Study of Preg-Robbing with Quicklime in Gold Cyanide Solutions Analyzed by Time-of-Flight Secondary Ion Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gold Retention Quantification Test
2.2. Determination of Free Carbon through Acid Digestion
2.3. X-ray Diffraction (XRD)
2.4. Carbon and Free Carbon Analyses
2.5. Fourier-Transform Infrared Spectroscopy—Attenuated Total Reflectance (FTIR-ATR)
2.6. Raman Spectroscopy
2.7. Correlation of Silicates and Gold Retention
2.8. Morphological/Chemical Analysis of Samples after the Gold Retention Tests
2.9. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)
3. Results and Discussion
3.1. Gold Loss in the Excess Ratio Tests
3.2. Gold Loss in the Accurate Ratio Tests
3.3. Ratio of Gold Retained to the Mass of Quicklime Used (mg Au/kg-ql)
- icAu = initial gold concentration in ppm;
- fcAu = final gold concentration in ppm;
- Vol. sln = volume of solution in L;
- mcal = mass of quicklime in kg.
3.4. The mg Au/kg-ql Ratio in the Accurate Ratio Tests
3.5. The mg Au/kg-ql Ratio in the Excess Ratio Tests
3.6. Determination of Free Carbon through Acid Digestion
3.7. XDR
3.8. Carbon and Free Carbon Analysis
3.9. FTIR-ATR Analysis
3.10. Raman Spectroscopy
3.11. Correlation of Gold and Silicate Retention
3.12. Morphological/Chemical Analysis after Cyanidation
3.13. TOF-SIMS Analysis
3.14. Ionic Images
3.15. Chemisorption
3.16. Physisorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Misari, F. Centro de Estudios y Promoción en Ciencias de la Tierra; Metalurgia del oro: Lima, Peru, 1993. [Google Scholar]
- Zanin, M.; Lambert, H.; Du Plessis, C. Lime use and functionality in sulphide mineral flotation: A review. Miner. Eng. 2019, 143, 105922. [Google Scholar] [CrossRef]
- Oates, J. Lime and Limestone: Chemistry and Technology, Production and Uses; John Wiley & Sons: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Kumar, G.; Ramakrishnan, A.; Hung, Y. Lime calcination. Adv. Physicochem. Treat. Techn. 2007, 5, 611–633. [Google Scholar] [CrossRef]
- Wei Sung, N.; Yang, Y.; Su, X.; Zhong, S.; Chen, M. Characterization of preg-robbing carbonaceous minerals from the Shuiyindong Carlin-type gold deposit via spectroscopic techniques. Min. Metall. Explor. 2022, 39, 169–188. [Google Scholar] [CrossRef]
- Miller, J.; Wan, R.; Díaz, X. Preg-robbing gold ores. In Gold Ore Processing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 885–907. [Google Scholar] [CrossRef]
- McDougall, G.; Hancock, R.; Nicol, M.; Wellington, O.; Copperthwaite, R. The mechanism of the adsorption of gold cyanide on activated carbon. J. South. Afr. Inst. Min. Metall. 1980, 80, 344–356. [Google Scholar]
- Lagerce, S.; Zajac, J.; Partyka, S.; Groszek, A. Comparative study on the adsorption of cyanide gold complexes onto different carbonaceous samples: Measurement of the reversibility of the process and assessment of the active surface inferred by flow microcalorimetry. Langmuir 1999, 15, 4803–4811. [Google Scholar] [CrossRef]
- Wei Sung, N.; Qiankun, W.; Miao, C. A review of Preg-robbing and the impact of chloride ions in the pressure oxidation of double refractory ores. Miner. Process. Extr. Metall. Rev. 2022, 43, 69–96. [Google Scholar] [CrossRef]
