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Abstract: Body-centered cubic bismuth (Bi) is considered to be an enticing pressure marker, and,
therefore, it is highly desirable to command its accurate equation of state (EOS). However, significant
discrepancies are noted among the previous experimental EOSs. In the present work, an EOS of up
to 300 GPa is theoretically obtained by solving the partition function via a direct integral approach
(DIA). The calculated results nearly reproduce the hydrostatic experimental measurements below
75 GPa, and the deviations from the measurements gradually become larger with increasing pressure.
Based on the ensemble theory of equilibrium state, the DIA works with high precision particularly in
high-pressure conditions, so the hydrostatic EOS presented in this work is expected to be a reliable
pressure standard.

Keywords: equation of state; bismuth; partition function; ensemble theory of equilibrium state; direct
integral approach; hydrostatic condition

1. Introduction

Metal bismuth (Bi), crystalizing in a rhombohedral structure at ambient conditions,
undergoes a series of pressure-induced transitions in the sequence of the rhombohedral
phase → monoclinic phase → body-centered tetragonal phase → body-centered cubic
(bcc) phase [1–7] at 2.55, 2.7, and 7.7 GPa, respectively. All these room-temperature tran-
sition points are clear and have been widely used for pressure calibration. Especially,
bcc Bi is enticing as an internal pressure standard because (i) it is stable over a wide
pressure range (7.7–299 GPa) [7–10]; (ii) it has the highest atomic number of any non-
radioactive element, bringing about strong X-ray diffraction signals; and (iii) its bulk
modulus (35.2–54.7 GPa [10,11]) is much smaller than that of most other pressure standards
(such as Ta 194 GPa [12], Au 167 GPa [13], and W 310 GPa [14]), giving rise to larger volume
changes under the same pressure. So, using bcc Bi for pressure calibration is expected to
improve the pressure measurements in high-pressure research. However, the high-pressure
(>50 GPa) experimental investigations on the equation of state (EOS) of bcc Bi are very
limited, and only four [8–11] experiments have been reported in the last two decades. What
is more, among these measured EOSs, significant discrepancies are noted, particularly in
the high-pressure range. We think two aspects should mainly be considered regarding this
disparity.

First, the evaluations of pressure in static research depend strongly on a secondary
pressure scale, and the determined values may be quite different based on the different
scales in a single experiment. For example, Akahama et al. [10] pointed out that, if the
Au pressure scale promoted by Jamieson et al. [15] were used to calibrate the pressure
in their experiment for the EOS of Bi, the determined pressures above 30 GPa would
be observably smaller than those obtained via the Pt gauge of Holmes et al. [16], and,
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with increasing compression, the difference consistently rises high, up to ~20 GPa around
150 GPa. Campbell et al. [9] conducted quasi-hydrostatic high-pressure investigations for
Bi and showed that the EOS over 100 GPa presents an apparent difference between the
results of two neon scales, and Dewaele et al. [17] found, while calibrating the pressure, that
the discrepancy reaches ~10 GPa around 250 GPa. Obviously, the accuracy of the pressure
values determined in static experiments relies intimately on the precision of the adopted
calibrants. In fact, the currently available pressure standards originated from fitting or
further extrapolating limited measurements with empirical equations, such as Vinet [18,19],
third-order Birch–Murnaghan [20,21], AP2 [22,23], and so on. As the empirical functions
are usually built on a limited physics basis and the evaluated pressures are always disparate
using different equations or even using the same equation [24,25], the predicted results may
be significantly diverse with different input data. So, most pressure scales at present are not
unified, and the discrepancies generally present more and more with increasing pressure.

