Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al-Zn-Mg-Cu Alloys
Abstract
:1. Introduction
2. Development of Spray-Formed Al-Zn-Mg-Cu Alloy
3. Hot Deformation of Spray-Formed Al-Zn-Mg-Cu Alloys
3.1. Hot Extrusion
3.2. Forging
3.3. Rolling
4. Heat Treatment of Spray-Formed Al-Zn-Mg-Cu Alloy
4.1. Homogenization
4.2. Solution Treatment
4.3. Aging
5. Second Phases and Their Influence on the Recrystallization Behavior of Spray-Formed Al-Zn-Mg-Cu Alloys
5.1. Second Phases
5.1.1. Primary Phases
5.1.2. Precipitates during Aging
5.1.3. Dispersoids
5.2. The Influence of the Second Phases on the Recrystallization Behavior of Spray-Formed Al-Zn-Mg-Cu Alloy
5.3. The Influence of the Grain Size on the Mechanical Properties
6. High-Temperature Performance of Spray-Formed Al-Zn-Mg-Cu Alloy
7. Summary and Prospect
- Several advantages are offered by the Al-Zn-Mg-Cu alloys produced by spray forming rather than traditional casting, including uniform composition, fine grain size, low internal stress, and high alloying capacity. Nevertheless, the performance of spray-formed alloys can be negatively impacted by the presence of significant porosity. This issue can be resolved through hot deformation processes such as hot extrusion and forging, which refine the microstructure and reduce the porosity. Different heat treatments like homogenization, solution treatment, and aging, can be optimized, further enhancing the material’s properties.
- Despite the validation of spray-formed Al-Zn-Mg-Cu alloys in some application scenarios, the technique is still limited by a lack of material diversity and narrow application scope. To address current challenges, both the material design and new applications of spray-formed aluminum ought to be explored, for example, high alloyed Al-Zn-Mg-Cu alloys, aluminum alloys for high temperature applications, high toughness aluminum alloys, etc.
- In order to develop spray-formed aluminum alloys with superior performance suitable for practical use, it becomes imperative to conduct comprehensive numerical simulations and optimizations of the manufacture process. This ensures that deformation processing and heat treatment are optimized, resulting in enhanced outcomes. Real-time monitoring and intelligent control of the spray-forming process should also be exploited to improve the quality of spray-formed products.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, D.; Zhang, X.M.; Liu, S.D.; Wang, T.; Wu, Z.Z.; Guo, Y.W. The Effect of Pre-Ageing Temperature and Retrogression Heating Rate on the Microstructure and Properties of AA7055. Mater. Sci. Eng. A 2013, 588, 34–42. [Google Scholar] [CrossRef]
- Teng, G.B.; Liu, C.Y.; Ma, Z.Y.; Zhou, W.B.; Wei, L.L.; Chen, Y.; Li, J.; Mo, Y.F. Effects of Minor Sc Addition on the Microstructure and Mechanical Properties of 7055 Al Alloy During Aging. Mater. Sci. Eng. A 2018, 713, 61–66. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zhao, G.Z.; Ming, F.L.; En, C.B.; Liang, C.; Guo, Q.Z. Effects of Single- and Multi-Stage Solid Solution Treatments on Microstructure and Properties of as-Extruded AA7055 Helical Profile. Trans. Nonferrous Met. Soc. China 2021, 31, 1885–1901. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.M.; Cui, Z.S.; Chen, Z.; Chen, D. Compressive Response and Microstructural Evolution of in-Situ Tib2 Particle-Reinforced 7075 Aluminum Matrix Composite. Trans. Nonferrous Met. Soc. China 2021, 31, 1235–1248. [Google Scholar] [CrossRef]
- He, K.Z.; Li, Q.; Liu, S.D.; Zhang, X.M.; Zhou, K.C. Influence of Pre-Stretching on Quench Sensitive Effect of High-Strength Al−Zn−Mg−Cu-Zr Alloy Sheet. J. Cent. South Univ. 2021, 28, 2660–2669. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.Z.; Chen, H.B.; Yan, K. Microstructure and Mechanical Properties of Spray Formed 7055 Aluminum Alloy by Underwater Friction Stir Welding. Mater. Des. 2014, 56, 725–730. [Google Scholar] [CrossRef]
- Salvo, G.J.; Afonso, R.M. Fatigue Strength and Microstructure Evaluation of Al 7050 Alloy Wires Recycled by Spray Forming, Extrusion and Rotary Swaging. Trans. Nonferrous Met. Soc. China 2020, 30, 3195–3209. [Google Scholar] [CrossRef]
- Liu, S.D.; Zhang, Y.; Liu, W.J.; Deng, Y.L.; Zhang, X.M. Effect of Step-Quenching on Microstructure of Aluminum Alloy 7055. Trans. Nonferrous Met. Soc. China 2010, 20, 1–6. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Jia, Z.H.; Xiang, K.Y.; Kong, Y.P.; Li, Z.G.; Fan, X.; Ma, W.T.; Zhang, H.; Lin, L.; Marthinsen, K.; et al. Microstructure Evolution and Recrystallization Resistance of a 7055 Alloy Fabricated by Spray Forming Technology and by Conventional Ingot Metallurgy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 5378–5388. [Google Scholar] [CrossRef]
- Mondal, C.; Mukhopadhyay, A.K.; Raghu, T.; Varma, V.K. Tensile Properties of Peak Aged 7055 Aluminum Alloy Extrusions. Mater. Sci. Eng. A 2007, 454–455, 673–678. [Google Scholar] [CrossRef]
- Henein, H.; Uhlenwinkel, V.; Fritsching, U. Metal Sprays and Spray Deposition; Springer International Publishing: Cham, Switzerland, 2017; pp. 379–406. [Google Scholar]
