Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function
Abstract
:1. Introduction
2. Calculation Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaoita, K.; Tsuji, K.; Katayama, Y.; Imai, M.; Chen, J.-Q.; Kikegawa, T.; Shimomura, O. The structure of liquid bismuth under pressure. J. Non-Cryst. Solids 1992, 150, 25–28. [Google Scholar] [CrossRef]
- McMahon, M.I.; Degtyareva, O.; Nelmes, R.J. Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Lett. 2000, 85, 4896–4899. [Google Scholar] [CrossRef] [PubMed]
- Duff, R.E.; Minshall, F.S. Investigation of a Shock-Induced Transition in Bismuth. Phys. Rev. 1957, 108, 1207–1212. [Google Scholar] [CrossRef]
- Aoki, K.; Fujiwara, S.; Kusakabe, M. Stability of the bcc structure of bismuth at high pressure. J. Phys. Soc. Jpn. 1982, 51, 3826–3830. [Google Scholar] [CrossRef]
- Degtyareva, O.; McMahon, M.I.; Nelmes, R.J. High-pressure structural studies of group-15 elements. High Press. Res. 2004, 24, 319–356. [Google Scholar] [CrossRef]
- Ono, S. High-pressure phase transition of bismuth. High Press. Res. 2018, 38, 414–421. [Google Scholar] [CrossRef]
- Husband, R.J.; O’Bannon, E.F.; Liermann, H.-P.; Lipp, M.J.; Méndez, A.S.J.; Konôpková, Z.; McBride, E.E.; Evans, W.J.; Jenei, Z. Compression-rate dependence of pressure-induced phase transitions in Bi. Sci. Rep. 2021, 11, 14859. [Google Scholar] [CrossRef] [PubMed]
- Storm, C.V.; McHardy, J.D.; Duff, M.J.; MacLeod, S.G.; O’Bannon, E.F., III; McMahon, M.I. The stress state in bismuth to 298 GPa and its use as a pressure transmitting medium and pressure marker at multi-megabar pressures. J. Appl. Phys. 2023, 133, 245904. [Google Scholar] [CrossRef]
- Campbell, D.J.; Sneed, D.T.; O’Bannon, E.F.; Söderlind, P.; Jenei, Z. Refined room-temperature equation of state of Bi up to 260 GPa. Phys. Rev. B 2023, 107, 224104. [Google Scholar] [CrossRef]
- Akahama, Y.; Kawamura, H.; Singh, A.K. Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa. J. Appl. Phys. 2002, 92, 5892–5897. [Google Scholar] [CrossRef]
- Liu, L.; Song, H.X.; Geng, H.Y.; Bi, Y.; Xu, J.-a.; Li, X.; Li, Y.; Liu, J. Compressive behaviors of bcc bismuth up to 55 GPa. Phys. Status. Solidi. 2013, 250, 1398–1403. [Google Scholar] [CrossRef]
- Katahara, K.W.; Manghnani, M.H.; Fisher, E.S. Pressure derivatives of the elastic moduli of niobium and tantalum. J. Appl. Phys. 1976, 47, 434–439. [Google Scholar] [CrossRef]
- Holzapfel, W.B.; Hartwig, M.; Sievers, W. Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. J. Phys. Chem. Ref. Data 2001, 30, 515–529. [Google Scholar] [CrossRef]
- Qi, X.; Cai, N.; Wang, S.; Li, B. Thermoelastic properties of tungsten at simultaneous high pressure and temperature. J. Appl. Phys. 2020, 128, 105105. [Google Scholar] [CrossRef]
- Jamieson, J.; Fritz, J.N.; Manghanani, M.H. Pressure measurement at high temperature in x-ray diffraction studies: Gold as a primary standard, in High-Pressure Research in Geophysics. Adv. Earth Planet. Sci. 1980, 12, 27. [Google Scholar]
- Holmes, N.C.; Moriarty, J.A.; Gathers, G.R.; Nellis, W.J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 1989, 66, 2962–2967. [Google Scholar] [CrossRef]