To obtain quasi-hydrostatic pressures, it is typically required to load the samples
with a pressure-transmitting medium (PTM) in diamond anvil cell (DAC) experiments.
Whereas, Bi itself with a low yield/shear strength [26] is regarded as a good PTM, and,
in some of the previous static high-pressure studies for the EOS of Bi, no other PTM was
used, counting on the Bi itself to redistribute the anisotropic stress. It was revealed that,
with no additional PTM, the uniaxial stress component in the compressed sample Bi was
relatively small [8–11], but non-negligible deviatoric stresses were found in the concurrently
compressed pressure markers, which may arouse significant errors for the determination of
pressure. For example, a very recent experiment conducted by Storm et al. [8] without any
other PTM showed that a correction for the pressure (279 GPa) evaluated from the used Au
gauge due to a non-hydrostatic effect reached 39 GPa, meaning that a relative indeterminacy
of 13% at ~300 GPa was present in their reported Bi EOS. It should be pointed out that the
non-hydrostatic effect on different pressure scales is different, hinging on their inherent
incompressibility. For example, the pressure corrections due to the gradient stress of the
Pt calibrant used in the experiments in Ref. [10] and the Cu scale used in Ref. [8] were
significantly smaller than for the Au in Ref. [8]. So, the second factor accounting for the
inconsistency regarding the previous experimental EOSs of bcc Bi is the different degrees of
the non-hydrostatic effect on the pressure markers in terms of if there is an additional PTM
and what pressure scales were used in the experiments.

As mentioned above, the high-pressure experimental EOSs of bcc Bi are controversial
at present, and it is necessary to confront this issue in a theoretical way. In fact, the ensemble
theory offers a promising avenue for accurate EOSs of condensed matter as long as the
partition function (PF) or free energy (FE) is calculated precisely. It is known that exactly
solving the PF involving a 3N-fold configurational integral far exceeds the capability of
the current computer technologies, so the EOS of bcc Bi has never been calculated by
directly solving the PF at the level of the first principles calculating the interatomic energies.
Recently, a direct integral approach (DIA) to the PF with ultrahigh precision and efficiency
was established by Ning et al. [27] and has been successfully used to calculate the EOSs
of solid copper [27], iridium [28], argon [29], and 2-D materials [30], and to reproduce the
phase transitions of crystal vanadium [31], zirconium [32], and aluminum [33]. In particular,
a very recent work on the high-temperature and simultaneously high-pressure EOS of
tungsten [34] showed that, compared with the available static compression experiments,
all the deviations in the calculated results by the DIA were within or comparable to the
uncertainty of the experiments. In this work, a DIA is applied to calculate the PF of
crystal bcc Bi as well as the hydrostatic room-temperature EOS up to 300 GPa. The details
for the implementation of the DIA are elaborated on in Section 2. Careful comparisons
and a discussion of the calculated results with the available experiments are presented,
respectively, in Sections 3 and 4, and the final section is the conclusion.
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2. Calculation Method

For a crystal containing N atoms of atomic mass m confined within volume V at
temperature T, the atoms are regarded as N point particles with cartesian coordinate
qN = {q1, q2, · · · qN}, and the total energy, U

(
qN)

, as the function of qN can be computed
by quantum mechanics. With the knowledge of U

(
qN)

, the PF of the system reads

Z =
1

N!

(
2πm
βh2

) 3
2 N∫

dqNe−βU(qN) =
1

N!

(
2πm
βh2

) 3
2 N

Q, (1)

where h is the Planck constant and β = 1/kBT with kB the Boltzmann constant. If the
configurational integral Q =

∫
dqNe−βU(qN) is solved, the pressure (P),

P =
1
β

∂lnZ
∂V

, (2)

Helmholtz FE (F),

F = − 1
β

lnZ, (3)

and any other thermodynamic quantities can be gained.
For a crystal with all the N atoms placed in their lattice sites QN = {Q1, Q2, · · · , QN}

and with the total potential energy U0

(
QN

)
, we first introduce a transformation [27],

q′N = qN − QN , U′
(

q′N
)
= U

(
qN

)
− U0

(
QN

)
, (4)

where q′N represents the displacements of atoms away from their equilibrium positions.
Then, the Q is expressed as

Q = e−βU0

∫
dq′Ne−βU′(q′N). (5)

According to DIA [27], the above 3N-fold integral could be approximated as

Q = e−βU0∏N
i=1

(
LixLiyLiz

)
(6)

with the effective length

Lix =
∫

e−βU′(0···q′ix ···0)dq′ix,

Liy =
∫

e−βU′(0···q′iy ···0)dq′iy
(7)

and
Liz =

∫
e−βU′(0···q′iz ···0)dq′iz,

where q′ix (q′iy or q′iz) is the x (y or z) coordinate of the ith atom moving away off its ideal
lattice site along with the other two degrees of freedom of the atom and all the degrees of
freedom of the other atoms fixed.

