Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase
Abstract
:1. Introduction
2. Experimental Section
2.1. Anode Preparation
2.2. Microstructure Characterization
2.3. Electrochemical Tests and Corrosion Performance Testing
2.4. Mechanical Performance Testing
2.5. Mg-Air Battery Test
3. Results and Discussion
3.1. Microstructure Evolution
3.2. Electrochemical Properties and Corrosion Resistance
3.3. Mechanical Properties
3.4. Discharge Performance of Alloy-Based Anodes
4. Conclusions
- (1)
- The as-cast AZ72-0.05La alloy has a relatively coarse and strip-like β-Mg17Al12 phase, while the β-Mg17Al12 phase becomes much finer and shows a granular state after rolling.
- (2)
- After rolling, the microstructure of the Mg matrix changes from dendrites to equiaxed crystals. The corrosion of the Mg anode initiates from the β-Mg17Al12 at the grain boundary for the as-cast AZ72-0.05La alloy. After rolling, the corrosion of the Mg anode initiates from the grain boundary, and the discharge activity is enhanced.
- (3)
- At a high current density of 20 mA·cm−2, the as-rolled AZ72-0.05La alloy has a discharge voltage of 0.74 V and an energy density of 918 mWh·g−1, which are 6% and 3% higher than the as-cast AZ72-0.05La alloy, respectively. In addition, the as-rolled AZ72-0.05La alloy possesses a relatively low corrosion rate of 0.51 mg·cm−2·h−1, showing good comprehensive discharge performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.; Qian, G.; Wang, C.; Zhang, G.; Yin, R.; Liu, W.; Liu, R.; Chen, Y. Progress in electrode materials for the industrialization of sodium-ion batteries. Prog. Nat. Sci. Mater. Int. 2023, 33, 1–7. [Google Scholar] [CrossRef]
- Ding, D.; Du, Y.; Tang, M.; Bo, S.; Ning, G.; Zhang, H.; Guo, S. Corrosion and discharge behavior of Mg–Zn–Mn–Nd alloys as primary Mg–air batteries anode. Trans. Nonferrous Met. Soc. China 2023, 33, 2014–2029. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Vaghefinazari, B.; Xu, W.; Feiler, C.; Lamaka, S.; Hoeche, D.; Zheludkevich, M.; Snihirova, D. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Mater. 2021, 43, 238–247. [Google Scholar] [CrossRef]
- Xiong, H.; Yu, K.; Yin, X.; Dai, Y.; Yan, Y.; Zhu, H. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt% Al-1wt% Sn alloy as anode for Mg-air primary battery. J. Alloys Compd. 2017, 708, 652–661. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, R.; Pei, Y.; Gao, X.; Jiang, L.; Zou, J. Effect of Rolling Deformation on Corrosion and Discharge Behavior of AZ91 Magnesium Alloy. Adv. Eng. Mater. 2023, 25, 2200890. [Google Scholar] [CrossRef]
- Wang, N.; Mu, Y.; Xiong, W.; Zhang, J.; Li, Q.; Shi, Z. Effect of crystallographic orientation on the discharge and corrosion behavior of AP65 magnesium alloy anodes. Corros. Sci. 2018, 144, 107–126. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Le, Q.; Zhang, M.; Liu, M.; Atrens, A. A comprehensive review of the development of magnesium anodes for primary batteries. J. Mater. Chem. A 2021, 9, 12367–12399. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Höche, D.; Lamaka, S.V.; Jiang, P.; Snihirova, D.; Scharnagl, N.; Zheludkevich, M.L. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect. J. Power Sources 2020, 472, 228528. [Google Scholar] [CrossRef]
- Gu, X.; Cheng, W.; Cheng, S.; Liu, Y.; Wang, Z.; Yu, H.; Cui, Z.; Wang, L.; Wang, H. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion. J. Mater. Sci. Technol. 2021, 60, 77–89. [Google Scholar] [CrossRef]
