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Abstract: Artificial bone porous titanium materials are widely used in orthopedic implants. However,
the traditional constitutive model is often limited by the complexity and accuracy of the model, and
it is difficult to accurately and efficiently describe the constitutive relationship of porous titanium
materials. In this study, structured data were established based on experimental data from published
papers, and goodness of fit (R2), mean absolute error (MAE) and mean absolute percentage error
(MAPE) were used to evaluate the model. The prediction effect of random forest (RF), multi-layer
perceptron (MLPR) and support vector machine (SVR) on the constitutive relationship of porous
titanium materials was discussed. Through comprehensive comparison, it can be seen that the RF
model with max_depth of 24 and n_estimators of 160 has the best performance in prediction, and
the average absolute percentage error is less than 4.4%, which means it can accurately predict the
temperature sensitivity and strain rate sensitivity of porous titanium materials. And its predictive
ability is better than that of the traditional constitutive model, which provides a new idea and method
for the constitutive modeling of porous titanium materials.

Keywords: porous titanium; machine learning; constitutive model; model tuning

1. Introduction

In today’s engineering field, the research and application of porous materials have
been paid more and more attention. In particular, as an important functional material,
porous titanium has excellent mechanical properties and biocompatibility, so it is widely
used in orthopedic implants [1–3]. The research on the mechanical properties of porous
titanium materials is the basis for further research and application of porous titanium.
At present, the constitutive model of porous titanium materials is mainly based on the
traditional theoretical model [4,5].

In recent years, with the rapid development of machine learning, it has been widely
used in various fields, such as Reka using machine learning with machine vision to identify
the degree of fruit decay [6], Zheng et al. using machine learning to optimize the installation
position of hydraulic cylinders on medical robots [7] and so on. For material prediction,
machine learning is also widely used in this field because of its characteristics of learning
the laws contained in a wide range of data sets [8–11]. At present, scholars at home and
abroad have launched a certain exploration in this field. In 2023, Lei et al. [12] established a
fatigue test data set containing Hastelloy material characteristics, and then built a machine
learning framework for fatigue life prediction based on the data set. After comparison,
it was found that the prediction effect of the model built based on machine learning
was greatly improved compared with traditional prediction methods. Some scholars
have tested the prediction effect of common machine learning algorithms such as SVM,
RF, AdaBoost and DNN on material prediction and found the most suitable machine
learning algorithm corresponding to material properties and the optimal parameters of
each algorithm through comprehensive comparison [13–17]. For hyperelastic porous
materials, Liu Zhentao et al. [18] built a constitutive model based on artificial neural
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networks to predict their mechanical behavior. Meanwhile, some scholars have improved
the algorithm model for different cases. For example, Zhao [19] and Ismail [20] used the
genetic algorithm and particle swarm optimization algorithm, respectively, to optimize
the neural network and predict the creep fatigue life of metal oxides and the wear rate of
nanocomposites. In 2021, Guo et al. [21] combined convolutional neural networks and an
improved long short-term memory neural network to propose a deep learning model that
can quickly identify constitutive model parameters and has good denoising performance.
Some scholars [22,23] combined intelligent optimization algorithms such as Gray Wolf
optimizer and the particle swarm optimization algorithm with support vector machine and
XGBoost algorithms to form a hybrid model, and obtained a better model by comparing
the performance differences between different hybrid models.

