Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis(2-Ethylhexyl) Amino]methyl} Phosphonate Acid
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Solvent Extraction
2.3. Analysis and Instruments
3. Results and Discussion
3.1. Effect of Saponification Degree
3.2. Effect of Extraction Time
3.3. Effect of Extractant Concentration
3.4. Extraction Mechanism
3.5. FT-IR Spectrum Study
3.6. Effect of Temperature
3.7. Cyclic Regeneration of Extractant
3.8. Effect of Phase Ratio on Lithium Separation
3.9. Countercurrent Extraction of Lithium in Aqueous Phase
3.10. Lithium Stripping Study of Organic Phase and Li2CO3 Preparation
3.11. Whole Process of Li Recovery
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Chen, J.; Shen, X.; Li, H. Regulating and regenerating the valuable metals from the cathode materials in lithium-ion batteries by nickel-cobalt-manganese co-extraction. Sep. Purif. Technol. 2021, 259, 118088. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Qiu, Z.; Wang, C.; Chen, Y. Separation and Recovery of Valuable Metals from Ammonia Leaching Solution of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2023, 11, 9738–9750. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, S.; Song, S.; Sun, W.; Wang, L. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag. 2020, 102, 131–138. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Bu, Y.; Zhang, C.; Song, S.; Hu, Y. Recovering Valuable Metals from Spent Lithium Ion Battery via a Combination of Reduction Thermal Treatment and Facile Acid Leaching. ACS Sustain. Chem. Eng. 2018, 6, 10445–10453. [Google Scholar] [CrossRef]
- Liu, F.; Peng, C.; Porvali, A.; Wang, Z.; Wilson, B.P.; Lundström, M. Synergistic Recovery of Valuable Metals from Spent Nickel–Metal Hydride Batteries and Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 16103–16111. [Google Scholar] [CrossRef]
- Choubey, P.K.; Dinkar, O.S.; Panda, R.; Kumari, A.; Jha, M.K.; Pathak, D.D. Selective extraction and separation of Li, Co and Mn from leach liquor of discarded lithium ion batteries (LIBs). Waste Manag. 2021, 121, 452–457. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, H.; Zhong, X.; Cao, H.; Wang, R.; Liu, Z. Recovery of metals from sulfate leach solutions of spent ternary lithium-ion batteries by precipitation with phosphate and solvent extraction with P507. Hydrometallurgy 2022, 210, 105861. [Google Scholar] [CrossRef]
- Lei, S.; Cao, Y.; Cao, X.; Sun, W.; Weng, Y.; Yang, Y. Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10. Sep. Purif. Technol. 2020, 250, 117258. [Google Scholar]
- Yang, Y.; Xu, S.; He, Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag. 2017, 64, 219–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Wang, L.; Sun, W. Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner. Eng. 2019, 139, 105868. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.; Du, B.; Zhao, Y.; Wang, M. Recovery of both magnesium and lithium from high Mg/Li ratio brines using a novel process. Hydrometallurgy 2018, 175, 102–108. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Kim, H.; Lee, S.-P.; Chung, W.-J. Development of high capacity Li+ adsorbents from H2TiO3/polymer nanofiber composites: Systematic polymer screening, characterization and evaluation. J. Ind. Eng. Chem. 2019, 70, 124–135. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Xiao, J.-L.; Wang, J.; Song, X.; Yu, J.-G. Synthesis and Adsorption Properties of Li1.6Mn1.6O4 by a Combination of Redox Precipitation and Solid-Phase Reaction. Ind. Eng. Chem. Res. 2014, 53, 15517–15521. [Google Scholar] [CrossRef]
- Ji, Z.-Y.; Chen, Q.-B.; Yuan, J.-S.; Liu, J.; Zhao, Y.-Y.; Feng, W.-X. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis. Sep. Purif. Technol. 2017, 172, 168–177. [Google Scholar] [CrossRef]
- Nie, X.-Y.; Sun, S.-Y.; Sun, Z.; Song, X.; Yu, J.-G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Cai, L.-J.; Nie, X.-Y.; Song, X.; Yu, J.-G. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. J. Water Process. Eng. 2015, 7, 210–217. [Google Scholar] [CrossRef]