For crystal bcc Bi, all the atoms are equivalent, and, therefore, the Q in Equation (6)
turns into

Q = e−βU0
(
LxLyLz

)N . (8)

Clearly, if orientations [100], [010], and [001] are selected as the three axes of a Cartesian
system, Lx, Ly, and Lz are equal, and the Q could be calculated by

Q = e−βU0(Lx)
3N . (9)
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To implement the calculations, a 3 × 3 × 3 supercell containing 54 atoms arranged
in a bcc structure was constructed (Figure 1a). First, the system was fully relaxed to make
the stresses on all the atoms isotropic, and the optimized lattice constant is a0 (Figure 1a)
and the total energy is U0. Then, an arbitrary atom (in the red circle) was moved away
along [100] direction step by step with an interval of 0.02 Å. At each step, the total energy
of the system U(x) was calculated with the lattice and all the atoms frozen. The com-
pleted U′(x′) = U(x)− U0 (Figure 1b) was smoothed by the cubic spline interpolation
algorithm [35] to compute Lx via Equation (7) with the integral step of 10−5 Å. Finally,
the corresponding PF was obtained based on Equations (1) and (9). Changing the volume
of the supercell by enlarging or shrinking the lattice constant a0 and repeating the above
process without optimizing the supercell, a series of U0 and U′(x′) as a function of the
volume can be obtained (Figure 1b). Accordingly, room-temperature PF vs. V, and, further,
the corresponding P–V relationship, were achieved by Equation (2).
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for describing the electron–ion interactions, and the generalized gradient approximation 
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the exchange−correlation functional of the electrons since PBE [40] has been frequently 
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Figure 1. (color online) A 3 × 3 × 3 supercell of bcc Bi with optimized lattice constant a0, in which an
arbitrary atom in the red circle is moved along the [100] direction (red arrow) step by step until its
final position labeled in the green circle to obtain U′(x′) (a); dependence of U′(x′) on the distance of
the moved atom away from its equilibrium position x′ under a series of volumes with lattice constant
ac changed from 0.76 a0 to 0.98 a0 (b).

All the above calculations were completed by density functional theory (DFT) and
performed in the Vienna Ab initio Simulation Package (VASP) [36,37]. The projector aug-
mented wave (PAW) pseudopotential [38,39] with 6s26p3 as the valence states was adopted
for describing the electron–ion interactions, and the generalized gradient approximation
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(GGA) parametrized by Perdew–Burke–Ernzerhof (PBE) [40] was employed to consider
the exchange-correlation functional of the electrons since PBE [40] has been frequently
used in Bi-based structures and phases [41–44]. In the first step of optimizing the structure,
the forces that acted on every atom were less than 0.02 eV/Å when the relaxation was
converged. For the calculations of the total energies, electron self-consistent tolerance was
2 × 10−6 eV, which is fine enough regarding the integral in Equation (7). A Γ-centered
11 × 11 × 11 uniform k-mesh was set to sample the Brillouin zone by the Monkhorst–Pack
scheme, and the tetrahedron method with Blöchl corrections was adopted to determine
the electron orbital partial occupancy with the plane-wave cut-off energy of 350 eV. Con-
vergence tests of all these parameters were performed for the structure with the smallest
volume (ac = 0.76 a0) taking the fluctuation of the total energy less than 10−3 eV/atom. Un-
questionably, the precision of the total energy calculations for the larger volume structures
would not degrade under the same parameters.