- Ibrado, A.; Fuerstenau, D. Infrared and X-ray photoelectron spectroscopy studies on the adsorption of gold cyanide on activated carbon. Miner. Eng. 1995, 8, 441–458. [Google Scholar] [CrossRef]
- Sibrell, P.; Miller, J. Significance of graphitic structural features in gold adsorption by carbon. Min. Metall. Explor. 1992, 9, 189–195. [Google Scholar] [CrossRef]
- Yin, C.; Ng, M.; Saunders, M.; Goh, B.; Senanayake, G.; Sherwood, A.; Hampton, M. New insights into the adsorption of aurocyanide ion on activated carbon surface: Electron microscopy analysis and computational studies using fullerene-like models. Langmuir 2014, 30, 7703–7709. [Google Scholar] [CrossRef] [PubMed]
- Helm, M.; Vaughan, J.; Staunton, W.; Avraamides, J. An investigation of the carbonaceous component of preg-robbing gold ores. In World Gold Conference; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2009; pp. 139–144. [Google Scholar]
- Dimov, S.; Hart, B. Speciation and quantification of surface gold in carbonaceous matter by TOF-SIMS: A new approach in characterizing losses during the gold recovery process. Surf. Interface Anal. 2011, 43, 446–448. [Google Scholar] [CrossRef]
- Amanya, F.; Ofori-Sarpong, G.; Anni, V.; Amankwah, R. Preg-robbing of gold by carbonaceous materials encountered in gold processing. Ghana Min. J. 2017, 17, 50–55. [Google Scholar] [CrossRef]
- Darteh, F.; Abdul-Wasiu, M.; Boateng, A.; Ofori-Sarpong, G. Predicting the Extent of Pregrobbing Based on the Maturity of Carbonaceous Gold Ores. In Proceedings of the 6th UMaT Biennial International Mining and Mineral Conference, Tarkwa, Ghana, 5–6 August 2020; pp. 433–438. [Google Scholar]
- Petersen, F.; Van Deventer, J. The behaviour of silica in gold cyanide solutions. Int. J. Miner. Process. 1997, 50, 211–225. [Google Scholar] [CrossRef]
- Ferullo, R.; Garda, G.; Belelli, P.; Branda, M.; Castellani, N. Deposition of small Cu, Ag and Au particles on reduced SiO2. J. Mol. Struct. THEOCHEM 2006, 769, 217–223. [Google Scholar] [CrossRef]
- Hong, H.; Tie, L. Deposition of gold on kaolinite surfaces from AuCl4− solution. Geochem. Int. 2006, 44, 1246–1249. [Google Scholar] [CrossRef]
- Veith, G.; Lupini, A.; Rashkeev, S.; Pennycook, S.; Mullins, D.; Schwartz, V.; Dudney, N. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal. 2009, 262, 92–101. [Google Scholar] [CrossRef]
- Wojtaszek, A.; Sobczak, I.; Ziolek, M.; Tielens, F. Gold grafted to mesoporous silica surfaces, a molecular picture. J. Phys. Chem. C 2009, 113, 13855–13859. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Provis, J.; Van Deventer, J. Gold sorption by silicates in acidic and alkaline chloride media. Int. J. Miner. Process. 2011, 100, 149–156. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Provis, J.; Van Deventer, J.; Jannie, S. Reduction of gold (III) chloride to gold (0) on silicate surfaces. J. Colloid Interface Sci. 2013, 389, 252–259. [Google Scholar] [CrossRef]