- Xiong, H.; Zhu, H.; Luo, J.; Yu, K.; Shi, C.; Fang, H.; Zhang, Y. Effects of heat treatment on the discharge behavior of Mg-6wt.% Al-1wt.% Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 2017, 26, 2901–2911. [Google Scholar] [CrossRef]
- Liu, X.; Xue, J.; Zhang, P.; Wang, Z. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries. J. Power Sources 2019, 414, 174–182. [Google Scholar] [CrossRef]
- Ma, J.; Wang, G.; Li, Y.; Ren, F.; Volinsky, A. Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys. Ionics 2019, 25, 2201–2209. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B.; Liu, W.; Song, J.; Huang, G.; Zhang, D.; Pan, F. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries. J. Mater. Sci. Technol. 2021, 62, 128–138. [Google Scholar] [CrossRef]
- Pechberty, C.; Klein, A.; Fraisse, B.; Stievano, L.; Berthelot, R. Mechanisms of electrochemical magnesium (de) alloying of Mg-Sn and Mg-Pb polymorphs. J. Magnes. Alloys 2022, 10, 1609–1616. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, Z.; Zhang, H.; Chu, R. Ignition-proof mechanism of magnesium alloy added with rare earth La from first-principle study. J. Rare Earths 2012, 30, 573–578. [Google Scholar] [CrossRef]
- Ma, B.; Tan, C.; Ouyang, L.; Shao, H.; Wang, N.; Zhu, M. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries. J. Alloys Compd. 2022, 918, 165803. [Google Scholar] [CrossRef]
- Feng, Y.; Lei, G.; He, Y.; Wang, R.; Wang, X. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery. Trans. J. Nonferrous Met. Soc. 2018, 28, 2274–2286. [Google Scholar] [CrossRef]
- Song, Y.; Su, D.; Yang, Q.; Yuan, M.; Jiang, B.; Jiang, L.; Pan, F. Micro-alloyed mg-Al-Mn-La anode for mg-air batteries. J. Electrochem. Soc. 2021, 168, 090526. [Google Scholar] [CrossRef]
- Wang, N.; Wang, R.; Peng, C.; Feng, Y.; Chen, B. Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP65 magnesium alloy as anode for seawater activated battery. Corros. Sci. 2012, 64, 17–27. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B. Enhancement of corrosion resistance and discharge performance of Mg–5Li–3Al–1Zn sheet for Mg-air battery via rolling. J. Electrochem. Soc. 2020, 167, 110529. [Google Scholar] [CrossRef]
- Li, Q.; Ye, W.; Gao, H.; Gao, L. Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating. Mater. Des. 2019, 181, 107933. [Google Scholar] [CrossRef]
- An, S.; Liu, X.; Wang, Z.; Ren, F. Effect of rare earth lanthanum on corrosion and electrochemical properties of Mg-7Al-2Zn magnesium alloy anode. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2023, 44, 17–24. [Google Scholar]
- Wu, Y.; Wang, Z.; Liu, Y.; Li, G.; Xie, S.; Yu, H.; Xiong, H. AZ61 and AZ61-La alloys as anodes for Mg-air battery. J. Mater. Eng. Perform. 2019, 28, 2006–2016. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Guo, Z.; Pan, F. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys. Trans. Nonferrous Met. Soc. China 2006, 16, 452–458. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J. Power Sources 2015, 284, 409–415. [Google Scholar] [CrossRef]
- Chen, X.; Zou, Q.; Le, Q.; Hou, J.; Guo, R.; Wang, H.; Hu, C.; Bao, L.; Wang, T.; Zhao, D. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery. Power Sources 2020, 451, 227807. [Google Scholar] [CrossRef]
- Chen, X.; Ning, S.; Le, Q.; Wang, H.; Zou, Q.; Guo, R.; Hou, J.; Jia, Y.; Atrens, A.; Yu, F. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries. Mater. Sci.Technol. 2020, 38, 47–55. [Google Scholar] [CrossRef]