3. Results

The calculated data of the isothermal EOS of bcc Bi at 300 K are listed in Table 1. The
P–V curve as well as four sets of experimental measurements [8–11] and the theoretical re-
sult (up to 220 GPa) by Mukherjee et al. [45] under the Debye model (DM) are displayed in
Figure 2. It is noted that the theoretically calculated volumes at given pressures are consis-
tently larger than the experimental measurements (Figure 2a). Taking the volume at 7.7 GPa
as an example, the values calculated by the DIA and DM are 28.58 and 27.86 Å3/atom,
respectively, and the experimentally measured values are 27.44–27.63 Å3/atom [8–10]. To
avoid this system offset and make specific comparisons between the theoretical calculations
and experimental results, relative volume vs. pressure was usually used in previous stud-
ies [46–48] and is also adopted in the present work, which should be feasible considering
that the curvature of the P–V curve calculated by the DIA is very similar to that of the
experimental dataset. Since bcc Bi was recognized to emerge at 7.7 GPa [7,8,11,45], the
relative volume V/V7.7 with V7.7 the atomic volume at 7.7 GPa is used to express the EOS
(Figure 2b), and all the discussions in this work start from 7.7 GPa. Under the same value
of V/V7.7, the deviations in the calculated pressure from the DIA (PDIA) or DM (PDM) with
the experimental measurements (PExp) are exhibited in Figure 3.

Table 1. Relative volume (V/V7.7) as a function of pressure (in GPa). V7.7 is the calculated atomic
volume (28.58 Å3/atom) of bcc Bi under 7.7 GPa at 300 K.

P V

7.7 1.0000
10 0.9728
20 0.8891
30 0.8311
40 0.7890
50 0.7545
60 0.7265
70 0.7026
80 0.6819
90 0.6637

100 0.6474
110 0.6328
120 0.6197
130 0.6077
140 0.5965
150 0.5862
160 0.5766
170 0.5677
180 0.5593
190 0.5515
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Table 1. Cont.

P V

200 0.5441
210 0.5370
220 0.5303
230 0.5240
240 0.5180
250 0.5122
260 0.5068
270 0.5015
280 0.4965
290 0.4916
300 0.4870
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Figure 2. (color online) Absolute volume (V) (a) and relative volume (V/V7.7) (b) vs. pressure of bcc Bi
with V7.7 the volume under 7.7 GPa at 300 K. The red solid and black dashed lines are the calculated
curves by DIA and the Debye model (adapted from Ref. [45]), respectively. The measurements in
two experimental runs performed by Akahama et al. (adapted from [10]) are respectively represented
by the green dots (run 1) and triangles (run 2). Campbell et al. (adapted from Ref. [9]) provided
three sets of compressed data denoted by the purple squares (run A), circles (run B), and triangles
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(run C). The orange solid and open diamonds represent the two sets of experimental measurements
conducted in a conventional and toroidal DACs (tDAC) by Storm et al. (adapted from Ref. [8]). Liu
et al. (adapted from Ref. [11]) investigated the EOS of Bi using He, Ar, and silicone oil (SO) as the
PTM, and the corresponding measurements are shown by the blue solid stars (He), pentagons (Ar),
and open stars (SO), respectively, which are not exhibited in (a) because absolute volumes of Bi were
not presented in their work. Since bcc Bi was recognized to emerge at 7.7 GPa (marked by the vertical
dash dotted line in (a,b), all the discussions in the context start from 7.7 GPa.
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Figure 3. Under the same value of V/V7.7, differences between the calculated pressure by DIA (PDIA)
or the Debye model (PDM) (adapted from Ref. [45]) with the in situ experimental measurements (PExp)
adapted from Refs. [8–11] are displayed as the red or black symbols in (a–c,e), respectively. After the
pressures in Ref. [10] are re-evaluated by the latest Pt scale proposed by Fratanduono et al. (adapted
from Ref. [49]), the deviations between PDIA or PDM with the re-calibrated pressures are respectively
displayed by the brown or blue symbols in (a). If the X-ray diffraction peaks of only the (111) lattice
plane of the used Cu and Au pressure markers are selected to determine the pressures (labeled by
PExp (111)) in Ref. [8], the deviations in PDIA or PDM with PExp (111) from Ref. [8] are presented in (d).
For the pressures in the first two experimental runs (run A and run B) and the third one (run C) of
Ref. [9], recalibrating was performed with the latest Cu pressure gauge of Fratanduono et al. (adapted
from Ref. [50]) and the neon EOS of Dewaele et al. (adapted from Ref. [17]), respectively, and the
deviations in PDIA or PDM with the re-estimated pressures are represented by the corresponding
orange and green symbols in (f).
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Akahama et al. [10] carried out two sets of experiments in conventional DACs and
measured the unit cell volumes of Bi up to 145 and 222 GPa, respectively. Compared
with the PExp, the PDIA manifests consistently smaller in the whole pressure range, and
the difference, PExp − PDIA, increases gradually with increasing pressure up to 23.8 GPa
(red symbols in Figure 3a) at the highest compression, corresponding to a relative error
((PExp − PDIA)/PExp) of ~11%. On the other hand, the PDM presents much closer to the PExp
in the high-pressure scope (>70 GPa) (black symbols in Figure 3a). In fact, the Pt pressure
scale of Holmes et al. [16] used in this experiment has been revealed to overestimate
pressures [51]. As the authors of Ref. [10] pointed out, if the Au calibration of Jamieson
et al. [15] were adopted to evaluate the pressures, the values would be lower than those
estimated from Holmes’ Pt, and the highest pressure in their first experimental run would
be 128.9 GPa (instead of 145 GPa), which is less than the PDIA by only ~3 GPa while
smaller than the PDM by ~13 GPa. Considering that systematic errors arising from the
selected pressure scale may exist in the Bi EOS of Akahama et al., we re-calibrate the
pressures in Ref. [10] with the latest Pt standard established by Fratanduono et al. [49]. As
shown by the brown symbols in Figure 3a, the re-calibrated pressures are indeed smaller
than those evaluated from Holmes’ Pt, and the largest difference between the PDIA and
the re-determined pressure reduces to 19.5 GPa, corresponding to a relative error of 9%.
Comparatively, the average difference between the PDM and the re-estimated pressure is
much smaller, with an average relative deviation (|PExp − PDM|/PExp) of only 2.7% (blue
symbols in Figure 3a).

