Characteristics of Oxide Films on Zr702 and Their Corrosion Performance in Boiling Fluorinated Nitric Acid
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Morphology and Composition of the Oxide Film
3.2. Microstructure of the Oxide Film
3.3. Corrosion Behaviour of Zr702
4. Discussion
5. Conclusions
- The thickness of the oxide films formed on Zr702 immersed in fluorinated nitric acid solution was between 42–48 nm, which is much thinner than that of the oxide layer (~98.85 nm thickness) in the F− free HNO3 solution. Therefore, an increase in F− ions concentration restricts the oxide film growth and increases the average rate of dissolution of the oxide layer.
- When the concentration of fluoride ions changes from 0 ppm to 200 ppm, the corrosion rate at the concentration of fluorine ions at 0 ppm and 10 ppm basically remains unchanged within five time periods, while the corrosion rate at 50 ppm to 200 ppm shows a downward trend with the increase of time. The most obvious change is at 48 h when the concentration of fluoride ions increases, the higher the corrosion rate.
- The oxide film was identified to be a nanocrystalline cluster in a fluorinated nitric acid solution. The oxide films comprised outermost HfO2 and HfF4 layers, sub-outer ZrO2 and ZrF4 layers, and an innermost Zr (F, O)3.6 layer. From the distribution of the oxide film, it can be seen that in the F−-containing boiling nitric acid solution, Hf in the alloy of Zr702 metal will migrate from the inside to the surface to form oxides and fluoride preferentially than Zr, which can play a protective role in Zr702. With the increase of fluorine ion concentration, it will penetrate the oxide film, indicating that fluorine ions have a dissolution effect on the Zr702 oxide film.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arash, F.; Marziyeh, N. Electrochemical Behavior Assessment of Zircaloy-4 in Nitric Acid Solutions by Electrochemical Impedance Spectroscopy and Mott-Schottky Analyses. Anal. Bioanal. Electrochem. 2017, 9, 25–27. [Google Scholar]
- Veronika, R.; Jan, M.; Petr, S.; Radek, N.; Aneta, K. Corrosion of zirconium alloys demonstrated by using impedance spectroscopy. J. Nucl. Mater. 2018, 510, 312–321. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Zhao, X.; Wu, J.; Zhao, B.; Zhao, H.; Wu, J.; Zhang, Y.; Liu, C. Zirconium based neutron absorption material with outstanding corrosion resistance and mechanical properties. J. Nucl. Mater. 2022, 567, 153763. [Google Scholar] [CrossRef]
- Mermoux, M.; Duriez, C.; Coindreau, O. High temperature Zircaloy-4 oxidation in water vapour-containing environments examined with Raman imaging and labelled oxygen. Corros. Sci. 2021, 184, 109351. [Google Scholar] [CrossRef]
- Fauvet, P. Corrosion issues in nuclear fuel reprocessing plants. In Nuclear Corrosion Science and Engineering; Woodhead Publishing: Sawston, UK, 2012; pp. 679–728. [Google Scholar] [CrossRef]
- Heakal, E.; Mogoda, A.; Mazhar, A.; Ghoneim, A. Effect of fluoride media on the stability of anodic ZrO2 films. Corrosion 1990, 46, 247–253. [Google Scholar] [CrossRef]
- Jayaraj, J.; Nanda Gopala Krishna, D.; Mallika, C.; Kamachi Mudali, U. Electrochemical Studies and XPS Analysis of the Surface of Zirconium-702 in Concentrated Nitric Acid with and Without Fluoride Ions. Trans. Indian Inst. Met. 2018, 71, 521–531. [Google Scholar] [CrossRef]
- El-Mahdy, G.; Mahmoud, S.; El-Dahan, H. Effect of halide ions on the formation and dissolution behaviour of zirconium oxide. Thin Solid Films 1996, 286, 289–294. [Google Scholar] [CrossRef]
- Goncalves, Z.; Miinzel, H. Dissolution kinetics of Zircaloy in HNO3/HF mixtures. J. Nucl. Mater. 1990, 170, 261–269. [Google Scholar] [CrossRef]
- Jayaraj, J.; Krishnaveni, P.; Krishna, D.; Mallika, C.; Kamachi, U. Corrosion investigations on zircaloy-4 and titanium dissolver materials for MOX fuel dissolution in concentrated nitric acid containing fluoride ions. J. Nucl. Mater. 2016, 473, 157–166. [Google Scholar] [CrossRef]
- Hlawka, F.; Sutter, E. Reactivity of the surface of zirconium during pickling in nitric-hydrofluoric acid. Mater. Corros. 1991, 42, 428–436. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Ge, R.; Zhang, F.; Shan, Q.; Huang, Y.; Su, R. Erosion corrosion of Ti and Zr in acidic metastannic acid synthesis. Mater. Res. Express 2021, 8, 046528. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Fu, H.; Zhang, H.; Zhu, Z.; Wang, A.; Li, H.; Zhang, L.; Zhang, H. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions. J. Mater. Sci. Technol. 2020, 46, 33–43. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Fu, H.; Zhang, L.; Zhu, Z.; Zhang, H.; Wang, A.; Li, H.; Zhang, H. Effect of pH and NaF addition on corrosion of Zr-based bulk metallic glass in Na2SO4-containing solution. Intermetallics 2021, 129, 107034. [Google Scholar] [CrossRef]
- Berry, W.E. Effect of Fluoride Ions on the Aqueous Corrosion of Zirconium Alloys. Symp. Rep. 1964, 149, 28–40. [Google Scholar] [CrossRef]
- Gwinner, B.; Badji-Bouyssou, H.; Benoit, M.; Brijou-Mokrani, N.; Fauvet, P.; Gruet, N.; Laghoutaris, P.; Miserque, F.; Robin, R.; Tabarant, M. Corrosion of Zirconium in the Context of the Spent Nuclear Fuel Reprocessing Plant. In Proceedings of the GLOBAL 2015-21st International Conference and Exhibition Nuclear Fuel Cycle for a Low-Carbon Future, Paris, France, 20–24 September 2015. Paper 5265. [Google Scholar]
- Gwinner, B.; Balbaud-Celerier, F.; Fauvet, P.; Gruet, N.; Laghoutaris, P.; Miserque, F.; Robin, R. A step towards a better understanding of corrosion of zirconium in nitric acid with additions of fluorine: Focus on the role of the presence of an initial oxide film. Corros. Sci. 2022, 201, 110284. [Google Scholar] [CrossRef]
- Jeyaraj, J.; Thinaharan, C.; Ningshen, S.; Mallika, C.; Kamachi, U. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics 2017, 89, 123–132. [Google Scholar] [CrossRef]
- ASTM Standard G31-72; Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM Standards: West Conshohocken, PA, USA, 2004.
