J. Alloys Compd. 2018, 749, 52–59. [Google Scholar] [CrossRef]
- Su, H.; Zhou, X.; Zheng, S.; Ye, H.; Yang, Z. Atomic-resolution studies on reactions between basal dislocations and {10–12} coherent twin boundaries in a Mg alloy. J. Mater. Sci. Technol. 2021, 66, 28–35. [Google Scholar] [CrossRef]
- Chun, Y.B.; Battaini, M.; Davies, C.H.J.; Hwang, S.K. Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes. Metall. Mater. Trans. A 2010, 41, 3473–3487. [Google Scholar] [CrossRef]
- Matsumoto, T.; Yamasaki, M.; Hagihara, K.; Kawamura, Y. Configuration of dislocations in low-angle kink boundaries formed in a single crystalline long-period stacking ordered Mg-Zn-Y alloy. Acta Mater. 2018, 151, 112–124. [Google Scholar] [CrossRef]
- Du, P.; Furusawa, S.; Furushima, T. Continuous observation of twinning and dynamic recrystallization in ZM21 magnesium alloy tubes during locally heated dieless drawing. J. Magnes. Alloys 2022, 10, 730–742. [Google Scholar] [CrossRef]
- Feng, Y.H.; Qian, L.Y.; Sun, C.Y.; Xu, S.N.; Zhu, N.; Wang, C.; Liu, Y. Twinning, dynamic recrystallization, and texture evolution in as-solution AZ80 Mg alloy during hot compression. J. Mater. Res. Technol. 2023, 25, 5159–5173. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Yan, H.; Fan, G.H.; Nakata, T.; Lao, C.S.; Chen, R.; Kamado, S.; Han, E.; Lu, B. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 2018, 157, 53–71. [Google Scholar] [CrossRef]
- Hao, M.; Cheng, W.; Wang, L.; Mostaed, E.; Bian, L.; Wang, H.; Niu, X. Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression. J. Magnes. Alloys 2020, 8, 899–909. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Yuan, Y.; Chen, T.; Zheng, Z.B.; Ma, L.F.; Jiang, B.; Tang, A.; Pan, F. The effects of second-alloying-element on the formability of Mg-Sn alloys in respect of the stacking fault energies of slip systems. Mater. Today Commun. 2021, 29, 102829. [Google Scholar] [CrossRef]
- Chapuis, A.; Driver, J.H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 2011, 59, 1986–1994. [Google Scholar] [CrossRef]
- Zhang, Q.; Pang, H.; Li, Q.; Gui, Y.; Chen, X.; Li, X.; Chen, P.; Tan, J. {10–12} twinning relationship in Mg-Gd-Y(-Sn)-Zr alloys under uniaxial compression at room temperature. Mater. Sci. Eng. A 2022, 835, 142679. [Google Scholar] [CrossRef]
- Srinivasarao, B.; Dudamell, N.V.; Pérez-Prado, M.T. Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31. Mater. Charact. 2013, 75, 101–107. [Google Scholar] [CrossRef]
- Boehlert, C.J.; Chen, Z.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M.T. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31. Acta Mater. 2012, 60, 1889–1904. [Google Scholar] [CrossRef]
- Styczynski, A.; Hartig, C.H.; Bohlen, J.; Letzig, D. Cold rolling textures in AZ31 wrought magnesium alloy. Scr. Mater. 2004, 50, 943–947. [Google Scholar] [CrossRef]
- Yu, H.H.; Xin, Y.C.; Wang, M.Y.; Liu, Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
- Mabuchi, M.; Higashi, K. Strengthening mechanisms of Mg-Si alloys. Acta Mater. 1996, 44, 4611–4618. [Google Scholar] [CrossRef]
- Bi, G.L.; Wang, Y.S.; Jiang, J.; Gu, J.R.; Li, Y.D.; Chen, T.J.; Ma, Y. Microstructure and mechanical properties of extruded Mg-Y-Zn (Ni) alloys. J. Alloys Compd. 2021, 881, 160577. [Google Scholar] [CrossRef]
Grains | <a> Basal | <a> Prismatic | <c+a> Pyramidal | |||
---|---|---|---|---|---|---|
Forged Alloy | Extruded Alloy | Forged Alloy | Extruded Alloy | Forged Alloy | Extruded Alloy | |
A | 0.34 | 0.25 | 0.03 | 0.36 | 0.26 | 0.13 |
B | 0.35 | 0.41 | 0.24 | 0.05 | 0.38 | 0.47 |
C | 0.29 | 0.38 | 0.21 | 0.18 | 0.38 | 0.41 |
D | 0.48 | 0.38 | 0.10 | 0.41 | 0.33 | 0.39 |
E | 0.40 | 0.18 | 0.04 | 0.40 | 0.35 | 0.15 |
F | 0.36 | 0.27 | 0.21 | 0.12 | 0.27 | 0.28 |
G | 0.21 | 0.46 | 0.12 | 0.22 | 0.20 | 0.37 |
H | 0.39 | 0.47 | 0.06 | 0.24 | 0.29 | 0.40 |
I | 0.15 | 0.34 | 0.02 | 0.19 | 0.46 | 0.43 |
J | 0.46 | 0.28 | 0.11 | 0.45 | 0.37 | 0.27 |
K | 0.48 | 0.41 | 0.12 | 0.22 | 0.36 | 0.35 |
Alloy | (MPa) | (MPa) | (MPa) | (MPa) |
---|---|---|---|---|
As-extruding | 115.1 | 17.2 | 132.3 | 139.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, C.; Shi, Q.; Han, F.; Cao, P. Dynamic Recrystallization, Texture Evolution, and Improved Mechanical Properties of Mg-Y-Zn-V Alloy during Forging and Subsequent Extruding Deformation. Metals 2024, 14, 259. https://doi.org/10.3390/met14030259
Liu W, Zhang C, Shi Q, Han F, Cao P. Dynamic Recrystallization, Texture Evolution, and Improved Mechanical Properties of Mg-Y-Zn-V Alloy during Forging and Subsequent Extruding Deformation. Metals. 2024; 14(3):259. https://doi.org/10.3390/met14030259
Chicago/Turabian StyleLiu, Wenjie, Changjiang Zhang, Qun Shi, Fuyin Han, and Peng Cao. 2024. "Dynamic Recrystallization, Texture Evolution, and Improved Mechanical Properties of Mg-Y-Zn-V Alloy during Forging and Subsequent Extruding Deformation" Metals 14, no. 3: 259. https://doi.org/10.3390/met14030259
APA StyleLiu, W., Zhang, C., Shi, Q., Han, F., & Cao, P. (2024). Dynamic Recrystallization, Texture Evolution, and Improved Mechanical Properties of Mg-Y-Zn-V Alloy during Forging and Subsequent Extruding Deformation. Metals, 14(3), 259. https://doi.org/10.3390/met14030259