Liu et al. [11] inspected the influence of different PTMs on the EOS of Bi using a DAC
and found that the measured results up to 55 GPa were consistent with each other when He,
Ar, and silicone oil (SO) PTM were used. As shown in Figure 3b, the three sets of extremely
self-consistent experimental data under different PTMs are nearly reproduced by the DIA,
and the differences between the PDIA and PExp fluctuate around zero in the experimental
condition, with an average |PExp − PDIA| of only 0.48 GPa, which is entirely within the
uncertainty of the PExp arising from the used ruby pressure scale in the experiments. On
the other hand, the PDM deviates from the PExp more and more with increasing pressure,
and the relative error (|PExp − PDM|/PExp) reaches ~9.3% at the highest compression.

Storm et al. [8] conducted diffraction studies of Bi up to 298 GPa using both conven-
tional and toroidal DACs (tDAC) to investigate the EOS without an additional PTM. As the
red squares in Figure 3c showed, the difference between the PDIA and the PExp (0–224 GPa)
completed in the conventional DAC increases with increasing pressure, and the largest
relative error reaches about 7%. Meanwhile, the difference between the PDIA and the PExp
(red stars in Figure 3c) at a higher compression range (160–280 GPa) performed in a tDAC
decreases with increasing pressure, leading to a systematic error of larger than 10 GPa
(in the green dashed circle) around 200 GPa. This uncertainty regarding the pressure is
mainly a consequence of the markedly different degrees of non-hydrostatic effects on the
Cu [50] and Au [49] pressure scales used in their respective DAC and tDAC experimental
runs since, if only the X-ray diffraction peaks of the (111) lattice plane, least affected by
uniaxial stress, of the Cu and Au were selected to determine the pressures, the mentioned
systematic errors would disappear as indicated in Figure 3d. Comparatively, the calculated
results by the DM agree well with the DAC measurements of Ref. [8] (black symbols in
Figure 3c,d).