- Lavernia, E.J.; Grant, N.J. Spray Deposition of Metals: A Review. Mater. Sci. Eng. 1988, 98, 381–394. [Google Scholar] [CrossRef]
- Evans, J.W.; Jonghe, L.C. The Production and Processing of Inorganic Materials; Springer International Publishing: Cham, Switzerland, 2016; pp. 477–511. [Google Scholar]
- Zhang, G.W.; Zhen, Z.C.; Wei, C.; Hai, Y.X.; Jing, Z.; Guo, A.Z.; Li, M.; Gang, C. The Microstructure and Mechanical Properties of Super-High Strength Al Alloys by Spray Forming. Adv. Mater. Res. 2012, 535–537, 909–914. [Google Scholar] [CrossRef]
- Reddy, B.V.R.; Maity, S.R.; Pandey, K.M. Characterization of Spray Formed Al-Alloys—A Review. Rev. Adv. Mater. Sci. 2019, 58, 147–158. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.; Duan, X.J.; Xiong, B.Q.; Zhang, J.S. The Microstructure and Mechanical Properties of Spray-Deposited Hypereutectic Al-Si-Fe Alloy. J. Mater. Process. Technol. 2003, 137, 191–194. [Google Scholar] [CrossRef]
- Ha, T.K.; Park, W.J.; Ahn, S.; Chang, Y.W. Fabrication of Spray-Formed Hypereutectic Al-25Si Alloy and Its Deformation Behavior. J. Mater. Process. Technol. 2002, 130–131, 691–695. [Google Scholar] [CrossRef]
- Kim, W.J.; Yeon, J.H.; Lee, J.C. Superplastic Deformation Behavior of Spray-Deposited Hyper-Eutectic Al-25Si Alloy. J. Alloys Compd. 2000, 308, 237–243. [Google Scholar] [CrossRef]
- Wu, Y.; Cassada, W.A.; Lavernia, E.J. Microstructure and Mechanical Properties of Spray-Deposited Al-17Si-4.5Cu-0.6Mg Wrought Alloy. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 1995, 26, 1235–1247. [Google Scholar] [CrossRef]
- Estrada, J.L.; Duszczy, K.J. Characteristics of Rapidly Solidified Al-Si-X Preforms Produced by the Osprey Process. J. Mater. Sci. 1990, 25, 1381–1391. [Google Scholar] [CrossRef]
- Su, Y.H.; Frank, C.S.; Chiang, S.; Tsao, C.Y.A. Extrusion Characteristics of Spray-Formed Ac9a Aluminum Alloy. Mater. Sci. Eng. A 2004, 364, 305–312. [Google Scholar] [CrossRef]
- Chiang, C.H.; Tsao, C.Y.A. Workability of Spray-Formed Al/Sip Metal Matrix Composites. Key Eng. Mater. 2003, 249, 189–194. [Google Scholar] [CrossRef]
- Saha, D.; Sumanth, S.; Diran, A.; Makhlouf, M.M. Casting of Aluminum-Based Wrought Alloys Using Controlled Diffusion Solidification. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2004, 35, 2174–2180. [Google Scholar] [CrossRef]
- Lee, J.S.; Jung, J.Y.; Lee, E.S.; Park, W.J.; Ahn, S.; Kim, N.J. Microstructure and Properties of Titanium Boride Dispersed Cu Alloys Fabricated by Spray Forming. Mater. Sci. Eng. A 2000, 277, 274–283. [Google Scholar] [CrossRef]
- Ferrarini, C.E.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J. Microstructure and Mechanical Properties of Spray Deposited Hypoeutectic Al-Si Alloy. Mater. Sci. Eng. A 2004, 375, 577–580. [Google Scholar] [CrossRef]
- Desanctis, M. Structure and Properties of Rapidly Solidified Ultrahigh Strength Al-Zn-Mg-Cu Alloys Produced by Spray Deposition. Mater. Sci. Eng. A 1991, 141, 103–121. [Google Scholar] [CrossRef]
- Sharma, M.M. Microstructural and Mechanical Characterization of Various Modified 7xxx Series Spray Formed Alloys. Mater. Charact. 2008, 59, 91–99. [Google Scholar] [CrossRef]
- Jia, Y.; Cao, F.; Ning, Z.; Guo, S.; Ma, P.; Sun, J. Influence of Second Phases on Mechanical Properties of Spray-Deposited Al-Zn-Mg-Cu Alloy. Mater. Des. 2012, 40, 536–540. [Google Scholar] [CrossRef]
- Gingell, A.D.B.; King, J.E. Comparison of Crack Growth Behaviour between Spray-Formed and Commercial Plate Al-Zn-Mg-Cu Alloy 7150. Mater. Sci. Forum 1996, 217–222, 1605–1610. [Google Scholar] [CrossRef]
- Guo, S. Solidification Behavior and Microstructure Evolution of Spray Deposited Al-Zn-Mg-Cu Alloy during Hot Working Process. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2011. (In Chinese). [Google Scholar]
- Zhang, Y.A.; Xiong, B.Q.; Wei, Q.; Shi, L.K.; Ma, M.T. Preparation of High Performance Aluminum Alloy Materials by Spray Forming. Mater. Mech. Eng. 2001, 25, 22–25. (In Chinese) [Google Scholar]
- Shen, J.; Song, G.S.; Zeng, S.Y.; Jiang, Z.L.; Li, Q.C. The microstructure and properties of high-strength aluminum alloy materials deposited by atomization. Chin. J. Nonferrous Met. 1994, 4, 82–84. (In Chinese) [Google Scholar]
- Pan, Y.X. Performance of spray formed 7055 aluminum alloy for helicopter hub materials. J. Netshape Form. Eng. 2017, 9, 193–197. (In Chinese) [Google Scholar]
- Bai, B.C.; Wan, C.P.; Zhang, X.Y.; Chen, W. Study on the microstructure and properties of Al Zn Mg Cu alloy large billets prepared by spray deposition. J. Aeronaut. Mater. 2007, 27, 11–14. (In Chinese) [Google Scholar]
- Li, L.; Wei, L.J.; Xu, Y.J.; Mao, L.; Wu, S.J. Study on the Optimizing Mechanisms of Superior Comprehensive Properties of a Hot Spray Formed Al-Zn-Mg-Cu Alloy. Mater. Sci. Eng. A 2019, 742, 102–108. [Google Scholar] [CrossRef]
- Xiang, K.Y.; Lei, X.C.; Ding, L.P.; Jia, Z.H.; Yang, X.F.; Liu, Q. Optimizing Mechanical Property of Spray Formed Al-Zn-Mg-Cu Alloy by Combination of Homogenization and Warm-Rolling. Mater. Sci. Eng. A 2022, 846, 143248. [Google Scholar] [CrossRef]
