Predictability of Different Machine Learning Approaches on the Fatigue Life of Additive-Manufactured Porous Titanium Structure
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Data
2.2. Machine Learning Models
2.2.1. Multiple Linear Regression (MLR)
2.2.2. Artificial Neural Networks (ANN)
2.2.3. Support Vector Regression (SVR)
2.2.4. Random Forests (RFs)
2.3. Model Evaluation
2.4. Overall Strategy
3. Results
3.1. Data Analysis
3.2. Fatigue-Life Prediction
3.3. Performance of the Models
4. Discussion
4.1. Effects of MLR Parameters on Predicted Results and Prediction Accuracy
4.2. Effects of ANN Parameters on Predicted Results and Prediction Accuracy
4.3. Effects of SVR Parameters on Predicted Results and Prediction Accuracy
4.4. Effects of RF Parameters on Predicted Results and Prediction Accuracy
4.5. Remarks
5. Conclusions
- The MLR model’s predictions of fatigue life for AM titanium porous components are not significantly affected by variations in the training sets used.
- To achieve accurate predictions of fatigue life for AM titanium porous components using the ANN model, it is recommended to create the first hidden layer with three or four neurons.
- For the SVR model, gamma equal to 0.0001 and C equal to 30 are recommended for the fatigue-life prediction of AM titanium porous components.
- For accurate predictions of fatigue life in AM titanium porous components using the RF model, it is suggested to set the n_estimators equal to three and the max_depth equal to seven.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, H.; Li, S.; Wang, S.; Wang, W.; Hou, W.; Hao, Y.; Yang, R.; Zhang, L. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017, 126, 58–66. [Google Scholar] [CrossRef]
- Li, S.; Murr, L.; Cheng, X.; Zhang, Z.; Hao, Y.; Yang, R.; Medina, F.; Wicker, R. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012, 60, 793–802. [Google Scholar] [CrossRef]
- Zhang, L.C.; Klemm, D.; Eckert, J.; Hao, Y.L.; Sercombe, T.B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 2011, 65, 21–24. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, H.; Hou, W.; Hao, Y.; Yang, R.; Sercombe, T.; Zhang, L. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016, 113, 56–67. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Hou, W.; Hao, Y.; Yang, R.; Misra, R. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 2016, 59, 251–264. [Google Scholar] [CrossRef]
- Edwards, P.; O’Conner, A.; Ramulu, M. Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance. J. Manuf. Sci. Eng. 2013, 135, 61016. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Bone tissue regeneration: The role of scaffold geometry. Biomater. Sci. 2014, 3, 231–245. [Google Scholar] [CrossRef]
- Lietaert, K.; Cutolo, A.; Boey, D.; Van Hooreweder, B. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load. Sci. Rep. 2018, 8, 4957. [Google Scholar] [CrossRef] [PubMed]
- Wycisk, E.; Emmelmann, C.; Siddique, S.; Walther, F. High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting. In Advanced Materials Research; Trans Tech Publications Ltd.: Zürich, Switzerland, 2013; pp. 134–139. [Google Scholar]
- Hrabe, N.W.; Heinl, P.; Flinn, B.; Körner, C.; Bordia, R.K. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V). J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 99, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Jamshidinia, M.; Wang, L.; Tong, W.; Ajlouni, R.; Kovacevic, R. Fatigue properties of a dental implant produced by electron beam melting ® (EBM). J. Am. Acad. Dermatol. 2015, 226, 255–263. [Google Scholar] [CrossRef]
- Lindemann, J.; Wagner, L. Mean stress sensitivity in fatigue of α, (αβ) and β titanium alloys. Mater. Sci. Eng. A 1997, 234, 1118–1121. [Google Scholar] [CrossRef]
- Henry, S.D.; Dragolich, K.S.; DiMatteo, N. Fatigue Data Book: Light Structural Alloys; ASM International: Novelty, OH, USA, 1995. [Google Scholar]
- Nicholas, T. High Cycle Fatigue: A Mechanics of Materials Perspective; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Van Hooreweder, B.; Apers, Y.; Lietaert, K.; Kruth, J.-P. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomater. 2017, 47, 193–202. [Google Scholar] [CrossRef]
- Ye, S.; Li, B.; Li, Q.; Zhao, H.-P.; Feng, X.-Q. Deep neural network method for predicting the mechanical properties of composites. Appl. Phys. Lett. 2019, 115, 161901. [Google Scholar] [CrossRef]
- Naik, D.L.; Kiran, R. Identification and characterization of fracture in metals using machine learning based texture recognition algorithms. Eng. Fract. Mech. 2019, 219, 6618. [Google Scholar] [CrossRef]
- Ma, X.; He, X.; Tu, Z. Prediction of fatigue–crack growth with neural network-based increment learning scheme. Eng. Fract. Mech. 2020, 241, 107402. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.-N.; Zhang, X.; Goh, P.C.; Wei, J.; Hardacre, D.; Li, H. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. Int. J. Fatigue 2019, 128, 105194. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int. J. Fatigue 2020, 142, 105941. [Google Scholar] [CrossRef]