Almost at the same time as Storm et al. [8], Campbell et al. [9] reported three datasets
on the compression of Bi in a DAC in a neon PTM, up to a maximum pressure of about
260 GPa. As shown by the red symbols in Figure 3e, the PDIA agrees very well with the
PExp below 75 GPa, over which the PDIA deviates from the PExp gradually up to 5.8 GPa.
Meanwhile, the DM manifests worse than the DIA, as indicated by the black symbols
in Figure 3e. It should be pointed out that, in the first two experimental runs (run A
and run B) of Ref. [9], the used Cu pressure scale [52] by Dewaele et al. was employed
essentially to only 153 GPa, so the PExp values over 153 GPa in the run B measurements
(16.8–184 GPa) are extrapolated results. Moreover, this Cu calibration determined by a ruby
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scale [52] was indicated to underestimate the pressures [53,54]. To inspect these queries,
we re-calibrate the pressures of experimental run A and run B of Ref. [9] with the latest
Cu calibration proposed by Fratanduono et al. [50], which is also used as the pressure
scale in the DAC measurements of Storm et al. [8]. As shown in Figure 3e,f, the pressures
below 100 GPa estimated from the two different Cu pressure standards are nearly the same,
while, above ~100 GPa, the recalibrated pressures are indeed larger than estimated by
the scale of Dewaele et al. [52], and the maximum re-estimated pressure in experimental
run B is 190.4 GPa (instead of 184 GPa). The pressures in run C experiment of Ref. [9]
were determined by a neon EOS established by the authors based on the compression data
measured in their run B experiment, in which neon and Cu were concurrently compressed,
and the corresponding pressures were calibrated by the Cu EOS of Dewaele et al. [52].
So, the PExp over 153 GPa in the run C measurements (93.8–258.7 GPa) of Ref. [9] also
included extended results that are actually unreliable. As the authors of Ref. [9] noted, if
the pressures in their run C measurements were calibrated by the neon EOS promoted
by Dewaele et al. [17], the evaluated pressures would be higher. As shown by the orange
triangles in Figure 3f, since the neon EOS of Ref. [17] was proposed to 209 GPa, the
recalibration with this neon scale for the pressures in the run C experiment of Ref. [9] is just
209 GPa. The difference between the PDIA and the re-calibrated pressures increases with
increasing pressure gradually up to 11.8 GPa, corresponding to a relative error ((PExp −
PDIA)/PExp) of 5.8%, which is two times larger than that displayed in Figure 3e. Distinctly,
the accuracy of the measured EOS directly relies on the precision of the used pressure scale.
Comparatively, the PDM is much closer to the re-calibrated pressures in the pressure range
of over 100 GPa, with the largest deviation of only ~6 GPa.

4. Discussion

As shown by the orange squares and stars in Figure 3f and the red squares in Figure 3d,
under the same Cu pressure standard of Fratanduono et al. [50], the difference between
the PDIA and the PExp of Ref. [9] is smaller than that between the PDIA and the PExp of
Ref. [8] by only 2~3 GPa in a large pressure range (<200 GPa), revealing that the apparent
discrepancy between the originally reported EOS of bcc Bi by Storm et al. [8] and Campbell
et al. [9] is mainly caused by the system errors inherent in the different Cu calibrations
promoted by Dewaele et al. [52] and Fratanduono et al. [50]. What is worth mentioning is
that, in the low-pressure range (<75 GPa), the PDIA nearly reproduces the result of Ref. [9],
while it deviates from the measurement of Ref. [8] gradually with increasing pressure. Since
a neon PTM was included in the experiment of Ref. [9] and not in Ref. [8], the hydrostatic
condition in the former system should be better. This confirms the reliability of the DIA.

After re-calibrating the pressures in Ref. [10] with the latest Pt pressure scale proposed
by Fratanduono et al. [49], the difference between the PDIA and the re-evaluated pressures
(brown symbols in Figure 3a) is nearly the same as that between the PDIA and PExp of
Ref. [8] (red squares in Figure 3d). So, if the latest Cu [50] and Pt [49] pressure scales
both promoted by Fratanduono et al. are self-consistent, it can be concluded that the
experimental EOSs of bcc Bi up to 200 GPa are nearly converged so far.