- Ditta, A.; Wei, L.J.; Xu, Y.J.; Wu, S.J. Effect of Hot Extrusion and Optimal Solution Treatment on Microstructure and Properties of Spray-Formed Al-11.3Zn-2.65Mg-1Cu Alloy. J. Alloys Compd. 2019, 797, 558–565. [Google Scholar] [CrossRef]
- Ditta, A.; Wei, L.J.; Li, L.; Xu, Y.J.; Naseem, K.; Wu, S.J. Microstructure and Mechanical Properties of Spray-Formed High Zn-Containing Al-Zn-Mg-Cu Alloy. In Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019. [Google Scholar]
- Li, H.H.; Cao, F.Y.; Guo, S.; Ning, Z.L.; Liu, Z.Y.; Jia, Y.D.; Scudino, S.; Gemming, T.; Sun, J.F. Microstructures and Properties Evolution of Spray-Deposited Al-Zn-Mg-Cu-Zr Alloys with Scandium Addition. J. Alloys Compd. 2017, 691, 482–488. [Google Scholar] [CrossRef]
- Wang, Z.P.; Wang, M.L.; Li, Y.G.; Xiao, H.Y.; Chen, H.; Geng, J.W.; Li, X.F.; Chen, D.; Wang, H.W. Effect of Pretreatment on Microstructural Stability and Mechanical Property in a Spray Formed Al-Zn-Mg-Cu Alloy. Mater. Des. 2021, 203, 109618. [Google Scholar] [CrossRef]
- Wei, L.J.; Han, B.S.; Ye, F.; Ditta, A.; Li, L.; Xu, Y.Y.; Wu, S.J. Influencing Mechanisms of Heat Treatments on Microstructure and Comprehensive Properties of Al-Zn-Mg-Cu Alloy Formed by Spray Forming. J. Mater. Res. Technol.-JMRT 2020, 9, 6850–6858. [Google Scholar] [CrossRef]
- Su, R.M.; Qu, Y.; Li, R.; Li, R. Study of Ageing Treatment on Spray Forming Al-Zn-Mg-Cu Alloy. Appl. Mech. Mater. 2012, 217, 1835–1838. [Google Scholar] [CrossRef]
- Xiong, B.Q.; Zhang, Y.G.; Zhu, B.H.; Liu, H.W.; Zhang, Z.H.; Shi, L.K. Research on Ultra-High Strength Al-11Zn-2.9Mg-1.7Cu Alloy Prepared by Spray Forming Process. Mater. Sci. Forum 2005, 475–479, 2785–2788. [Google Scholar] [CrossRef]
- Cai, Y.H.; Cui, H.; Li, Y.B.; Hang, J.F.; Zhang, J.S. Microstructure and Properties of Al-Zn-Mg-Cu-Mn in Situ High Strength Alloy. Mater. Sci. Forum 2007, 561–565, 957–960. [Google Scholar] [CrossRef]
- Lu, Z.P.; Jiang, Y.Z.; Yu, L.H.; Xu, J.H.; Peng, J.D.; Xiang, K.Y. The Effect of Minor Scandium Addition on Microstructure Evolution and Mechanical Properties of Spray Formed Al-Zn-Mg-Cu Alloy. J. Alloys Compd. 2023, 948, 169710. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Wu, Q.; Yang, J.; Hu, Z.; Ni, Y.; Ding, L. Effect of Cold Rolling Deformation on the Microstructure and Mechanical Properties of Spray-Formed Al-Zn-Mg-Cu Alloy. J. Mater. Res. 2024, 39, 471–479. [Google Scholar] [CrossRef]
- Liu, C.Y.; Teng, G.B.; Ma, Z.Y.; Wei, L.L.; Zhou, W.B.; Huang, H.F.; Qi, H.Q. Mechanical Properties and Thermal Stability of 7055 Al Alloy by Minor Sc Addition. Rare Met. 2020, 39, 725–732. [Google Scholar] [CrossRef]
- Zhang, G.W.; Feng, X.H.; Yang, Y.S. Effect of Minor Sc Addition on Microstructure and Tensile Properties of Hot-Extruded 7055 Alloy. J. Mater. Eng. Perform. 2022, 31, 6451–6458. [Google Scholar] [CrossRef]
- Dong, P.X.; Chen, S.Y.; Chen, K.H. Effects of Cu Content on Microstructure and Properties of Super-High-Strength Al-9.3Zn-2.4Mg-XCu-Zr Alloy. J. Alloys Compd. 2019, 788, 329–337. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.D.; Tang, S.B.; Zhu, Q.Q.; Song, H.; Guo, M.X.; Cao, L.F. Investigation on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys with Various Zn/Mg Ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Cai, W.D.; Lavernia, E.J. Modeling of Porosity During Spray Forming: PartI. Effects of Processing Parameters. Metall. Mater. Trans. B 1998, 29, 1085–1096. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, Q.; Jiang, H.X.; Liu, C.; Cao, L.F. Micro Porosity and Its Effect on Fatigue Performance of 7050 Aluminum Thick Plates. J. Cent. South Univ. 2022, 29, 912–923. [Google Scholar]
- Sanmarchi, C.; Liu, H.; Lavernia, E.J.; Rangel, R.H.; Sickinger, A.; Muehlberger, E. Numerical Analysis of the Deformation and Solidification of a Single Droplet Impinging onto a Flat Substrate. J. Mater. Sci. 1993, 28, 3313–3321. [Google Scholar]
- Madejski, J. Solidification of Droplets on a Cold Surface. Int. J. Heat Mass Transf. 1976, 19, 1009–1013. [Google Scholar] [CrossRef]
- Jia, Z.H.; Xie, Z.Q.; Xiang, K.Y.; Ding, L.P.; Weng, Y.Y.; Liu, Q. Effect of Heat Treatment and Extrusion Processing on the Microstructure and Mechanical Properties of Spray Formed 7055 Alloy. Mater. Charact. 2022, 183, 111619. [Google Scholar] [CrossRef]
- Schreiber, J.M.; Omcikus, Z.R.; Eden, T.J.; Sharma, M.M.; Champagne, V.; Patankar, S.N. Combined Effect of Hot Extrusion and Heat Treatment on the Mechanical Behavior of 7055 AA Processed Via Spray Metal Forming. J. Alloys Compd. 2014, 617, 135–139. [Google Scholar] [CrossRef]
- Khan, M.A.; Yang, W.W.; Afifi, M.A.; Malik, A.; Nazeer, F.; Yasin, G.; Jia, W.B.; Zhang, H. Microstructure and Mechanical Properties of an Al-Zn-Cu-Mg Alloy Processed by Hot Forming Processes Followed by Heat Treatments. Mater. Charact. 2019, 157, 109901. [Google Scholar] [CrossRef]
- Zhao, W.J.; Cao, F.Y.; Gu, X.L.; Ning, Z.L.; Han, Y.; Sun, J.F. Isothermal Deformation of Spray Formed Al-Zn-Mg-Cu Alloy. Mech. Mater. 2013, 56, 95–105. [Google Scholar] [CrossRef]
