Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Investigation—The Influence of Synthesis Conditions on Copper(I) Chalcogenide Phase Composition
3.2. Structural Investigation—The Influence of Chosen Dopants on Phase Composition of Cu2−xCh
3.3. Transport Properties of Undoped and Doped Cu2−xCh Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, P.; Shi, X.; Chen, L. Cu-Based Thermoelectric Materials. Energy Storage Mater. 2016, 3, 85–97. [Google Scholar] [CrossRef]
- Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G.J. Copper Ion Liquid-like Thermoelectrics. Nat. Mater. 2012, 11, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; An, X. Controllable Hydrothermal Synthesis of Cu2S Nanowires on the Copper Substrate. Mater. Lett. 2010, 64, 252–254. [Google Scholar] [CrossRef]
- Blachnik, R.; Müller, A. The Formation of Cu2S from the Elements II. Copper Used in Form of Foils. Thermochim. Acta 2001, 366, 47–59. [Google Scholar] [CrossRef]
- Grønvold, F.; Westrum, E.F. Thermodynamics of Copper Sulfides I. Heat Capacity and Thermodynamic Properties of Copper(I) Sulfide, Cu2S, from 5 to 950 K. J. Chem. Thermodyn. 1987, 19, 1183–1198. [Google Scholar] [CrossRef]
- Tyagi, K.; Gahtori, B.; Bathula, S.; Jayasimhadri, M.; Sharma, S.; Singh, N.K.; Haranath, D.; Srivastava, A.K.; Dhar, A. Crystal Structure and Mechanical Properties of Spark Plasma Sintered Cu2Se: An Efficient Photovoltaic and Thermoelectric Material. Solid. State Commun. 2015, 207, 21–25. [Google Scholar] [CrossRef]
- Brown, D.R.; Day, T.; Borup, K.A.; Christensen, S.; Iversen, B.B.; Snyder, G.J. Phase Transition Enhanced Thermoelectric Figure-of-Merit in Copper Chalcogenides. APL Mater. 2013, 1, 052107. [Google Scholar] [CrossRef]
- Havlík, T. Phase Equilibrium of Copper Iron Sulphides. In Hydrometallurgy; Elsevier: Amsterdam, The Netherlands, 2008; pp. 29–59. [Google Scholar]
- Zhao, L.; Wang, X.; Fei, F.Y.; Wang, J.; Cheng, Z.; Dou, S.; Wang, J.; Snyder, G.J. High Thermoelectric and Mechanical Performance in Highly Dense Cu2−xS Bulks Prepared by a Melt-Solidification Technique. J. Mater. Chem. A 2015, 3, 9432–9437. [Google Scholar] [CrossRef]
- Lu, P.; Liu, H.L.; Yuan, X.; Xu, F.F.; Shi, X.; ZHao, K.P.; Qiu, W.J.; Zhang, W.Q.; Chen, L.D. Multiformity and Fluctuation of Cu Ordering in Cu2Se Thermoelectric Materials. J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 6901–6908. [Google Scholar] [CrossRef]
- Nieroda, P.; Kusior, A.; Leszczyński, J.; Rutkowski, P.; Koleżyński, A. Thermoelectric Properties of Cu2Se Synthesized by Hydrothermal Method and Densified by SPS Technique. Materials 2021, 14, 3650. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ballikaya, S.; Chi, H.; Ahn, J.-P.; Ahn, K.; Uher, C.; Kaviany, M. Ultralow Thermal Conductivity of β-Cu2Se by Atomic Fluidity and Structure Distortion. Acta Mater. 2015, 86, 247–253. [Google Scholar] [CrossRef]
- Peng, P.; Gong, Z.N.; Liu, F.S.; Huang, M.J.; Ao, W.Q.; Li, Y.; Li, J.Q. Structure and Thermoelectric Performance of β-Cu2Se Doped with Fe, Ni, Mn, In, Zn or Sm. Intermetallics 2016, 75, 72–78. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, L.; Wei, J.; Yang, S.; Zhang, M.; Wang, X.; Yang, F. Doping Effect on Cu2Se Thermoelectric Performance: A Review. Materials 2020, 13, 5704. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Shi, C.; Zeng, W.; Liao, B.; Zhang, M.; Tao, X. Facile Synthesis of Copper Selenides with Different Stoichiometric Compositions and Their Thermoelectric Performance at a Low Temperature Range. RSC Adv. 2021, 11, 25955–25960. [Google Scholar] [CrossRef]