Whereas, as shown by the brown symbols in Figure 3a, red squares in Figure 3d,
and orange symbols in Figure 3f, the calculated results by the DIA still display gradually
increasing deviations from these experimental data, and the relative difference reaches
about 7% at 200 GPa. It should be pointed out that both the Cu [50] and Pt [49] pressure
scales by Fratanduono et al. were established via reducing the ramp-compressed stress-
density data to the room-temperature isothermal data, so the accuracy of the Cu [50] and
Pt [49] EOSs strongly depends on the reduction method. For the thermodynamic models
used in Refs. [49,50], on the one hand, the thermal energies caused by the plastic work
heating in the ramp compression were determined from the Debye integral, which is
strongly related to the selection of the expression of the Grüneisen parameter. On the other
hand, the Grüneisen parameters for the Cu [50] and Pt [49] were treated as simply volume-
dependent, but they are actually both volume- and temperature-dependent. As a result,



Metals 2024, 14, 601 10 of 13

these approximations may cause large deviations in the reduced isotherms of the Cu [50]
and Pt [49] EOSs, particularly at high pressures. In fact, aside from the Debye integral and
Grüneisen parameter, several other approximations were also used in Refs. [49,50]. As a
reference, the uncertainty for the EOSs of Cu [50] and Pt [49] produced in the reduction
process increases with increasing pressure and reaches about ±6 GPa at 200 GPa.

It is worth mentioning that a large uniaxial stress component was observed in the
pressure marker Au used in the tDAC experiments of Ref. [8], so the corresponding
measured pressures (red stars in Figure 3c,d) are seriously non-hydrostatic, which should
be very different from the ones under hydrostatic conditions. As the authors of Ref. [8]
estimated, the corrections for the pressures arising from the deviatoric stress on the Au
pressure marker were as large as 39 GPa at the highest compression, while the largest
deviatoric stress on the Cu was less than 2 GPa, so we think that the tDAC measurements
of Ref. [8] could be optimized further using Cu as the pressure marker. As discussed in
the last paragraph of Section 3, the pressure measurements over 153 GPa in Ref. [9] are
extended results (Figure 3e), which are actually unreliable. So, the experimental EOS of bcc
Bi over 200 GPa needs to be re-inspected in the future.

It should be pointed out that the background of the DM is the harmonic approximation,
which works only at low temperatures. Furthermore, a previous theoretical study [55]
showed that the precision of the harmonic approximation would become lower and lower
with increasing atomic volume when the value is larger than 20 Å3/atom. For the EOS of Bi
at 300 K within 0~100 GPa, the harmonic approximation might not be a good approximation
because the DM temperature is smaller than 300 K [45], and, as presented in Ref. [45], the
atomic volume of Bi is larger than 20 Å3/atom below 69 GPa. This may account for the
worse agreement of the calculated results by the DM with the experimental measurements
in the low-pressure range.

As indicated by Figure 3, our calculated results agree well with all the experimental
measurements at low pressures, especially with Refs. [9,11], while showing increasing
deviations in the high-pressure conditions. In addition to the discussions in the foregoing
paragraphs, other possible causes for the differences between the calculated results and
the experiments at high pressures should also be evaluated. As a matter of fact, the
accuracy of the EOS calculated in the present work depends not only on the precision of
the DIA but also on the calculated total energies (U

(
qN)

) involved in the PF (Equation (1)).
As for the precision of the DIA, it has been rigorously confirmed by the corresponding
molecular dynamics simulations under the same interaction potentials as very accurate,
with uncertainties of less than 1% for the pressure calculations in terms of the common
condensed matter types [27]. What is more, the precision of the DIA indeed increases with
decreasing atomic volume [27]. The accuracy of the total energies calculated in DFT mainly
relies on the adopted pseudopotential and the exchange-correlation functional. Although
the pseudopotential and GGA-PBE functional are commonly used in DFT calculations, we
are unsure as to their validity at very high pressures up to 300 GPa. So, if the total energies
under very high compressions calculated by DFT are accurate, the bcc Bi EOS provided in
the present work would be reliable.

5. Conclusions

By directly solving the PF, we obtained the room-temperature isothermal EOS of bcc Bi.
Compared with the DACs experiments, including the PTM, the deviations in the calculated
results could be negligible below 75 GPa, while they gradually become larger at higher
pressures and reach 12 GPa at 200 GPa, which may be caused by the inaccuracy of the
pressure standard used in high-pressure conditions. Compared with the experiments with
no PTM, the calculated pressures gradually depart from the measurements up to 16 GPa at
200 GPa, revealing the fact that the non-hydrostatic experiments cannot be described well
by the theory of equilibrium statistics. In conclusion, the EOS provided in the present work
is expected to be a reasonable standard for future static pressure measurements.
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