- Zhan, Z.; Li, H. A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing. Int. J. Fatigue 2020, 145, 106089. [Google Scholar] [CrossRef]
- Zhan, Z.; Ao, N.; Hu, Y.; Liu, C. Defect-induced fatigue scattering and assessment of additively manufactured 300M-AerMet100 steel: An investigation based on experiments and machine learning. Eng. Fract. Mech. 2022, 264, 108352. [Google Scholar] [CrossRef]
- Shi, T.; Sun, J.; Li, J.; Qian, G.; Hong, Y. Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting. Int. J. Fatigue 2023, 171, 7585. [Google Scholar] [CrossRef]
- Bao, H.; Wu, S.; Wu, Z.; Kang, G.; Peng, X.; Withers, P.J. A machine-learning fatigue life prediction approach of additively manufactured metals. Eng. Fract. Mech. 2020, 242, 107508. [Google Scholar] [CrossRef]
- Romano, S.; Brandão, A.; Gumpinger, J.; Gschweitl, M.; Beretta, S. Qualification of AM parts: Extreme value statistics applied to tomographic measurements. Mater. Des. 2017, 131, 32–48. [Google Scholar] [CrossRef]
- du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2019, 187, 108385. [Google Scholar] [CrossRef]
- Srinivasan, V.; Valsan, M.; Rao, K.B.S.; Mannan, S.; Raj, B. Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach. Int. J. Fatigue 2003, 25, 1327–1338. [Google Scholar] [CrossRef]
- Nasiri, S.; Khosravani, M.R.; Weinberg, K. Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review. Eng. Fail. Anal. 2017, 81, 270–293. [Google Scholar] [CrossRef]
- Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Netw. 2021, 138, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, S.-P.; Luo, C.; Liao, D.; Wang, Q. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. Int. J. Fatigue 2023, 172, 7658. [Google Scholar] [CrossRef]
- Kang, S.; Cho, S. Approximating support vector machine with artificial neural network for fast prediction. Expert Syst. Appl. 2014, 41, 4989–4995. [Google Scholar] [CrossRef]
- French, M. Fundamentals of Optimization; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Leung, S.C.H.; Zheng, J. Vertical bagging decision trees model for credit scoring. Expert Syst. Ap-Plications 2010, 37, 7838–7843. [Google Scholar] [CrossRef]
- Konda, N.; Verma, R.; Jayaganthan, R. Machine Learning Based Predictions of Fatigue Crack Growth Rate of Additively Man-ufactured Ti6Al4V. Metals 2021, 12, 50. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, X.; Yue, Q.; Gu, Y.; Zhang, Z. The Effect of Microstructure on the Very High Cycle Fatigue Behavior of Ti-6Al-4V Alloy. Metals 2024, 14, 254. [Google Scholar] [CrossRef]
- Konecna, R.; Varmus, T.; Nicoletto, G.; Jambor, M. Influence of Build Orientation on Surface Roughness and Fatigue Life of the Al2024-RAM2 Alloy Produced by Laser Powder Bed Fusion (L-PBF). Metals 2023, 13, 1615. [Google Scholar] [CrossRef]
- Spignoli, N.; Minak, G. Influence on Fatigue Strength of Post-Process Treatments on Thin-Walled AlSi10Mg Structures Made by Additive Manufacturing. Metals 2023, 13, 126. [Google Scholar] [CrossRef]
- Martins, L.F.L.; Provencher, P.R.; Brochu, M.; Brochu, M. Effect of Platform Temperature and Post-Processing Heat Treatment on the Fatigue Life of Additively Manufactured AlSi7Mg Alloy. Metals 2021, 11, 679. [Google Scholar] [CrossRef]
MLR | Hyperparameters |
---|---|
Model 1 | random_states = 39 |
Model 2 | random_states = 50 |
Model 3 | random_states = 74 |
Model 4 | random_states = 110 |
ANN | Hyperparameters |
---|---|
Model 1 | The first hidden layer has 3 neurons |
Model 2 | The first hidden layer has 4 neurons |
Model 3 | The first hidden layer has 5 neurons |
Model 4 | The first hidden layer has 6 neurons |
SVR | Hyperparameters |
---|---|
Model 1 | gamma = 0.001 and C = 10 |
Model 2 | gamma = 0.001 and C = 50 |
Model 3 | gamma = 0.001 and C = 416 |
Model 4 | gamma = 0.0001 and C = 30 |
Model 5 | gamma = 0.005 and C = 30 |
Model 6 | gamma = 0.01 and C = 30 |
RF | Hyperparameters |
---|---|
Model 1 | n_estimators = 3 and max_depth = 3 |
Model 2 | n_estimators = 3 and max_depth = 5 |
Model 3 | n_estimators = 3 and max_depth = 7 |
Model 4 | n_estimators = 5 and max_depth = 5 |
Model 5 | n_estimators = 7 and max_depth = 5 |
Model 6 | n_estimators = 9 and max_depth = 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Yue, X.; Wang, H. Predictability of Different Machine Learning Approaches on the Fatigue Life of Additive-Manufactured Porous Titanium Structure. Metals 2024, 14, 320. https://doi.org/10.3390/met14030320
Gao S, Yue X, Wang H. Predictability of Different Machine Learning Approaches on the Fatigue Life of Additive-Manufactured Porous Titanium Structure. Metals. 2024; 14(3):320. https://doi.org/10.3390/met14030320
Chicago/Turabian StyleGao, Shuailong, Xuezheng Yue, and Hao Wang. 2024. "Predictability of Different Machine Learning Approaches on the Fatigue Life of Additive-Manufactured Porous Titanium Structure" Metals 14, no. 3: 320. https://doi.org/10.3390/met14030320
APA StyleGao, S., Yue, X., & Wang, H. (2024). Predictability of Different Machine Learning Approaches on the Fatigue Life of Additive-Manufactured Porous Titanium Structure. Metals, 14(3), 320. https://doi.org/10.3390/met14030320