- Dewaele, A.; Datchi, F.; Loubeyre, P.; Mezouar, M. High pressure-high temperature equations of state of neon and diamond. Phys. Rev. B 2008, 77, 094106. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Rose, J.H.; Smith, J.R. Compressibility of solids. J. Geophys. Res. Solid Earth 1987, 92, 9319–9325. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Smith, J.R.; Rose, J.H. A universal equation of state for solids. J. Phys. C Solid State Phys. 1986, 19, L467. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. Solid Earth 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Murnaghan, F.D. Finite deformations of an elastic solid. Am. J. Math. 1937, 59, 235–260. [Google Scholar] [CrossRef]
- Holzapfel, W.B. Equations of state for solids under strong compression. High Press. Res. 1998, 16, 81–126. [Google Scholar] [CrossRef]
- Holzapfel, W.B. Physics of solids under strong compression. Rep. Prog. Phys. 1996, 59, 29. [Google Scholar] [CrossRef]
- Gaurav, S.; Sharma, B.S.; Sharma, S.B.; Upadhyaya, S.C. Analysis of equations of state for solids under high compressions. Physica B 2002, 322, 328–339. [Google Scholar] [CrossRef]
- Burakovsky, L.; Burakovsky, N.; Cawkwell, M.J.; Preston, D.L.; Errandonea, D.; Simak, S.I. Ab initio phase diagram of iridium. Phys. Rev. B 2016, 94, 094112. [Google Scholar] [CrossRef]
- Gutiérrez, G.; Menéndez-Proupin, E.; Singh, A.K. Elastic properties of the bcc structure of bismuth at high pressure. J. Appl. Phys. 2006, 99, 103504. [Google Scholar] [CrossRef]
- Ning, B.-Y.; Gong, L.-C.; Weng, T.-C.; Ning, X.-J. Efficient approaches to solutions of partition function for condensed matters. J. Phys. Condens. Matter 2021, 33, 115901. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Shi, L.-Q.; Wang, N.; Zhang, H.-F.; Peng, S.-M. Equation of state of Iridium: From insight of ensemble theory. J. Phys. Condens. Matter 2022, 34, 465702. [Google Scholar] [CrossRef]
- Gong, L.-C.; Ning, B.-Y.; Weng, T.-C.; Ning, X.-J. Comparison of Two Efficient Methods for Calculating Partition Functions. Entropy 2019, 21, 1050. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Ning, B.-Y.; Gong, L.-C.; Weng, T.-C.; Ning, X.-J. A New Model to Predict Optimum Conditions for Growth of 2D Materials on a Substrate. Nanomaterials 2019, 9, 978. [Google Scholar] [CrossRef]
- Ning, B.-Y.; Ning, X.-J. Pressure-induced structural phase transition of vanadium: A revisit from the perspective of ensemble theory. J. Phys. Condens. Matter 2022, 34, 425404. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.-Y. Pressure-induced structural phase transitions of zirconium: An ab initio study based on statistical ensemble theory. J. Phys. Condens. Matter 2022, 34, 505402. [Google Scholar] [CrossRef] [PubMed]
- Ning, B.-Y.; Zhang, L.-Y. An ab initio study of structural phase transitions of crystalline aluminium under ultrahigh pressures based on ensemble theory. Comput. Mater. Sci. 2023, 218, 111960. [Google Scholar] [CrossRef]
- Tian, Y.-Y.; Ning, B.-Y.; Zhang, H.-F.; Ning, X.-J. Equation of state for tungsten obtained by direct solving the partition function. J. Appl. Phys. 2024, 135, 015102. [Google Scholar] [CrossRef]
- Dierckx, P. An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J. Comput. Appl. Math. 1975, 1, 165–184. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Xiang, S.-K.; Yan, X.-Z.; Zheng, L.-R.; Zhang, Y.; Liu, S.-G.; Bi, Y. Phase transition of solid bismuth under high pressure. Chin. Phys. B 2016, 25, 108103. [Google Scholar] [CrossRef]
- Fan, X.; Xiang, S.; Cai, L. Temperature dependence of bismuth structures under high pressure. Chin. Phys. B 2022, 31, 056101. [Google Scholar] [CrossRef]