- Zhao, K.; Qiu, P.; Shi, X.; Chen, L. Recent Advances in Liquid-Like Thermoelectric Materials. Adv. Funct. Mater. 2020, 30, 1903867. [Google Scholar] [CrossRef]
- Mao, T.; Qiu, P.; Hu, P.; Du, X.; Zhao, K.; Wei, T.; Xiao, J.; Shi, X.; Chen, L. Decoupling Thermoelectric Performance and Stability in Liquid-Like Thermoelectric Materials. Adv. Sci. 2019, 7, 1901598. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. High Chalcocite Cu2S: A Solid-Liquid Hybrid Phase. Phys. Rev. Lett. 2012, 108, 085703. [Google Scholar] [CrossRef] [PubMed]
- Danilkin, S.A.; Avdeev, M.; Sale, M.; Sakuma, T. Neutron Scattering Study of Ionic Diffusion in Cu–Se Superionic Compounds. Solid State Ion. 2012, 225, 190–193. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, X.; Lu, P.; Shi, X.; Xu, F.; He, Y.; Tang, Y.; Bai, S.; Zhang, W.; Chen, L.; et al. Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1−XIx. Adv. Mater. 2013, 25, 6607–6612. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shi, X.; Kirkham, M.; Wang, H.; Li, Q.; Uher, C.; Zhang, W.; Chen, L. Structure-Transformation-Induced Abnormal Thermoelectric Properties in Semiconductor Copper Selenide. Mater. Lett. 2013, 93, 121–124. [Google Scholar] [CrossRef]
- Yu, B.; Liu, W.; Chen, S.; Wang, H.; Wang, H.; Chen, G.; Ren, Z. Thermoelectric Properties of Copper Selenide with Ordered Selenium Layer and Disordered Copper Layer. Nano Energy 2012, 1, 472–478. [Google Scholar] [CrossRef]
- Dennler, G.; Chmielowski, R.; Jacob, S.; Capet, F.; Roussel, P.; Zastrow, S.; Nielsch, K.; Opahle, I.; Madsen, G.K.H. Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials? Adv. Energy Mater. 2014, 4, 1301581. [Google Scholar] [CrossRef]
- Bohra, A.; Bhatt, R.; Bhattacharya, S.; Basu, R.; Ahmad, S.; Singh, A.; Aswal, D.K.; Gupta, S.K. Study of Thermal Stability of Cu2Se Thermoelectric Material. AIP Conf. Proc. 2016, 1731, 110010. [Google Scholar] [CrossRef]
- Brown, D.R.; Day, T.; Caillat, T.; Snyder, G.J. Chemical Stability of (Ag, Cu)2Se: A Historical Overview. J. Electron. Mater. 2013, 42, 2014–2019. [Google Scholar] [CrossRef]
- Bohra, A.K.; Bhatt, R.; Singh, A.; Bhattacharya, S.; Basu, R.; Bhatt, P.; Navaneethan, M.; Sarkar, S.K.; Anwar, S.; Muthe, K.P.; et al. Stabilizing Thermoelectric Figure-of-Merit of Superionic Conductor Cu2Se through W Nanoinclusions. Phys. Status Solidi (RRL) Rapid Res. Lett. 2020, 14, 2000102. [Google Scholar] [CrossRef]
- Bailey, T.P.; Hui, S.; Xie, H.; Olvera, A.; Poudeu, P.F.P.; Tang, X.; Uher, C. Enhanced ZT and Attempts to Chemically Stabilize Cu2Se via Sn Doping. J. Mater. Chem. A Mater. 2016, 4, 17225–17235. [Google Scholar] [CrossRef]
- Zhang, R.; Pei, J.; Han, Z.; Wu, Y.; Zhao, Z.; Zhang, B. Optimal Performance of Cu1.8S1−xTex Thermoelectric Materials Fabricated via High-Pressure Process at Room Temperature. J. Adv. Ceram. 2020, 9, 535–543. [Google Scholar] [CrossRef]
- Mikuła, A.; Mars, K.; Nieroda, P.; Rutkowski, P. Copper Chalcogenide–Copper Tetrahedrite Composites—A New Concept for Stable Thermoelectric Materials Based on the Chalcogenide System. Materials 2021, 14, 2635. [Google Scholar] [CrossRef]
- Ge, Z.H.; Chong, X.; Feng, D.; Zhang, Y.X.; Qiu, Y.; Xie, L.; Guan, P.W.; Feng, J.; He, J. Achieving an Excellent Thermoelectric Performance in Nanostructured Copper Sulfide Bulk via a Fast Doping Strategy. Mater. Today Phys. 2019, 8, 71–77. [Google Scholar] [CrossRef]