- Masmoudi, A.; Zante, G.; Trébouet, D.; Barillon, R.; Boltoeva, M. Solvent extraction of lithium ions using benzoyltrifluoroacetone in new solvents. Sep. Purif. Technol. 2021, 255, 117653. [Google Scholar] [CrossRef]
- Xuan, W.; Braga, A.d.S.; Chagnes, A. Development of a Novel Solvent Extraction Process to Recover Cobalt, Nickel, Manganese, and Lithium from Cathodic Materials of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2021, 10, 582–593. [Google Scholar] [CrossRef]
- Ren, Z.; Wei, X.; Li, R.; Wang, W.; Wang, Y.; Zhou, Z. Highly selective extraction of lithium ions from salt lake brines with sodium tetraphenylborate as co-extractant. Sep. Purif. Technol. 2021, 269, 118756. [Google Scholar] [CrossRef]
- Su, H.; Li, Z.; Zhang, J.; Liu, W.; Zhu, Z.; Wang, L.; Qi, T. Combining Selective Extraction and Easy Stripping of Lithium Using a Ternary Synergistic Solvent Extraction System through Regulation of Fe3+ Coordination. ACS Sustain. Chem. Eng. 2020, 8, 1971–1979. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2021, 256, 117807. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z.; He, L. Lithium recovery from Li3PO4 leaching liquor: Solvent extraction mechanism of saponified D2EHPA system. Sep. Purif. Technol. 2020, 249, 117161. [Google Scholar] [CrossRef]
- Han, Z.; Wu, S.; Wu, X.; Guan, W.; Cao, Z.; Li, Q.; Wang, M.; Zhang, G. Recycling of lithium and fluoride from LiF wastewater from LiF synthesis industry by solvent extraction. J. Environ. Chem. Eng. 2023, 11, 110557. [Google Scholar] [CrossRef]
- Tang, Y.-C.; Wang, J.-Z.; Shen, Y.-H. Separation of Valuable Metals in The Recycling of Lithium Batteries via Solvent Extraction. Minerals 2023, 13, 285. [Google Scholar] [CrossRef]
- Yu, L.-Y.; Wu, K.-J.; He, C.-H. A two-step green liquid-liquid extraction strategy for selective lithium recovery and application to seawater. Hydrometallurgy 2023, 220, 106102. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, S.; Srinivasakannan, C.; Li, S.; Yin, S.; Zhang, L.; Jiang, X.; Zhou, G.; Zhang, N. Lithium extraction from salt lake brines with high magnesium/lithium ratio: A review. Environ. Chem. Lett. 2023, 21, 1611–1626. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, M.; Yao, Y.; Wang, H.; Tong, B.; Zhao, Z. A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant. Sep. Purif. Technol. 2020, 237, 116325. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Rui, H.; Shi, D.; Peng, X.; Ji, L.; Song, X. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction. J. Hazard. Mater. 2020, 398, 122840. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, L.; Li, L.; Shi, D.; Xu, T.; Peng, X.; Song, X. Recovery of Co, Ni, and Li from solutions by solvent extraction with β-diketone system. Hydrometallurgy 2021, 204, 105718. [Google Scholar] [CrossRef]
- Shi, C.; Jing, Y.; Jia, Y. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 2016, 215, 640–646. [Google Scholar] [CrossRef]
- Shi, C.; Duan, D.; Jia, Y.; Jing, Y. A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 2014, 200, 191–195. [Google Scholar] [CrossRef]
- Lu, J.; Jiao, L.; Chen, J.; Zhang, Y.; Guo, Q.; Yang, Y.; Lin, M. Extraction and separation of Li+ from high-ratio Mg/Li salt lake brines by [C2mim][NTf2] ionic liquid and a homemade extractor. Desalination 2023, 553, 116450. [Google Scholar] [CrossRef]
- Satyawirawan, S.A.; Cattrall, R.W.; Kolev, S.D.; Almeida, M.I.G. Improving Co(II) separation from Ni(II) by solvent extraction using phosphonium-based ionic liquids. J. Mol. Liq. 2023, 380, 121764. [Google Scholar] [CrossRef]
- Xue, K.; Fan, D.; Wang, X.; Dong, Z.; Zhu, Z.; Cui, P.; Meng, F.; Wang, Y.; Qi, J. Lithium extraction from aqueous medium using hydrophobic deep eutectic solvents. J. Environ. Chem. Eng. 2023, 11, 110490. [Google Scholar] [CrossRef]
- Tang, S.; Yang, Z.; Zhang, M.; Guo, M. A simple green method for in-situ selective extraction of Li from spent LiFePO4 batteries by synergistic effect of deep-eutectic solvent and ozone. Environ. Res. 2023, 239, 117393. [Google Scholar] [CrossRef]