- Ning, Z.L.; Guo, S.; Zhang, M.X.; Cao, F.Y.; Jia, Y.D.; Sun, J.F. Characterization of the Secondary Phases in Spray Formed Al-Zn-Mg-Cu-Sc-Zr Alloy During Hot Compression. J. Mater. Res. 2016, 16, 2465–2472. [Google Scholar] [CrossRef]
- Shao, Y.; Shi, J.H.; Pan, J.C.; Liu, Q.H.; Yan, L.; Guo, P.Y. Influence of Thermo-Mechanical Conditions on the Microstructure and Mechanical Property of Spray-Formed 7055 Aluminum Alloy. Mater. Today Commun. 2022, 31, 103593. [Google Scholar] [CrossRef]
- Robinson, J.S.; Cudd, R.L.; Tanner, D.A.; Dolan, G.P. Quench Sensitivity and Tensile Property Inhomogeneity in 7010 Forgings. J. Mater. Process. Technol. 2001, 119, 261–267. [Google Scholar] [CrossRef]
- Godinho, H.A.; Beletati, A.L.R.; Giordano, E.J.; Claudemiro, B. Microstructure and Mechanical Properties of a Spray Formed and Extruded Aa7050 Recycled Alloy. J. Alloys Compd. 2014, 586, S139–S142. [Google Scholar] [CrossRef]
- Yuan, C.P.; Bai, P.C.; Zhang, X.Y.; Zhang, H.J.; Guo, S.L. Researches of Structures and Mechanical Properties of Spray Formed Al-Zn-Mg-Cu Alloy. Rare Met. Mater. Eng. 2007, 36, 480–483. [Google Scholar]
- Tian, D.Y.; Wang, R.; Zheng, J. Research on the Mechanical Properties and Hot Deformation Behaviors of Spray-Deposited 7034 Al Alloy Processed by Forward Extrusion. J. Mater. Eng. Perform. 2022, 31, 37–52. [Google Scholar] [CrossRef]
- Wang, X.D.; Pan, Q.L.; Liu, L.L.; Xiong, S.W.; Wang, W.Y.; Lai, J.P.; Sun, Y.W.; Huang, Z.Q. Characterization of Hot Extrusion and Heat Treatment on Mechanical Properties in a Spray Formed Ultra-High Strength Al-Zn-Mg-Cu Alloy. Mater. Charact. 2018, 144, 131–140. [Google Scholar] [CrossRef]
- Wei, Q.; Xiong, B.Q.; Zhang, Y.N.; Zhu, B.H.; Shi, L.K. Production of High Strength Al-Zn-Mg-Cu Alloys by Spray Forming Process. Trans. Nonferrous Met. Soc. China 2001, 11, 258–261. [Google Scholar]
- Kishchik, A.A.; Kishchik, M.S.; Kotov, A.D.; Mikhaylovskaya, A.V. Effect of Multidirectional Forging on the Microstructure and Mechanical Properties of the Al-Mg-Mn-Cr Alloy. Phys. Met. Metallogr. 2020, 121, 489–494. [Google Scholar] [CrossRef]
- Xu, C.T.; Xu, B.; Shi, W.C.; Xue, K.M. Experimental Study on Densification of Spray-Formed High-Strength Aluminum Alloy by Square Cladding Forging. Int. J. Plast. 2021, 28, 136–142. [Google Scholar]
- Liu, T.; Jiang, H.T.; Sun, H.; Wang, Y.J.; Dong, Q.; Zeng, J.R.; Bian, F.G.; Zhang, J.; Chen, F.; Sun, B.D. Effects of Rolling Deformation on Precipitation Behavior and Mechanical Properties of Al-Zn-Mg-Cu Alloy. Mater. Sci. Eng. A 2022, 847, 143342. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Y.X.; Gong, H.; Zheng, X.Z.; Jiang, S.S. Effects of Rolling Parameters of Snake Hot Rolling on Strain Distribution of Aluminum Alloy 7075. Trans. Nonferrous Met. Soc. China 2014, 24, 2150–2156. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Lu, S.H.; Zhang, J.B.; Gong, H. Comparisons of Flow Behavior Characteristics and Microstructure between Asymmetrical Shear Rolling and Symmetrical Rolling by Macro/Micro Coupling Simulation. J. Comput. Sci. 2018, 29, 142–152. [Google Scholar] [CrossRef]
- Su, H.; Hou, L.G.; Tian, Q.k.; Wang, Y.W.; Zhuang, L.Z. Understanding the Bending Behavior and through-Thickness Strain Distribution During Asymmetrical Rolling of High-Strength Aluminium Alloy Plates. J. Mater. Res. Technol. 2023, 22, 1462–1475. [Google Scholar] [CrossRef]
- Mei, L.; Chen, X.P.; Ren, P.; Nie, Y.Y.; Huang, G.J.; Liu, Q. Effect of Warm Deformation on Precipitation and Mechanical Properties of a Cryorolled Al-Zn-Mg-Cu Sheet. Mater. Sci. Eng. A 2020, 771, 138608. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, B.Q.; Zhang, Y.G.; Liu, H.W.; Li, Z.H.; Liu, Q. Microstructure and Mechanical Properties of Spray-Deposited Al-Zn-Mg-Cu Alloy Processed through Hot Rolling and Heat Treatment. Mater. Sci. Eng. A 2009, 518, 144–149. [Google Scholar] [CrossRef]
- Lang, H.J.; Wu, X.J.; Hong, B.; Teng, J.Z.; Huang, S.Q.; Miao, J. Dislocation Density Model and Microstructure of 7A85 Aluminum Alloy During Thermal Deformation. J. Cent. South Univ. 2021, 28, 2999–3007. [Google Scholar]
- Lin, X.M.; Wu, X.D.; Cao, L.F.; Tang, S.B.; Bai, M. Effect of Hot Deformation on the Microstructure of Spray-Formed 7055 Aluminum Alloy Extruded Plate. J. Cent. South Univ. 2023, 30, 3950–3963. [Google Scholar] [CrossRef]
- Lin, X.M.; Wu, X.D.; Cao, L.F.; Tang, S.B.; He, B.S. The Effects of Heat Treatment on the Extrusion-Induced Inhomogeneity of Spray-Formed Aluminum Alloy 7055. J. Mater. Res. Technol.-JMRT 2023, 25, 2075–2087. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Jürgen, H.; Vasilii, Y.; Konovalov, S.; Rudolf, K. Influence of Local Inhomogeneity of Thermomechanical Treatment Conditions on Microstructure Evolution in Aluminum Alloys. J. Mater. Eng. Perform. 2018, 27, 6780–6799. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, N.M.; Liu, S.D.; Song, F.X.; Zeng, R.L.; Huang, L.Y. Inhomogeneity of Texture, Tensile Property and Fracture Toughness of 7050 Aluminum Alloy Thick Plate. Trans. Nonferrous Met. Soc. China 2010, 20, 202–208. [Google Scholar]