- Musumeci, A.; Frost, R.; Waclawik, E. A spectroscopic study of the mineral paceite (calcium acetate). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Bertinetti, L.; Habraken, W.; Fratzl, P. Reentrant phase transformation from crystalline ikaite to amorphous calcium carbonate. CrystEngComm 2018, 20, 2902–2906. [Google Scholar] [CrossRef]
- Grice, J.; Gault, R.; Van Velthuizen, J. Brianroulstonite: A new borate mineral with a sheet structure. Can. Mineral. 1997, 35, 751–758. [Google Scholar]
- Al-Jaroudi, S.; Ul-Hamid, A.; Mohammed, A.; Saner, S. Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 2007, 175, 115–121. [Google Scholar] [CrossRef]
- Balan, E.; Blanchard, M.; Hochepied, J.; Lazzeri, M. Surface modes in the infrared spectrum of hydrous minerals: The OH stretching modes of bayerite Locality: Synthetic. Phys. Chem. Miner. 2008, 35, 279–285. [Google Scholar] [CrossRef]
- Zuo, R.; Du, G.; Yang, W.; Liao, L.; Li, Z. Mineralogical and chemical characteristics of a powder and purified quartz from Yunnan Province. Open Geosci. 2016, 8, 606–611. [Google Scholar] [CrossRef]
- McDougall, G. The physical nature and manufacture of activated carbon. J. South. Afr. Inst. Min. Metall. 1991, 91, 109–120. [Google Scholar]
- Mohammed, D.; Tanweer, A. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Qodah, Z.; Ngah, C. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Guo, J.; Lua, A. Effect of heating temperature on the properties of chars and activated carbons prepared from oil palm stones. J. Therm. Anal. Calorim. 2000, 60, 417–425. [Google Scholar] [CrossRef]
- Estrella Condezo, Y. Modelamiento Termodinámico del Proceso de Clinkerización en una Planta de Producción de Cemento a Partir de un Análisis Basada en Balances de Masa y Energía. Bachelor’s Thesis, Universidad Federal de Integración Latino-Americana, Foz de Iguazú Brazil, 2017. Available online: https://dspace.unila.edu.br/bitstream/handle/123456789/3108/Trabalho%20de%20conclusao%20de%20curso-Yuri%20Estrella.pdf?sequence=1&isAllowed=y (accessed on 13 June 2023).
- Williams, L. Precipitation of gold from cyanide solutions by means of charcoal. MIN Mag. 1923, 23, 139. [Google Scholar]
Quicklime (Qkl) | qlrk (T1) | qlrk (T2) | qlrk (T3) | qlrk (T4) | qlem (T5) | qlvk (T6) | rk + 20% (T7) | rk + 35% (T8) | rk + 5% (T9) | rk + 28% (T10) | qlvk (T11) | qlem (T12) | qlvk (T13) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | Excess | ||||||||||||
pH | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
Cyanide strength | 0.143 | 0.143 | 0.138 | 0.18 | 0.22 | 0.22 | 0.23 | 0.23 | 0.22 | 0.21 | 0.2 | 0.23 | 0.23 |
Initial conc. (Au ppm) | 0.459 | 0.455 | 0.442 | 0.451 | 0.451 | 0.451 | 0.45 | 0.45 | 0.45 | 0.45 | 25.36 | 25.36 | 25.32 |
Qkl | qlrk (T14) | qlrk (T15) | qlem (T16) | rk + 20% (T17) | rk + 5% (T18) | rk + 35% (T19) | rk + 28% (T20) | qlrk (T21) | qlrk (T22) | qlem (T23) | rk + 20% (T24) | rk + 5% (T25) | rk + 35% (T26) | rk + 28% (T27) | qlrk (T28) | qlrk (T29) | qlem (T30) | rk + 20% (T31) | rk + 35% (T32) | rk + 5% (T33) | rk + 28% (T34) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratio | Accurate | ||||||||||||||||||||
pH | 12 | 13 | 13 | 11 | 11 | 11 | 11 | 12 | 13 | 13 | 11 | 11 | 11 | 11 | 12 | 13 | 13 | 11 | 11 | 11 | 11 |