- Barman, S.K.; Huda, M.N. Stability Enhancement of Cu2S against Cu Vacancy Formation by Ag Alloying. J. Phys. Condens. Matter 2018, 30, 165701. [Google Scholar] [CrossRef]
- Shi, D.L.; Geng, Z.M.; Shi, L.; Li, Y.; Lam, K.H. Thermal Stability Study of Cu1.97Se Superionic Thermoelectric Materials. J. Mater. Chem. C Mater. 2020, 8, 10221–10228. [Google Scholar] [CrossRef]
- Nunna, R.; Qiu, P.; Yin, M.; Chen, H.; Hanus, R.; Song, Q.; Zhang, T.; Chou, M.-Y.; Agne, M.T.; He, J.; et al. Ultrahigh Thermoelectric Performance in Cu2Se-Based Hybrid Materials with Highly Dispersed Molecular CNTs. Energy Environ. Sci. 2017, 10, 1928–1935. [Google Scholar] [CrossRef]
- Li, M.; Islam, S.M.K.N.; Yahyaoglu, M.; Pan, D.; Shi, X.; Chen, L.; Aydemir, U.; Wang, X. Ultrahigh Figure-of-merit of Cu2 Se Incorporated with Carbon Coated Boron Nanoparticles. InfoMat 2019, 1, 108–115. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, Y.; Wei, B.; Yang, Y.; Yu, D.; Zheng, Y.; He, D.; Zhang, W.; Zou, M.; Lan, J.-L.; et al. Compositing Effects for High Thermoelectric Performance of Cu2Se-Based Materials. Nat. Commun. 2023, 14, 2410. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zheng, Y.; Miao, L.; Liu, C.; Gao, J.; Wang, X.; Liu, P.; Yoshida, K.; Cai, H. Boosting High Thermoelectric Performance of Ni-Doped Cu1.9S by Significantly Reducing Thermal Conductivity. ACS Appl. Mater. Interfaces 2020, 12, 8385–8391. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shi, X.; Hong, M.; Yang, L.; Moshwan, R.; Chen, Z.G.; Zou, J. Ag Doping Induced Abnormal Lattice Thermal Conductivity in Cu2Se. J. Mater. Chem. C Mater. 2018, 6, 13225–13231. [Google Scholar] [CrossRef]
- Yue, Z.; Zhou, W.; Ji, X.; Zhang, F.; Guo, F. Enhanced Thermoelectric Properties of Ag Doped Cu2S by Using Hydrothermal Method. J. Alloys Compd. 2022, 919, 165830. [Google Scholar] [CrossRef]
- Mikuła, A.; Nieroda, P.; Mars, K.; Dąbrowa, J.; Koleżyński, A. Structural, Thermoelectric and Stability Studies of Fe-Doped Copper Sulfide. Solid. State Ion. 2020, 350, 115322. [Google Scholar] [CrossRef]
- Hemathangam, S.; Thanapathy, G.; Muthukumaran, S. Tuning of Band Gap and Photoluminescence Properties of Zn Doped Cu2S Thin Films by CBD Method. J. Mater. Sci. Mater. Electron. 2016, 27, 2042–2048. [Google Scholar] [CrossRef]
- Emegha, J.O.; Ukhurebor, K.E.; Aigbe, U.O.; Damisa, J.; Babalola, A.V. Synthesis and Characterization of Copper Zinc Iron Sulphide (CZFS) Thin Films. Heliyon 2022, 8, e10331. [Google Scholar] [CrossRef]
- Chetty, R.; Bali, A.; Mallik, R.C. Tetrahedrites as Thermoelectric Materials: An Overview. J. Mater. Chem. C Mater. 2015, 3, 12364–12378. [Google Scholar] [CrossRef]
- Ballikaya, S.; Chi, H.; Salvador, J.R.; Uher, C. Thermoelectric Properties of Ag-Doped Cu2Se and Cu2Te. J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 12478–12484. [Google Scholar] [CrossRef]
- Wang, X.B.; Qiu, P.F.; Zhang, T.S.; Red, D.D.; Wu, L.H.; Shi, X.; Yang, L.H.; Chen, L.D. Compounds Defects and Thermoelectric Properties in Ternary CuAgSe-Based Materials. J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 13662–13670. [Google Scholar] [CrossRef]
- Hong, A.J.; Li, L.; Zhu, H.X.; Zhou, X.H.; He, Q.Y.; Liu, W.S.; Yan, Z.B.; Liu, J.M.; Ren, Z.F. Anomalous Transport and Thermoelectric Performances of CuAgSe Compounds. Solid. State Ion. 2013, 261, 21–25. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhu, J.H.; You, L.; Guo, K.; Li, Z.L.; Lin, W.G.; Huang, J.; Luo, J. Enhanced and Stabilized N-Type Thermoelectric Performance in α-CuAgSe by Ni Doping. Mater. Today Phys. 2019, 10, 100095. [Google Scholar] [CrossRef]