- She, H.; Shu, D.; Wang, J.; Sun, B.D. Influence of Multi-Microstructural Alterations on Tensile Property Inhomogeneity of 7055 Aluminum Alloy Medium Thick Plate. Mater. Charact. 2016, 113, 189–197. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Yeom, J.T.; Lee, D.G.; Lim, S.G.; Park, N.K. Effect of Scandium Content on the Hot Extrusion of Al-Zn-Mg-(Sc) Alloy. J. Mater. Process. Technol. 2007, 187–188, 635–639. [Google Scholar] [CrossRef]
- Van Geertruyden, W.H.; Browne, H.M.; Misiolek, W.Z.; Wang, P.T. Evolution of Surface Recrystallization During Indirect Extrusion of 6xxx Aluminum Alloys. Metall. Mater. Trans. A 2005, 36A, 1049–1056. [Google Scholar] [CrossRef]
- Sun, S.Q.; Fang, Y.; Zhang, L.; Li, C.L.; Hu, S.Q. Effects of Aging Treatment and Peripheral Coarse Grain on the Exfoliation Corrosion Behaviour of 2024 Aluminium Alloy Using Sr-Ct. J. Mater. Res. Technol. 2020, 9, 3219–3229. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Dong, H.G.; Wen, G.D.; Yu, F.Y.; Ma, Y.T.; Lei, Z.K. Effect of Inhomogeneous Microstructure Evolution on the Mechanical Properties and Corrosion Behavior of Rotary Friction Welded AA2024 Joints. Mater. Charact. 2021, 178, 111306. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, H.J.; Sun, Q.; Hu, Z.L.; Yan, Y.; Chen, T.F.; Hua, L. Microstructural Evolutions and Mechanical Properties of 6082 Aluminum Alloy Part Produced by a Solution-Forging Integrated Process. J. Mater. Process. Technol. 2022, 308, 117715. [Google Scholar] [CrossRef]
- Feng, C.; Shou, W.B.; Liu, H.Q.; Yi, D.Q.; Feng, Y.R. Microstructure and Mechanical Properties of High Strength Al-Zn-Mg-Cu Alloys Used for Oil Drill Pipes. Trans. Nonferrous Met. Soc. China 2015, 25, 3515–3522. [Google Scholar] [CrossRef]
- Xu, D.K.; Birbilis, N.; Lashansky, D.; Rometsch, P.A.; Muddle, B.C. Effect of Solution Treatment on the Corrosion Behaviour of Aluminium Alloy AA7150: Optimisation for Corrosion Resistance. Corros. Sci. 2011, 53, 217–225. [Google Scholar] [CrossRef]
- Wu, H.; Wen, S.P.; Huang, H.B.; Li, L.; Wu, X.L.; Gao, K.Y.; Wang, W.; Nie, Z.R. Effects of Homogenization on Precipitation of Al 3 (Er,Zr) Particles and Recrystallization Behavior in a New Type Al-Zn-Mg-Er-Zr Alloy. Mater. Sci. Eng. A 2017, 689, 313–322. [Google Scholar] [CrossRef]
- Wu, C.H.; Feng, D.; Ren, J.J.; Zang, Q.H.; Li, J.C.; Liu, S.D.; Zhang, X.M. Effect of Non-Isothermal Retrogression and Re-Ageing on through-Thickness Homogeneity of Microstructure and Properties of Al-8Zn-2Mg-2Cu Alloy Thick Plate. J. Cent. South Univ. 2022, 29, 960–972. [Google Scholar] [CrossRef]
- Wang, Z.P.; Geng, J.W.; Pu, Q.Q.; Li, K.N.; Luo, T.; Li, Y.G.; Xia, P.K.; Li, X.F.; Chen, D.; Sha, G.; et al. Achieving High Performance by Optimized Heat Treatment in a Spray Formed Al-Zn-Mg-Cu Alloy. Mater. Sci. Eng. A 2024, 893, 146134. [Google Scholar] [CrossRef]
- Wang, X.D.; Pan, Q.L.; Wang, W.Y.; Huang, Z.Q.; Chen, J.; Pan, B.Q.; Liu, X. Effects of Pre-Strain and Aging Treatments on the Mechanical Property and Corrosion Resistance of the Spray Formed Ultra-High Strength Al-Zn-Mg-Cu Alloy. Mater. Charact. 2022, 194, 112381. [Google Scholar] [CrossRef]
- Guo, S.; Zhi, L.; Ning, L.; Cao, F.Y.; Sun, J.F. Microstructural Evolution of Spray-Formed Al-11.5Zn-2.0Mg-1.6Cu Alloy During Hot-Extrusion and Heat-Treatment. Trans. Nonferrous Met. Soc. China 2009, 19, 343–348. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, B.Q.; Zhang, Y.G.; Liu, H.W.; He, X.Q. Microstructural Development of Spray-Deposited Al-Zn-Mg-Cu Alloy During Subsequent Processing. J. Alloys Compd. 2009, 477, 616–621. [Google Scholar] [CrossRef]
- Yu, H.C.; Wang, M.P.; Sheng, X.F.; Li, Z.; Chen, L.B.; Lei, Q.; Chen, C.; Jia, Y.L.; Xiao, Z.; Chen, W.; et al. Microstructure and Tensile Properties of Large-Size 7055 Aluminum Billets Fabricated by Spray Forming Rapid Solidification Technology. J. Alloys Compd. 2013, 578, 208–214. [Google Scholar] [CrossRef]
- Shen, G.W.; Chen, X.L.; Yan, J.; Fan, L.Y.; Yang, Z.; Zhang, J.; Guan, R.G. Effects of Heat Treatment Processes on the Mechanical Properties, Microstructure Evolution, and Strengthening Mechanisms of Al-Mg-Zn-Cu Alloy. J. Mater. Res. Technol. 2023, 27, 5380–5388. [Google Scholar] [CrossRef]
- Liu, S.D.; Li, C.B.; Han, S.Q.; Deng, Y.L.; Zhang, X.M. Effect of Natural Aging on Quench-Induced Inhomogeneity of Microstructure and Hardness in High Strength 7055 Aluminum Alloy. J. Alloys Compd. 2015, 625, 34–43. [Google Scholar] [CrossRef]
- Sharma, M.M.; Amateau, M.F.; Eden, T.J. Mesoscopic Structure Control of Spray Formed High Strength Al-Zn-Mg-Cu Alloys. Acta Mater. 2005, 10, 2919–2924. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, J.H.; Yu, L.H.; Hu, Y.X.; Huang, T.; Zhang, H. Effect of Non-Isothermal Aging Treatments on the Microstructure and Properties of Tic-Tib2 Ceramic Particles-Reinforced Spray-Formed 7055 Aluminum Alloy Tig Weld Metal. J. Mater. Sci. 2023, 45, 17241–17256. [Google Scholar] [CrossRef]
- Guo, G.; Jiang, J.; Li, W.; Li, C.Y. Effects of Aging Treatment on Nano-Sized Precipitates and Properties of Spray Formed Al-Zn-Mg-Cu Alloy. Nanosci. Nanotechnol. Lett. 2018, 10, 112–118. [Google Scholar]