- Munoz, F.; Vergniory, M.G.; Rauch, T.; Henk, J.; Chulkov, E.V.; Mertig, I.; Botti, S.; Marques, M.A.L.; Romero, A.H. Topological Crystalline Insulator in a New Bi Semiconducting Phase. Sci. Rep. 2016, 6, 21790. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.R.Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Topological Insulating Phases in Two-Dimensional Bismuth-Containing Single Layers Preserved by Hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606. [Google Scholar] [CrossRef]
- Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Gupta, S.C. On equation of state, elastic, and lattice dynamic stability of bcc bismuth under high pressure: Ab-initio calculations. J. Appl. Phys. 2014, 115, 053702. [Google Scholar] [CrossRef]
- Xiang, S.; Xi, F.; Bi, Y.; Xu, J.a.; Geng, H.; Cai, L.; Jing, F.; Liu, J. Ab initio thermodynamics beyond the quasiharmonic approximation: W as a prototype. Phys. Rev. B 2010, 81, 014301. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Zhang, X. Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett. 2000, 84, 3220–3223. [Google Scholar] [CrossRef] [PubMed]
- Burakovsky, L.; Burakovsky, N.; Preston, D.; Simak, S. Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium. Crystals 2018, 8, 243. [Google Scholar] [CrossRef]
- Fratanduono, D.E.; Millot, M.; Braun, D.G.; Ali, S.J.; Fernandez-Pañella, A.; Seagle, C.T.; Davis, J.-P.; Brown, J.L.; Akahama, Y.; Kraus, R.G.; et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 2021, 372, 1063–1068. [Google Scholar] [CrossRef]
- Fratanduono, D.E.; Smith, R.F.; Ali, S.J.; Braun, D.G.; Fernandez-Pañella, A.; Zhang, S.; Kraus, R.G.; Coppari, F.; McNaney, J.M.; Marshall, M.C.; et al. Probing the solid phase of noble metal copper at terapascal conditions. Phys. Rev. Lett. 2020, 124, 015701. [Google Scholar] [CrossRef]
- Jin, K.; Wu, Q.; Geng, H.; Li, X.; Cai, L.; Zhou, X. Pressure-volume-temperature equations of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales. High Press. Res. 2011, 31, 560–580. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Litasov, K.D. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ. Geol. Geophys. 2013, 54, 181–199. [Google Scholar] [CrossRef]
- Gong, L.-C.; Ning, B.-Y.; Ming, C.; Weng, T.-C.; Ning, X.-J. How accurate for phonon models to predict the thermodynamics properties of crystals. J. Phys. Condens. Matter 2021, 33, 085901. [Google Scholar] [CrossRef]
P | V |
---|---|
7.7 | 1.0000 |
10 | 0.9728 |
20 | 0.8891 |
30 | 0.8311 |
40 | 0.7890 |
50 | 0.7545 |
60 | 0.7265 |
70 | 0.7026 |
80 | 0.6819 |
90 | 0.6637 |
100 | 0.6474 |
110 | 0.6328 |
120 | 0.6197 |
130 | 0.6077 |
140 | 0.5965 |
150 | 0.5862 |
160 | 0.5766 |
170 | 0.5677 |
180 | 0.5593 |
190 | 0.5515 |
200 | 0.5441 |
210 | 0.5370 |
220 | 0.5303 |
230 | 0.5240 |
240 | 0.5180 |
250 | 0.5122 |
260 | 0.5068 |
270 | 0.5015 |
280 | 0.4965 |
290 | 0.4916 |
300 | 0.4870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.-Y.; Ning, B.-Y.; Zhang, H.-F.; Ning, X.-J. Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals 2024, 14, 601. https://doi.org/10.3390/met14050601
Tian Y-Y, Ning B-Y, Zhang H-F, Ning X-J. Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals. 2024; 14(5):601. https://doi.org/10.3390/met14050601
Chicago/Turabian StyleTian, Yue-Yue, Bo-Yuan Ning, Hui-Fen Zhang, and Xi-Jing Ning. 2024. "Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function" Metals 14, no. 5: 601. https://doi.org/10.3390/met14050601
APA StyleTian, Y. -Y., Ning, B. -Y., Zhang, H. -F., & Ning, X. -J. (2024). Hydrostatic Equation of State of bcc Bi by Directly Solving the Partition Function. Metals, 14(5), 601. https://doi.org/10.3390/met14050601