Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulation of Stamping Forming
2.2. Selection of Instability Criteria
2.3. Hot-Stamping-Forming Experiment
3. Results and Discussion
3.1. Mechanical Performance of the Studied 22MnB5 Steel Plate
3.2. Influence of Deformation Conditions on Simulation Results under Stamping Experiment
3.3. Establishment of Hot-Forming Limit Diagram for 22MnB5 Steel
3.4. Hot-Stamping Experiment of the 22MnB5 High-Strength Steel Plate
4. Conclusions
- In the numerical simulation of bulging experiments, the maximum punch force criterion was applicable to a plate width of 20~80 mm, and the maximum strain path transition criterion was applicable to 100~180 mm.
- The formability of 22MnB5 steel decreases with the increase in deformation speed and increases with the rise in initial deformation temperature of 22MnB5 steel, reaching the maximum when the initial temperature of 22MnB5 steel is 700 °C.
- The limit strain point is determined by the instability criterion, and the hot-forming limit diagram of the 22MnB5 HF steel plate at 700 °C and 25 mm/s is obtained by fitting. It is found that the axial strain and radial strains are linear when the radial strain is less than 0, and the parts where the radial strain is greater than 0 can be fitted by binomial. Through experimental verification, it is found that the simulation results obtained by DYNAFORM finite element simulation software are reliable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, L.; Liu, W.J.; Wang, B.; Li, H.P.; You, X.P.; Zhou, Q.; Liu, M.; Gao, S.R. Experimental investigation on partition controllable induction heating-hot stamping process of high-strength boron alloyed steel plates with designable temperature patterns. J. Mater. Res. Technol. 2020, 9, 13963–13976. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.L.; Li, X.D.; Yang, T.Y. Fracture behavior of the hot-stamped PHS2000 steel based on GISSMO failure model. Metals 2023, 13, 1360. [Google Scholar] [CrossRef]
- Liang, L.Z.; Hui, L.J.; Sheng, S.Y.; Ze, Y.C. automobile manufacturing. J. Mech. Sci. Technol. 2009, 23, 1924–1931. [Google Scholar] [CrossRef]
- Hu, Y.J.; Wang, Z.L.; Wang, Y.Q. Selection of distributed manufacturing environments based on genetic algorithm for automobile gears. Mater. Manuf. Process. 2013, 28, 1268–1275. [Google Scholar] [CrossRef]
- Quan, G.Z.; Zhan, Z.Y.; Zhang, L.; Wu, D.S.; Luo, G.C.; Xia, Y.F. A study on the multi-phase transformation kinetics of ultra-high strength steel and application in thermal-mechanical-phase coupling simulation of hot stamping process. Mat. Sci. Eng. A 2016, 673, 24–38. [Google Scholar] [CrossRef]
- Sun, H.; Yao, S.J.; Tang, Q.H.; Rong, R.L.; Chu, G.N.; Auer, P.; Domitner, J. Short-wave infrared heating of 22MnB5 steel with adjusted surface emissivity for press hardening of tailored-strength components. J. Manuf. Process. 2024, 120, 74–85. [Google Scholar] [CrossRef]
- Simonetto, E.; Ghiotti, A.; Bruschi, S. Numerical modelling of direct hot tube rotary draw bending of 22MnB5 high strength steel. CIRP J. Manuf. Sci. Technol. 2022, 37, 547–558. [Google Scholar] [CrossRef]
- Li, T.T.; Xie, X.L.; Xu, J.F.; Li, R.F.; Qi, K.; Zhang, X.Q.; Yue, H.Y.; Zhao, Y.; Qiao, L. Research on AZ31 Mg alloy/22MnB5 steel pinless friction stir spot welding process and interfacial temperature field simulation. J. Mater. Res. Technol. 2023, 26, 3710–3725. [Google Scholar] [CrossRef]
- Yao, S.J.; Feng, L.; Yang, D.L.; Han, D.X.; Liu, Y.; Li, Q.; Chao, B.J. A potential hot stamping process for microstructure optimization of 22MnB5 steels characterized by asymmetric pre-rolling and one-or two-step pre-heating. J. Mater. Process. Technol. 2018, 254, 100–107. [Google Scholar] [CrossRef]
- Chen, W.J.; Song, H.W.; Lazarescu, L.; Xu, Y.; Banabic, D. Formability analysis of hot-rolled dual-phase steel during the multistage stamping process of wheel disc. Int. J. Adv. Manuf. Technol. 2020, 110, 1563–1573. [Google Scholar] [CrossRef]
- Huang, D.; Kodur, V.; Wang, W.Y. Temperature-dependent properties of high-strength steel for evaluating the fire resistance of structures. Adv. Struct. Eng. 2023, 26, 2265–2281. [Google Scholar] [CrossRef]
- Hart-Rawug, T.; Buhl, J.; Horn, A.; Bambach, M.; Merklein, M. A unified model for isothermal and non-isothermal phase transformation in hot stamping of 22MnB5 steel. J. Mater. Process. Technol. 2023, 313, 117856. [Google Scholar] [CrossRef]
- Singh, A.; Bhattacharya, A.; Butcher, C. Experimental artefacts affecting characterization of the evolving interfacial heat transfer coefficient in hot stamping of Al-Si coated 22MnB5 steel. Appl. Thermal. Eng. 2024, 24, 121604. [Google Scholar] [CrossRef]