- Maiti, H.; Gokhale, K.; Subbarao, E. Kinetics and burst phenomenon in ZrO2 transformation. J. Am. Ceram. Soc. 2010, 55, 317–322. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, S.; Xia, C.; Zou, X.; Liu, D.; Wang, Y.; Yang, T.; Li, Q. Thermal oxidation of novel Zr-Ti-Al-V alloy with high strength and toughness and its influence on the corrosion behavior. Surf. Coat. Technol. 2021, 423, 127576. [Google Scholar] [CrossRef]
- Uğur, M.; Kadir, C.; Ufuk, M.; Melih, B. Mechanical and electrochemical properties of PEO coatings on zirconium alloy. Surf. Eng. 2020, 36, 800–808. [Google Scholar] [CrossRef]
- Stoll, U.; Slavinskaya, N. Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects. Overview. J. Nucl. Sci. Technol. 2023, 60, 573–602. [Google Scholar] [CrossRef]
- Kautz, E.; Gwalani, B.; Yu, Z.; Varga, T.; Geelhood, K.; Devaraj, A.; Senor, D. Investigating zirconium alloy corrosion with advanced experimental techniques: A review. J. Nucl. Mater. 2023, 585, 154586. [Google Scholar] [CrossRef]
- Muhammad, M.; Kashif, M.; Waseem, H. Combinatorial development, and assessment of a Zr-based metallic glass for prospective biomedical applications. J. Non-Cryst. Solids 2019, 523, 119544. [Google Scholar] [CrossRef]
- Poonam, S.; Anil, D.; Sharma, S. Comparative studies on the corrosion behavior of some Zr based amorphous alloys having different compositions in nitric acid medium. J. Phys. Conf. Ser. 2020, 1455, 012030. [Google Scholar] [CrossRef]
- Wagner, A.; Kraut-Vass, A.; Gaarenstroom, S.; Powell, C. NIST X-ray Photoelectron Spectroscopy Database, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. [CrossRef]
- Chastain, J.; King, R.C., Jr. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Phys. Electron. Div. 1992, 40, 221. [Google Scholar]
- Morant, C.; Sanz, J.; Galan, L.; Soriano, L.; Rueda, F. An XPS study of the interaction of oxygen with zirconium. Surf. Sci. 1989, 218, 331–345. [Google Scholar] [CrossRef]
- Bosman, H.; Pijpers, A.; Jaspers, A. An X-ray Photoelectron Spectroscopy Study of the Acidity of SiO2–ZrO2 Mixed Oxides. J. Catal. 1996, 161, 551–559. [Google Scholar] [CrossRef]
- Sleigh, C.; Pijpers, A.; Jaspers, A.; Coussens, B.; Meier, R. On the determination of atomic charge via ESCA including application to organometallics. J. Electron Spectrosc. Relat. Phenom. 1996, 77, 41–57. [Google Scholar] [CrossRef]
Zr4+ (μg/mL) | F-Concentration in HNO3 (ppm) | |||||
---|---|---|---|---|---|---|
Time (h) | 0 | 10 | 50 | 100 | 200 | |
48 | 0.15 | 21.23 | 193 | 366.4 | 691.9 | |
96 | 0.23 | 34.14 | 237 | 375.9 | 780.4 | |
144 | 0.22 | 45.34 | 276 | 430.6 | 949.8 | |
192 | 0.49 | 52.16 | 284 | 415.1 | 927.9 | |
240 | 0.31 | 60.19 | 323.6 | 446.9 | 1046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Li, Y.; Zhao, Y.; Zeng, W.; Xu, J. Characteristics of Oxide Films on Zr702 and Their Corrosion Performance in Boiling Fluorinated Nitric Acid. Metals 2024, 14, 479. https://doi.org/10.3390/met14040479
Su H, Li Y, Zhao Y, Zeng W, Xu J. Characteristics of Oxide Films on Zr702 and Their Corrosion Performance in Boiling Fluorinated Nitric Acid. Metals. 2024; 14(4):479. https://doi.org/10.3390/met14040479
Chicago/Turabian StyleSu, Hangbiao, Yaning Li, Yongqing Zhao, Weidong Zeng, and Jianping Xu. 2024. "Characteristics of Oxide Films on Zr702 and Their Corrosion Performance in Boiling Fluorinated Nitric Acid" Metals 14, no. 4: 479. https://doi.org/10.3390/met14040479
APA StyleSu, H., Li, Y., Zhao, Y., Zeng, W., & Xu, J. (2024). Characteristics of Oxide Films on Zr702 and Their Corrosion Performance in Boiling Fluorinated Nitric Acid. Metals, 14(4), 479. https://doi.org/10.3390/met14040479