- Yu, T.; Ning, S.; Liu, Q.; Zhang, T.; Chen, X.; Qi, N.; Su, X.; Tang, X.; Chen, Z. Balanced High Thermoelectric Performance in N-Type and p-Type CuAgSe Realized through Vacancy Manipulation. ACS Appl. Mater. Interfaces 2023, 15, 40781–40791. [Google Scholar] [CrossRef]
- Wei, T.-R.; Qin, Y.; Deng, T.; Song, Q.; Jiang, B.; Liu, R.; Qiu, P.; Shi, X.; Chen, L. Copper Chalcogenide Thermoelectric Materials. Sci. China Mater. 2019, 62, 8–24. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. The Cu-S (Copper-Sulfur) System. Bull. Alloy Phase Diagr. 1983, 4, 254–271. [Google Scholar] [CrossRef]
- Xiao, X.-X.; Xie, W.-J.; Tang, X.-F.; Zhang, Q.-J. Phase Transition and High Temperature Thermoelectric Properties of Copper Selenide Cu2−xSex (0 ≤ x ≤ 0.25). Chin. Phys. B 2011, 20, 087201. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Wang, J.; Cheng, Z.; Dou, S.; Wang, J.; Liu, L. Superior Intrinsic Thermoelectric Performance with ZT of 1.8 in Single-Crystal and Melt-Quenched Highly Dense Cu2−XSe Bulks. Sci. Rep. 2015, 5, 7671. [Google Scholar] [CrossRef]
- Cook, W.R. Phase Changes in Cu2S as a Function of Temperature, Solid State Chemistry. In Proceedings of the 5th Materials Research Symposium, Boston, MA, USA, 1–5 December 1997; pp. 703–712. [Google Scholar]
- Nieroda, P.; Leszczyński, J.; Mikuła, A.; Mars, K.; Kruszewski, M.J.; Koleżyński, A. Thermoelectric Properties of Cu2S Obtained by High Temperature Synthesis and Sintered by IHP Method. Ceram. Int. 2020, 46, 25460–25466. [Google Scholar] [CrossRef]
- Jin, S.H.; Lim, Y.S. Effect of Zn-Doping on the Phase Transition Behavior and Thermoelectric Transport Properties of Cu2Se. Korean J. Met. Mater. 2020, 58, 466–471. [Google Scholar] [CrossRef]
- Ji, Y.-H.; Ge, Z.-H.; Li, Z.; Feng, J. Enhanced Thermoelectric Properties of Cu1.8Se1−S Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. J. Alloys Compd. 2016, 680, 273–277. [Google Scholar] [CrossRef]
- He, Y.; Day, T.; Zhang, T.; Liu, H.; Shi, X.; Chen, L.; Snyder, G.J. High Thermoelectric Performance in Non-Toxic Earth- Abundant Copper Sulfide. Adv. Mater. 2014, 26, 3974–3978. [Google Scholar] [CrossRef]
- Arellano-Tánori, O.; Acosta-Enríquez, M.C.; Ochoa-Landín, R.; Iñiguez-Palomares, R.; Mendívil-Reynoso, T.; Flores-Acosta, M.; Castillo, S.J. Copper-Selenide and Copper-Telluride Composites Powders Sintetized by Ionic Exchange. Chalcogenide Lett. 2014, 11, 13–19. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikuła, A.; Kurek, T.; Kożusznik, M.; Nieroda, P. Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior. Metals 2024, 14, 360. https://doi.org/10.3390/met14030360
Mikuła A, Kurek T, Kożusznik M, Nieroda P. Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior. Metals. 2024; 14(3):360. https://doi.org/10.3390/met14030360
Chicago/Turabian StyleMikuła, Andrzej, Tomasz Kurek, Miłosz Kożusznik, and Paweł Nieroda. 2024. "Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior" Metals 14, no. 3: 360. https://doi.org/10.3390/met14030360
APA StyleMikuła, A., Kurek, T., Kożusznik, M., & Nieroda, P. (2024). Cu2−xS and Cu2−xSe Alloys: Investigating the Influence of Ag, Zn, and Ni Doping on Structure and Transport Behavior. Metals, 14(3), 360. https://doi.org/10.3390/met14030360