- Liu, H.P.; Lu, X.W.; Jin, X.J.; Dong, H.; Shi, J. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process. Scr. Mater. 2011, 64, 749–752. [Google Scholar] [CrossRef]
- Couto, C.P.; Revilla, R.I.; Politano, R. Influence of austenitisation temperatures during hot stamping on the local electrochemical behaviour of 22MnB5 steel coated with hot-dip Al-Si. Corros. Sci. 2021, 190, 109673. [Google Scholar] [CrossRef]
- Lkeda, Y.; Ni, H.C.; Chakraborty, A. Segregation-induced grain-boundary precipitation during early stages of liquid-metal em brittlement of an advanced high-strength steel. Acta Mater. 2023, 259, 1359–6454. [Google Scholar]
- Naderi, M.; Uthaisangsuk, V.; Prahl, U. A Numerical and experimental investigation into hot stamping of boron alloyed heat-treated steels. Steel Res. Int. 2009, 79, 77–84. [Google Scholar] [CrossRef]
- Dabuel, A.; Fabio, M. Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions. J. Mater. Res. Technol. 2019, 9, 629–635. [Google Scholar]
- Venturato, G.; Ghiotti, A.; Bruschi, S. Stress-state dependent formability modelling in hot stamping. Prod. Eng. 2020, 14, 105–114. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, P.; Xie, D.; Shi, H. Experimental study and a damage model approach to determine the effect of hot forming deformation on the service performance of 22MnB5 steel. J. Manuf. Process. 2019, 47, 10–21. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, X.; Liu, Y. Theoretical prediction of high strength steel 22MnB5 forming limit in high temperature based on M-K model. Procedia Eng. 2017, 207, 632–639. [Google Scholar] [CrossRef]
- Zhou, J. Research on Thermal Simulation Experiment and Damage Evolution Modeling and Simulation of Boron Steel Hot Stamping; Beijing University of Science and Technology: Beijing, China, 2015. [Google Scholar]
- Guo, J.; Zhan, M.; Wang, X. Ductile fracture criterions for hot forming process of Ti-6Al-2Zr-1Mo-1V alloy sheet. J. Cent. South Univ. 2017, 48, 2294–2300. [Google Scholar]
- Zhang, X.; Zeng, W.; Shu, Y.; Zhao, Y.; Yu, H.; Zhou, Y. Study on cracking criterion of Ti40 flame retardant alloy based on Zener Hollomon factor. Rare Met. Mater. Eng. 2008, 4, 604–608. [Google Scholar]
- Neumann, R.; Schuster, S.; Gibmeier, J. Two-scale simulation of the hot stamping process based on a Hashin–Shtrikman type mean field model. J. Mater. Process. Technol. 2019, 267, 124–140. [Google Scholar] [CrossRef]
Element | C | Mn | P | S | Si | Ti + Cr | B | Fe |
---|---|---|---|---|---|---|---|---|
Content (at. %) | 0.22 | 1.2 | 0.019 | 0.003 | 0.25 | 0.229 | 0.003 | Bal. |
Temperature (°C) | 600 | 700 | 800 | 900 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain rate (s−1) | 0.1 | 1 | 10 | 0.1 | 1 | 10 | 0.1 | 1 | 10 | 0.1 | 1 | 10 |
Tensile strength (MPa) | 250 | 284 | 310 | 158 | 177 | 192 | 127 | 143 | 148 | 98 | 109 | 121 |
Fracture strain | 0.228 | 0.243 | 0.232 | 0.271 | 0.283 | 0.256 | 0.299 | 0.316 | 0.301 | 0.301 | 0.313 | 0.311 |
Radial strain | −0.169 | −0.172 | −0.186 | −0.146 | −0.009 | −0.05 | 0.002 | 0.048 | 0.103 | 0.131 | 0.153 |
Axial strain | 0.441 | 0.46 | 0.456 | 0.422 | 0.337 | 0.347 | 0.311 | 0.332 | 0.349 | 0.366 | 0.387 |
Plate width (mm) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
Stamping displacement (mm) | 34.0 | 25.9 | 27.6 | 26.7 | 27.1 | 25.2 | 26.3 | 27.4 | 27.6 |
Maximum punch force (T) | 1.37 | 1.98 | 2.42 | 3.25 | 3.83 | 4.28 | 5.62 | 5.78 | 6.54 |
Plate width (mm) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
Stamping displacement (mm) | 30 | 23 | 25 | 25 | 25 | 23 | 24 | 25 | 25 |
Punch force of experiment (T) | 0.91 | 1.8 | 2.4 | 3.2 | 3.8 | 4.2 | 5.6 | 5.6 | 6.5 |
Punch force of simulation (T) | 0.88 | 1.5 | 2.6 | 3.0 | 3.75 | 4.0 | 5.8 | 5.5 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Yang, B.; Zhang, X.; Li, M.; Sun, S.; Wang, B.; Ma, Q. Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process. Metals 2024, 14, 561. https://doi.org/10.3390/met14050561
He W, Yang B, Zhang X, Li M, Sun S, Wang B, Ma Q. Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process. Metals. 2024; 14(5):561. https://doi.org/10.3390/met14050561
Chicago/Turabian StyleHe, Wenwu, Bin Yang, Xuezhong Zhang, Min Li, Shuli Sun, Bao Wang, and Qingxian Ma. 2024. "Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process" Metals 14, no. 5: 561. https://doi.org/10.3390/met14050561
APA StyleHe, W., Yang, B., Zhang, X., Li, M., Sun, S., Wang, B., & Ma, Q. (2024). Investigation into the Hot-Forming Limit for 22MnB5 Hot-Forming Steel under a Stamping Process. Metals, 14(5), 561. https://doi.org/10.3390/met14050561