- Ditta, A.; Wei, L.J.; Xu, Y.J.; Wu, S.J. Microstructural Characteristics and Properties of Spray Formed Zn-Rich Al-Zn-Mg-Cu Alloy under Various Aging Conditions. Mater. Charact. 2020, 161, 110133. [Google Scholar] [CrossRef]
- Sharma, M.M.; Amateau, M.F.; Eden, T.J. Aging Response of Al-Zn-Mg-Cu Spray Formed Alloys and Their Metal Matrix Composites. Mater. Sci. Eng. A 2006, 1, 87–96. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, L.Y.; Yuan, H.J.; Jiang, J.B.; Ouyang, M.; Xu, L.J. Second Step Aging on Nanosized Precipitates and Properties of Al-Zn-Mg-Cu-Cr Spray-Deposited Alloys. J. Nanosci. Nanotechnol. 2020, 3, 1955–1961. [Google Scholar]
- Su, R.M.; Qu, Y.D.; You, J.H.; Li, R.D. Study on a New Retrogression and Re-Aging Treatment of Spray Formed Al-Zn-Mg-Cu Alloy. J. Mater. Res. 2016, 5, 573–579. [Google Scholar] [CrossRef]
- He, X.; Xiong, B.; Sun, Z.; Zhang, Y.C.; Wang, F.; Zhu, B. Microstructural Evolution of the Spray Formed Al-Zn-Mg-Cu Alloy During Extrusion and Heat Treatment. Rare Metal Mater. Eng. 2008, 37, 534–537. [Google Scholar]
- Wang, Z.P.; Geng, J.W.; Xia, P.K.; Li, Y.G.; Chen, W.; Li, X.F.; Wang, M.L.; Chen, D.; Wang, H.W. Phase Transformation from H Phase to S Phase at Grain Boundary During Annealing in Rapidly-Solidified Al-Zn-Mg-Cu Alloy. Mater. Charact. 2023, 195, 112531. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, Y.W.; Yasin, G.; Nazeer, F.; Malik, A.; Khan, W.Q.; Ahmad, T.; Zhang, H.; Afifi, M.A. The Effect of Strain Rates on the Microstructure and the Mechanical Properties of an over-Aged Al-Zn-Mg-Cu Alloy. Mater. Charact. 2020, 167, 110472. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Shiojiri, M.; Hsiao, C.N.; Li, W.C.; Tsao, C.S.; Shi, Z.S.; Lin, J.G.; Yang, J.R. An Atomic Scale Structural Investigation of Nanometre-Sized H precipitates in the 7050 Aluminium Alloy. Acta Mater. 2019, 174, 351–368. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Huang, B.M.; Shi, Z.S.; Lin, J.G.; Ohmura, T.; Yang, J.R. Transmission Electron Microscopy Investigation of Separated Nucleation and in-Situ Nucleation in AA7050 Aluminium Alloy. Acta Mater. 2018, 149, 377–387. [Google Scholar] [CrossRef]
- Mazzer, E.M.; Afonso, C.R.M.; Galano, M.; Kiminami, C.S.; Bolfarini, C. Microstructure Evolution and Mechanical Properties of Al-Zn-Mg-Cu Alloy Reprocessed by Spray-Forming and Heat Treated at Peak Aged Condition. J. Alloys Compd. 2013, 579, 169–173. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Liu, H.; Huang, J.; Yang, B.; Zhang, J. Experimental Investigation on Heat Treatment of Spray-Forming Ultrahigh Strength Al-Zn-Mg-Cu Alloys. J. Univ. Sci. Technol. Beijing 2003, 25, 436–440. [Google Scholar]
- Peng, X.Y.; Li, Y.; Liang, X.P. Precipitate Behavior and Mechanical Properties of Enhanced Solution Treated Al-Zn-Mg-Cu Alloy During Non-Isothermal Ageing. J. Alloys Compd. 2018, 735, 964–974. [Google Scholar] [CrossRef]
- Feng, D.; Xu, R.; Li, J.C.; Huang, W.J.; Wang, J.T.; Liu, Y.; Zhao, L.X.; Li, C.B.; Zhang, H. Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy During Hot Deformation. Metals 2022, 12, 1982. [Google Scholar] [CrossRef]
- Guo, S.; Ning, Z.L.; Cao, F.Y.; Sun, J.F. Secondary Phases Present in Spray Formed Al-10.5Zn-2.0Mg-1.5Cu Alloy. Adv. Mater. Res. 2010, 97–101, 1073–1076. [Google Scholar] [CrossRef]
- Si, C.R.; Tang, X.L.; Zhang, X.L.; Wang, J.B.; Wu, W.C. Microstructure and Mechanical Properties of Low-Pressure Spray-Formed Zn-Rich Aluminum Alloy. Mater. Express 2017, 7, 273–282. [Google Scholar] [CrossRef]
- Yang, Y.G.; Zhao, Y.T.; Kai, X.Z.; Zhang, Z.; Zhang, H.; Tao, R.; Chen, G.; Yin, H.S.; Wang, M. Effects of Hot Extrusion and Heat Treatment on Microstructure and Properties of Industrial Large-Scale Spray-Deposited 7055 Aluminum Alloy. Mater. Res. Express 2018, 5, 016519. [Google Scholar] [CrossRef]
- He, B.S.; Cao, L.F.; Wu, X.D.; Tang, S.B.; Lin, X.M.; Zou, Y. Effect of Continuous Retrogression and Re-Ageing Treatment on Mechanical Properties, Corrosion Behavior and Microstructure of an Al-Zn-Mg-Cu Alloy. J. Alloys Compd. 2023, 970, 172592. [Google Scholar] [CrossRef]
- Xu, X.S.; Zheng, J.X.; Li, Z.; Luo, R.C.; Chen, B. Precipitation in an Al-Zn-Mg-Cu Alloy During Isothermal Aging: Atomic-Scale Haadf-Stem Investigation. Mater. Sci. Eng. A 2017, 691, 60–70. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Hou, X.H.; Bai, P.C.; Zhang, X.Y.; Dong, T.S.; Cui, X.M.; Wang, N. Analysis for Precipitates of Spray Formed Al-Zn-Mg-Cu Alloy after Aging. Rare Met. Mater. Eng. 2010, 39, 332–335. [Google Scholar]
- Lin, X.M.; Cao, L.F.; Wu, X.D.; Tang, S.B.; Zou, Y. Precipitation Behavior of Spray-Formed Aluminum Alloy 7055 During High Temperature Aging. Mater. Charact. 2022, 194, 112347. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.D.; Tang, S.B.; Zhu, Q.Q.; Cao, L.F. Co-Precipitation of T′ and H′ Phase in Al-Zn-Mg-Cu Alloys. Mater. Charact. 2020, 169, 110610. [Google Scholar] [CrossRef]