- Song, Y.; Yao, K.; Zou, Q.; Yang, Q.; Jiang, B.; Wang, L.; Yuan, M.; Wang, Q.; Huang, G.; Pan, F. Processing micro-alloyed Mg-la binary alloy into a high-performance Mg-air battery anode via extrusion. J. Electrochem. Soc. 2022, 169, 020575. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, H.; Chen, R. Microstructure, texture and mechanical properties in an as-cast AZ61 Mg alloy during multi-directional impact forging and subsequent heat treatment. Mater. Des. 2015, 87, 891–900. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y.; Shi, Z.; Le, Q.; Li, J.; Zhang, M.; Liu, M.; Atrens, A. Understanding the discharge behavior of an ultra-high-purity Mg anode for Mg-air primary battery. J. Mater. Chem. A 2021, 9, 21387–21401. [Google Scholar] [CrossRef]
- Jin, Z.; Cheng, X.; Zha, M.; Rong, J.; Zhang, H.; Wang, J.; Wang, C.; Li, Z.; Wang, H. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg–Al–Zn alloys during gradient hot rolling. J. Mater. Sci. Technol 2019, 35, 2017–2026. [Google Scholar] [CrossRef]
- Al Bacha, S.; Aubert, I.; Devos, O.; Zakhour, M.; Nakhl, M.; Bobet, J.-L. Corrosion of pure and milled Mg17Al12 in “model” seawater solution. Int. J. Hydrogen Energy 2020, 45, 15805–15813. [Google Scholar] [CrossRef]
- Song, Y.; Ma, J.; Li, Y.; Wang, G.; Qin, C.; Stock, H.-R. Effects of second phases in anode materials on discharge performance of Mg-air batteries. Ionics 2019, 25, 5899–5906. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Le, Q.; Jia, Y.; Zhou, X.; Yu, F.; Atrens, A. The role of long-period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg-Zn-Y for the primary Mg-air battery. Int. J. Energy Res. 2020, 44, 8865–8876. [Google Scholar] [CrossRef]
Alloys | Al | Zn | La | Mg |
---|---|---|---|---|
AZ72 | 9.470 | 2.152 | 0.000 | Bal. |
AZ72-0.05La | 8.566 | 1.831 | 0.043 | Bal. |
Sample | Ecorr/V | Icorr/μA·cm−2 |
---|---|---|
as-cast AZ72 | −1.52 | 262 |
as-cast AZ72-0.05La | −1.42 | 155 |
as-rolled AZ72-0.05La | −1.41 | 205 |
Sample | Rs/Ω·cm−2 | CPEdl/F·cm−2 | n1 | Rct/Ω·cm2 | L/H·cm2 | RL/Ω·cm2 | χ2/10−3 |
---|---|---|---|---|---|---|---|
as-cast AZ72 | 15.31 | 0.23 × 10−6 | 0.93 | 130.30 | 47.70 | 128.80 | 6.30 |
as-cast AZ72-0.05La | 9.84 | 8.79 × 10−6 | 0.94 | 799.10 | 322.20 | 735.00 | 14.00 |
as-rolled AZ72-0.05La | 9.05 | 8.90 × 10−6 | 0.93 | 330.60 | 392.60 | 734.70 | 17.70 |
Corrosion Parameters | As-Cast AZ72 | As-Cast AZ72-0.05La | As-Rolled AZ72-0.05La |
---|---|---|---|
Corrosion rate/mg·cm−2·h−1 | 11.12 ± 5.47 | 2.70 ± 1.34 | 3.40 ± 1.57 |
Hydrogen evolution rate/mL·cm−2·h−1 | 1.24 ± 0.30 | 0.34 ± 0.12 | 0.51 ± 0.24 |
Current Density (mA cm−2) | As-Cast AZ72 | As-Cast AZ72-0.05La | As-Rolled AZ72-0.05La | |
---|---|---|---|---|
Average discharge voltage (V) | 2.5 | 1.340 | 1.323 | 1.350 |
5 | 1.128 | 1.243 | 1.280 | |
10 | 1.009 | 1.064 | 1.136 | |
20 | 0.681 | 0.703 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, B.; An, S. Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals 2024, 14, 344. https://doi.org/10.3390/met14030344
Guo J, Wang B, An S. Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals. 2024; 14(3):344. https://doi.org/10.3390/met14030344
Chicago/Turabian StyleGuo, Junqing, Bo Wang, and Shizhong An. 2024. "Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase" Metals 14, no. 3: 344. https://doi.org/10.3390/met14030344
APA StyleGuo, J., Wang, B., & An, S. (2024). Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals, 14(3), 344. https://doi.org/10.3390/met14030344