Cyanide strength | 0.19 | 0.22 | 0.22 | 0.23 | 0.22 | 0.23 | 0.22 | 0.2 | 0.23 | 0.23 | 0.25 | 0.24 | 0.25 | 0.24 | 0.2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Initial conc. (Au ppm) | 5.334 | 5.318 | 5.326 | 5.075 | 5.075 | 5.075 | 5.075 | 15.74 | 15.76 | 15.79 | 15.02 | 15.02 | 15.02 | 15.02 | 25.96 | 25.94 | 25.95 | 25.53 | 25.53 | 25.53 | 25.53 |
Phase | qlvk (%) | qlrk (%) |
---|---|---|
Hydrated calcium acetate | 73.3 | 73.4 |
Ikaite | 10 | 10 |
Brianroulstonite | 7.2 | 6.1 |
Calcite | 6.7 | <1 |
Ettringite | 2.7 | <1 |
Bayerite | <1 | 4.9 |
Quartz | <1 | 3.5 |
Total %C | 26.6 | 26.8 |
Chemically bound %C | 23.746 | 22.851 |
Free %C | 2.853 | 3.948 |
Phase | qlrk | qlem | qlvk | rk + 20% | rk + 28% | rk + 35% | rk + 24% |
---|---|---|---|---|---|---|---|
C3S (tricalcium silicate 3CaO-SiO2) | 0.67% | 1.07% | 1.18% | 0.39% | 0.71% | 0.57% | 0.73% |
C2S (dicalcium silicate 2CaO-SiO2) | 15.57% | 5.82% | 8.5% | 10.24% | 12.78% | 12.97% | 14.13% |
C3A (tricalcium aluminate 3CaO-Al2O3) | 1.77% | 0.8% | 0.65% | 0.6% | 1.11% | 0.76% | 1.14% |
C4AF (tetracalcium aluminoferrite 4CaO-Al2O3-FeO2) | 1.6% | 1.67% | 1.24% | 2.05% | 1.45% | 1.98% | 1.63% |
Calcium oxide (CaO) | 78.06% | 82.14% | 80.62% | 81.17% | 81.14% | 80.91% | 77.64% |
Portlandite (Ca(OH)2) | 0.17% | 0.41% | 0.07% | 0.13% | 0.23% | 0.08% | 1.08% |
Periclase (MgO) | 1.64% | 1.51% | 1.45% | 1.47% | 1.8% | 1.73% | 1.79% |
Quartz (SiO2) | 0% | 0.07% | 0.4% | 0.14% | 0.14% | 0.12% | 0.25% |
Calcite (CaCO3) | 0.52% | 6.51% | 5.89% | 3.81% | 0.64% | 0.88% | 1.61% |
Element | Zone (a) | Zone (b) | Zone (c) |
---|---|---|---|
Carbon | 6.8% | 8.3% | 6.8% |
Chlorine | 0.2% | 0.3% | 0.5% |
Aluminum | 0.3% | 0.6% | 0.8% |
Silicon | 1% | 1.5% | 1.7% |
Magnesium | 0.6% | 1% | 1.1% |
Calcium | 31.4% | 27.7% | 28% |
Oxygen | 59.5% | 60.4% | 60.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Rosales, E.M.; Camporredondo Saucedo, J.E.; Kudriavtsev, Y.; Mamani Maron, G.J.; Rojas Venegas, F.; Castruita Avila, L.G. Study of Preg-Robbing with Quicklime in Gold Cyanide Solutions Analyzed by Time-of-Flight Secondary Ion Mass Spectrometry. Metals 2024, 14, 416. https://doi.org/10.3390/met14040416
Garcia Rosales EM, Camporredondo Saucedo JE, Kudriavtsev Y, Mamani Maron GJ, Rojas Venegas F, Castruita Avila LG. Study of Preg-Robbing with Quicklime in Gold Cyanide Solutions Analyzed by Time-of-Flight Secondary Ion Mass Spectrometry. Metals. 2024; 14(4):416. https://doi.org/10.3390/met14040416
Chicago/Turabian StyleGarcia Rosales, Eber Manuel, Jesús Emilio Camporredondo Saucedo, Yuriy Kudriavtsev, Grover Johnny Mamani Maron, Fernando Rojas Venegas, and Laura Guadalupe Castruita Avila. 2024. "Study of Preg-Robbing with Quicklime in Gold Cyanide Solutions Analyzed by Time-of-Flight Secondary Ion Mass Spectrometry" Metals 14, no. 4: 416. https://doi.org/10.3390/met14040416
APA StyleGarcia Rosales, E. M., Camporredondo Saucedo, J. E., Kudriavtsev, Y., Mamani Maron, G. J., Rojas Venegas, F., & Castruita Avila, L. G. (2024). Study of Preg-Robbing with Quicklime in Gold Cyanide Solutions Analyzed by Time-of-Flight Secondary Ion Mass Spectrometry. Metals, 14(4), 416. https://doi.org/10.3390/met14040416