- Hou, S.L.; Zhang, D.; Ding, Q.W.; Zhang, J.S.; Zhuang, L.Z. Solute Clustering and Precipitation of Al-5.1Mg-0.15Cu-XZn Alloy. Mater. Sci. Eng. A 2019, 759, 465–478. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Liao, H.C.; Li, G.J.; Liu, Q. Ni-Rich Phases in Al-12%Si-4%Cu-1.2%Mn-X%Ni Heat-Resistant Alloys and Effect of Ni-Alloying on Tensile Mechanical Properties. J. Mater. Eng. Perform. 2019, 28, 5398–5408. [Google Scholar] [CrossRef]
- Tan, P.; Sui, Y.D.; Jin, H.N.; Zhu, S.; Jiang, Y.H.; Han, L.N. Effect of Zn Content on the Microstructure and Mechanical Properties of as-Cast Al-Zn-Mg-Cu Alloy with Medium Zn Content. J. Mater. Res. Technol. 2022, 18, 2620–2630. [Google Scholar] [CrossRef]
- Salamci, E. Ageing Behaviour of Spray Cast Al-Zn-Mg-Cu Alloys. Turk. J. Eng. Env. Sci. E 2001, 25, 681–686. [Google Scholar]
- Chen, Z.Y.; Yuan, K.M.; Nie, Z.R. Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys. Metall. Mater. Trans. A 2013, 44, 3910–3920. [Google Scholar] [CrossRef]
- Shu, W.X.; Hou, L.G.; Zhang, C.; Zhang, F.; Liu, J.C.; Liu, J.T.; Zhuang, L.Z.; Zhang, J.S. Tailored Mg and Cu Contents Affecting the Microstructures and Mechanical Properties of High-Strength Al-Zn-Mg-Cu Alloys. Mater. Sci. Eng. A 2016, 657, 269–283. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Zhao, G.; Chen, X.G. Effects of Two-Step Homogenization on Precipitation Behavior of Al3zr Dispersoids and Recrystallization Resistance in 7150 Aluminum Alloy. Mater. Charact. 2015, 102, 122–130. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, T.; He, C.N.; Ding, J.; Liu, E.Z.; Shi, C.S.; Li, J.J.; Zhao, N.Q. Evolution of Microstructure and Properties of Al-Zn-Mg-Cu-Sc-Zr Alloy During Aging Treatment. J. Alloys Compd. 2016, 68, 946–951. [Google Scholar] [CrossRef]
- Deng, Y.; Zhi, M.Y.; Zhao, K.; Duan, J.Q.; Hu, J.; He, Z.B. Effects of Sc and Zr Microalloying Additions and Aging Time at 120 °C on the Corrosion Behaviour of an Al-Zn-Mg Alloy. Corros. Sci. 2012, 65, 288–298. [Google Scholar] [CrossRef]
- Sharma, M.M.; Amateau, M.F.; Eden, T.J. Hardening Mechanisms of Spray Formed Al-Zn-Mg-Cu Alloys with Scandium and Other Elemental Additions. J. Alloys Compd. 2006, 416, 135–142. [Google Scholar] [CrossRef]
- Li, Z.L.; Xie, J.X.; Chen, W.; Zhai, J.; Ren, H.P.; Wang, Y.F. Structure and Property of Nickel-Modified Ultrahigh Strength Al-Zn-Mg-Cu Alloy by Spray Forming. Mater. Sci. Forum 2007, 546–549, 871–876. [Google Scholar] [CrossRef]
- Tsivoulas, D.; Robson, J.D. Heterogeneous Zr Solute Segregation and Al3Zr Dispersoid Distributions in Al-Cu-Li Alloys. Acta Mater. 2015, 93, 73–86. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Liu, R.X.; Li, D.Y.; Peng, Y.H.; Zhou, G.W.; Jia, Z.H.; Ma, W.T. Investigation on Deformation Behaviors and Dynamic Recrystallization Mechanism of Spray Formed Al-Zn-Mg-Cu Alloy under Hot Compression. J. Mater. Res. Technol. 2024, 28, 4401–4416. [Google Scholar] [CrossRef]
- Wang, Z.P.; Xiao, H.Y.; Chen, W.; Li, Y.G.; Geng, J.W.; Li, X.F.; Xia, P.K.; Wang, M.L.; Chen, D.; Wang, H.W. New Insight into Precipitation of Al3zr and Correlative Effect on Recrystallization Behavior in a Rapidly-Solidified Al-Zn-Mg-Cu-Zr Alloy. Mater. Charact. 2022, 191, 112142. [Google Scholar] [CrossRef]
- Kang, Y.C.; Chan, S.L.I. Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites. Mater. Chem. Phys. 2004, 85, 438–443. [Google Scholar] [CrossRef]
- Rohrer, G.S. “Introduction to Grains, Phases, and Interfaces—An Interpretation of Microstructure,” Trans. AIME, 1948, vol. 175, pp. 15–51, by C.S. Smith. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 2010, 41, 457–494. [Google Scholar] [CrossRef]
- Nes, E. Recrystallization and Texture Control During Process. In Proceedings of the Aluminium Technology’86, the Royal Lancaster Hotel, London, UK, 11–13 March 1986. [Google Scholar]
- Nes, E.; Ryum, N.; Hunderi, O. On the Zener Drag. Acta Metall. Mater. 1985, 33, 11–12. [Google Scholar] [CrossRef]
- She, H.; Shu, D.; Dong, A.P.; Wang, J.; Sun, B.D.; Lai, H.C. Relationship of Particle Stimulated Nucleation, Recrystallization and Mechanical Properties Responding to Fe and Si Contents in Hot-Extruded 7055 Aluminum Alloys. J. Mater. Sci. Technol. 2019, 35, 2570–2581. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Wen, K.; Xiong, B.Q.; Zhang, Y.A.; Wang, G.J.; Li, X.W.; Li, Z.H.; Huang, S.H.; Liu, H.W. Microstructure Evolution of a High Zinc Containing Al-Zn-Mg-Cu Alloy During Homogenization. Rare Met. Mater. Eng. 2017, 46, 928–934. [Google Scholar]
- Li, H.Y.; Liu, J.J.; Yu, W.C.; Zhao, H.; Li, D.W. Microstructure Evolution of Al-Zn-Mg-Cu Alloy During Non-Linear Cooling Process. Trans. Nonferrous Met. Soc. China 2016, 26, 1191–1200. [Google Scholar] [CrossRef]
- Polmear, I.J.; Couper, M.J. Design and Development of an Experimental Wrought Aluminum-Alloy for Use at Elevated-Temperatures. Metall. Mater. Trans. A 1998, 19, 1027–1035. [Google Scholar] [CrossRef]