- Luo, Y.; Ou, L.; Yin, C. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects. Waste Manag. 2023, 164, 1–8. [Google Scholar] [CrossRef]
- Yan, Q.; Ding, A.; Li, M.; Liu, C.; Xiao, C. Green Leaching of Lithium-Ion Battery Cathodes by Ascorbic Acid Modified Guanidine-Based Deep Eutectic Solvents. Energy Fuels 2023, 37, 1216–1224. [Google Scholar] [CrossRef]
- Luo, H.; Yao, H.; Wang, X.; Liang, X.; Li, B.; Liu, H.; Li, Y. Selective recovery of lithium from mother liquor of Li2CO3 by synergistic hydrophobic deep eutectic solvents: Performance and mechanistic insight. Sep. Purif. Technol. 2023, 313, 123353. [Google Scholar] [CrossRef]
- Han, J.; Wu, G.; Li, Y.; Li, S.; Liao, W. Efficient separation of high-abundance rare earth element yttrium and lanthanides by solvent extraction using 2-(bis((2-ethylhexyl)oxy)phosphoryl)-2-hydroxyacetic acid. Sep. Purif. Technol. 2023, 306, 122683. [Google Scholar] [CrossRef]
- Huang, M.; Fu, Y.; Lu, Y.; Liao, W.; Li, Z. A novel extractant bis(2-ethylhexyl) ((2-ethylhexylamino)methyl) phosphine oxide for cerium(IV) extraction and separation from sulfate medium. J. Rare Earths 2020, 38, 1330–1336. [Google Scholar] [CrossRef]
- Garifzyanov, A.R.; Chibirev, E.O.; Cherkasov, M.R.; Cherkasov, R.A. Liquid–liquid extraction of copper(II) ions with a novel aminophosphoryl extractant, 2-ethylhexyl hydrogen {[bis(2-ethylhexyl)amino]methyl}phosphonate. Russ. J. Gen. Chem. 2016, 86, 2723–2724. [Google Scholar] [CrossRef]
Ions | Li | Na | Co | Mg | SO42− | pH |
---|---|---|---|---|---|---|
g/L | 3.61 | 42.5 | 8.75 × 10−5 | 8.78 × 10−6 | 72.5 | 5.8 |
mol/L | 0.52 | 1.85 | 1.48 × 10−6 | 3.61 × 10−6 | 2.26 |
Band Assignment | Wavenumber (cm−1) | |||
---|---|---|---|---|
HA | NaA | LiA | HA (Regeneration) | |
δ(N-H) | 3369, 1680 | 3352, 1666 | 3352, 1666 | 3368, 1678 |
ν(P-O-H) | 2296 | / | / | 2296 |
ν(-CH3) | 2960, 2875 | 2961, 2873 | 2961, 2873 | 2961, 2873 |
ν(-CH2-) | 2925, 2860 | 2926, 2861 | 2926, 2858 | 2926, 2861 |
δ(-CH3) | 1463, 1380 | 1462, 1382 | 1462, 1382 | 1462, 1382 |
ν(P═O) | 1201 | 1195 | 1195 | 1203 |
ν(P-O-C) | 1039 | 1039 | 1040 | 1040 |
Li (g/L) | Na (g/L) | Li Extraction % | Na Extraction % | |
---|---|---|---|---|
Feed solution | 1.803 | 22.0 | -- | -- |
Raffinate 9 | 0.081 | 28.1 | 94.9 | −30.3 |
Raffinate 10 | 0.083 | 28.8 | 94.8 | −33.5 |
Raffinate 11 | 0.078 | 28.2 | 95.1 | −30.9 |
Raffinate 12 | 0.082 | 28.2 | 94.9 | −30.9 |
Raffinate 13 | 0.080 | 28.9 | 95.0 | −33.8 |
Raffinate 14 | 0.083 | 28.6 | 94.8 | −32.7 |
Raffinate 15 | 0.081 | 27.6 | 94.9 | −28.0 |
Raffinate 16 | 0.082 | 28.0 | 94.8 | −30.0 |
┊ ┊ | ┊ ┊ | ┊ ┊ | ┊ ┊ | ┊ ┊ |
Raffinate 39 | 0.072 | 25.9 | 95.8 | −22.1 |
Raffinate 40 | 0.076 | 26.4 | 95.6 | −24.4 |
Raffinate 41 | 0.069 | 24.9 | 95.9 | −17.2 |
Raffinate 42 | 0.072 | 26.3 | 95.8 | −23.9 |
Raffinate 43 | 0.069 | 25.1 | 96.0 | −18.5 |
Raffinate 44 | 0.072 | 24.3 | 95.8 | −14.7 |
Average raffinate | 0.078 | 26.7 | 95.3 | −25.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhou, Z.; Si, X.; Lu, Y.; Liu, Q. Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis(2-Ethylhexyl) Amino]methyl} Phosphonate Acid. Metals 2024, 14, 345. https://doi.org/10.3390/met14030345
Wang X, Zhou Z, Si X, Lu Y, Liu Q. Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis(2-Ethylhexyl) Amino]methyl} Phosphonate Acid. Metals. 2024; 14(3):345. https://doi.org/10.3390/met14030345
Chicago/Turabian StyleWang, Xiaoqin, Zhulin Zhou, Xuting Si, Youcai Lu, and Qingchao Liu. 2024. "Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis(2-Ethylhexyl) Amino]methyl} Phosphonate Acid" Metals 14, no. 3: 345. https://doi.org/10.3390/met14030345
APA StyleWang, X., Zhou, Z., Si, X., Lu, Y., & Liu, Q. (2024). Efficient Recovery of Lithium from Spent Lithium Ion Batteries Effluent by Solvent Extraction Using 2-Ethylhexyl Hydrogen {[Bis(2-Ethylhexyl) Amino]methyl} Phosphonate Acid. Metals, 14(3), 345. https://doi.org/10.3390/met14030345