- Rong, H.; Hu, P.; Ying, L.; Hou, W.B.; Zhang, J.H. Thermal Forming Limit Diagram (Tfld) of AA7075 Aluminum Alloy Based on a Modified Continuum Damage Model: Experimental and Theoretical Investigations. Int. J. Mech. Sci. 2019, 156, 59–73. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, M.X.; Sun, X.D.; Qian, L.; Li, L.J.; Xie, Y.J.; Liu, Z.Y.; Wu, D.; Yang, L.G.; Wu, T.; et al. Effects of Temperature and Strain Rate on the Fracture Behaviors of an Al-Zn-Mg-Cu Alloy. Materials 2018, 11, 1233. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.L.; Zhang, H.; Su, J.; Sun, Y.S. Constitutive Characteristics and Microstructure Evolution of 7150 Aluminum Alloy During Isothermal and Non-Isothermal Multistage Hot Compression. Mater. Sci. Eng. A 2015, 636, 459–469. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.Q.; Kou, Z.D.; Huang, B.; Zang, J.X.; Ru, J.G. High Temperature Tensile Properties, Fracture Behaviors and Nanoscale Precipitate Variation of an Al-Zn-Mg-Cu Alloy. Prog. Nat. Sci. 2020, 30, 63–73. [Google Scholar] [CrossRef]
- Elagin, V.I. Ways of Developing High-Strength and High-Temperature Structural Aluminum Alloys in the 21st Century. Met. Sci. Heat Treat. 2007, 49, 427–434. [Google Scholar] [CrossRef]
- Lang, M.; Zhao, N.; Wang, Y.C.; He, M.; Zhu, J.; Qiao, J. Effect of Minor Sc Addition on High Temperature Tensile Behavior of Al-7Zn-2Mg-2Cu-0.2Zr Alloy. Mater. Chem. Phys. 2022, 288, 126334. [Google Scholar] [CrossRef]
- Zhai, F.L.; Wang, L.P.; Gao, X.S.; Zhao, C.; Feng, Y.C.; Ma, T.; Fan, R. Effect of Samarium on the High Temperature Tensile Properties and Fracture Behaviors of Al-Zn-Mg-Cu-Zr Alloy. Mater. Res. 2021, 8, 016521. [Google Scholar] [CrossRef]
- Han, W.H.; Li, Y.; Li, P.; Su, G.P.; Zhang, C.Z.; Sun, C.F.; Chen, C.G.; Yang, F.; Guo, Z.M. Microstructure and Mechanical Properties at Elevated Temperature of Powder Metallurgy Al-Zn-Mg-Cu Alloy Subjected to Hot Extrusion. Metals 2022, 12, 259. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wu, G.H.; Zhang, L.; Guo, Y.J.; Wang, C.L.; Li, L.B.; Xiong, X.M. Microstructure Evolution and Mechanical Properties of a Cast and Heat-Treated Al-Li-Cu-Mg Alloy: Effect of Cooling Rate During Casting. Mater. Sci. Eng. A 2023, 880, 145366. [Google Scholar] [CrossRef]
- Zare, M.A.; Taghiabadi, R.; Ghoncheh, M.H. Effect of Cooling Rate on Microstructure and Mechanical Properties of AA5056 Al-Mg Alloy. Int. J. Met. 2022, 16, 1533–1543. [Google Scholar] [CrossRef]
- Yang, Q.B.; Shi, W.J.; Wang, M.; Jia, L.; Wang, W.B.; Zhang, H. Influence of Cooling Rate on the Microstructure and Mechanical Properties of Al-Cu-Li-Mg-Zn Alloy. J. Mater. Res. Technol. 2023, 25, 3151–3166. [Google Scholar] [CrossRef]
- Uzan, N.E.; Shneck, R.; Yeheskel, O.; Frage, N. High-Temperature Mechanical Properties of Alsi10mg Specimens Fabricated by Additive Manufacturing Using Selective Laser Melting Technologies (Am-Slm). Addit. Manuf. 2018, 24, 257–263. [Google Scholar] [CrossRef]
- Mattson, J.; Theisen, E.; Steen, P. Rapid Solidification Forming of Glassy and Crystalline Ribbons by Planar Flow Casting. Chem. Eng. Sci. 2018, 192, 1198–1208. [Google Scholar] [CrossRef]
- Tourret, D.; Reinhart, G.; Gandin, C.A.; Iles, G.N.; Dahlborg, U.; Calvo-Dahlborg, M.; Bao, C.M. Gas Atomization of Al-Ni Powders: Solidification Modeling and Neutron Diffraction Analysis. Acta Mater. 2011, 59, 6658–6669. [Google Scholar] [CrossRef]
- Liu, B.; Lei, Q.; Xie, L.Q.; Wang, M.P.; Li, Z. Microstructure and Mechanical Properties of High Product of Strength and Elongation Al-Zn-Mg-Cu-Zr Alloys Fabricated by Spray Deposition. Mater. Des. 2016, 96, 217–223. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, B.H.; Xiong, B.Q.; Zhang, Y.A.; Liu, H.W.; Zhang, R.H. An Investigation on the Microstructure and Mechanical Properties of Spray-Deposited Al-8.5Fe-1.1V-1.9Si Alloy. J. Mater. Process. Technol. 2007, 183, 386–389. [Google Scholar] [CrossRef]
Alloy Composition (wt%) | Ultimate Tensile Strength (MPa) | Elongation (%) | |||
---|---|---|---|---|---|
Zn | Mg | Cu | Zr | ||
11~12 | 2~3 | 0.8~1.2 | - | 808 | 5.29 |
10.78 | 2.45 | 1.7 | - | 811 | 6.8 |
8.15 | 1.97 | 2.46 | - | 731 | 14.8 |
11.38 | 11.38 | 2.45 | 1.1 | 878.6 | 5.60 |
11.3 | 11.3 | 2.65 | 1.06 | 823 | 5 |
6.52 | 2.53 | 2.39 | 0.12 | 745 | 10 |
Name | Sort | Coherent | Lattice Constant (nm) | Pattern |
---|---|---|---|---|
GP zone | GP(I) zone, GP(II) zone | Coherence | Globosity | |
η′ phase | Coherence, semi-coherence | Hexagonal aη′ = 0.496 cη′ = 1.403 | Circular | |
η phase | Incoherence | Hexagonal aη ≈ 0.5221 cη ≈ 0.8567 | Stick circular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Lin, X.; Zhang, Z.; Bai, M.; Wu, X. Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al-Zn-Mg-Cu Alloys. Metals 2024, 14, 451. https://doi.org/10.3390/met14040451
Cao L, Lin X, Zhang Z, Bai M, Wu X. Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al-Zn-Mg-Cu Alloys. Metals. 2024; 14(4):451. https://doi.org/10.3390/met14040451
Chicago/Turabian StyleCao, Lingfei, Xiaomin Lin, Zhenghao Zhang, Min Bai, and Xiaodong Wu. 2024. "Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al-Zn-Mg-Cu Alloys" Metals 14, no. 4: 451. https://doi.org/10.3390/met14040451
APA StyleCao, L., Lin, X., Zhang, Z., Bai, M., & Wu, X. (2024). Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al-Zn-Mg-Cu Alloys. Metals, 14(4), 451. https://doi.org/10.3390/met14040451