To sum up, machine learning has been used to predict the properties of materials.
However, the traditional constitutive model is often based on phenomenology or physics,
which is limited by its own explicit mathematical description ability, and it is very difficult
to find a constitutive model that can accurately describe the complex mechanical behavior
of materials under the combined action of multiple effects [24]. Therefore, when describing
some materials with complex properties, it is necessary to optimize and modify the classical
constitutive model based on the current material properties, such as introducing dislocation
dynamics, grain evolution and crystal plasticity theories [25]. In addition, the prediction
range of the traditional constitutive model is limited, and it does not have enough pre-
dictive properties to describe the properties of materials under certain conditions of high
temperature or high strain rate [4,26]. In contrast, the data set of the constitutive model
based on machine learning can be continuously expanded, and the training and verification
time of the new model is shorter [27]; so, the flexibility and prediction range of the model
are more advantageous than those of the traditional constitutive model. However, the
construction of a constitutive model using machine learning relies on a large amount of
data to capture the nonlinear, complex and multivariate behavior of materials; so, the
application of machine learning in this construction model relies heavily on the training
database [26,28]. Moreover, the machine learning algorithm has difficulties in parameter
adjustment and convergence, and poor algorithm parameter adjustment will lead to prob-
lems such as model convergence failure and overfitting. Although machine learning still
has some problems in the field of material prediction, it has great prospects for develop-
ment. At present, the research on porous materials, especially porous titanium materials, is
still limited, and the adaptability and prediction accuracy of different models for porous
titanium materials have not been systematically studied.

In this study, a structured data set containing four characteristic parameters was estab-
lished through missing value processing, outlier processing and standardization processing,
and the prediction effect of RF, MLPR and SVR algorithms on the constitutive relationship
of porous titanium materials was discussed. Through comprehensive comparison, the RF
model was found to be the best. Then, the RF model was compared with the traditional
constitutive model, and the prediction accuracy of the RF model was found to be higher.
The purpose of this study was to provide new ideas and methods for the establishment of
the constitutive model of porous titanium materials, promote the development of porous
materials, and promote the research of related fields to make new breakthroughs and
more progress.

2. Materials and Methods
2.1. Model Principle

Three algorithms, random forest, multi-layer perceptron and support vector machine,
are used in this study. The random forest model is built by integrating multiple decision
trees, which has good robustness and prediction accuracy, but it is easy to overfit the noisy
data. Multi-layer perceptrons capture complex relationships in data through nonlinear
changes in activation functions in hidden layers. They can learn complex nonlinear rela-
tionships and perform well on large-scale data sets. However, they require a lot of data and
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computational resources to train the model, and the model structure is complex and difficult
to interpret. SVM uses the kernel function to capture complex relationships in data. It per-
forms well in high-dimensional space and is suitable for high-dimensional data. However,
it has high computational complexity for large-scale data sets and high-dimensional data.

2.1.1. Random Forest Regression (RF)

The random forest algorithm is a supervised learning algorithm. Its main idea is to
build a forest composed of decision trees in a random way, and the samples are classified
by Information Gain, Gain Ratio and Gini Index at the nodes of each tree. The random
forest algorithm achieves high prediction accuracy through random selection of samples,
features and integrated prediction.

The implementation process of the random forest algorithm is as follows:

1. N′ (N > N′ > 2N/3) samples are selected each time through N random sampling for
the full set D of samples with a capacity of N, so as to form n sample training sets.
The samples that are not drawn are divided into test sets.

2. n weak learners are generated based on n sample training sets, but only S′ (S′ << S)
are randomly selected from S feature attributes of the sample as feature variables.

3. Therefore, the test set tests n weak learners and obtains n predicted values. After
averaging them, the final predicted value can be obtained.

2.1.2. Multi-Layer Perceptron Regression (MLPR)

The multi-layer perceptron algorithm is a supervised learning algorithm. Its main
idea is to build an algorithm model by simulating the connection mechanism of the human
brain neural network. The multi-layer perceptron algorithm consists of three layers: input
layer, hidden layer and output layer. The input layer has the same number of nodes as
the feature variable and does not include the activation function. The output layer has the
same number of nodes as the output variable; each layer of the activation function in the
hidden layer is nonlinearly transformed to capture complex relationships in the input data.

The implementation process of the multi-layer perceptron algorithm is as follows:

1. The weight parameters and threshold parameters of each layer are initialized. The
data are passed through the input layer to the first hidden layer. The weighted input
is calculated in the hidden layer, the activation function is applied to pass the result to
the next layer, and then propagated forward in turn until the result is finally obtained
in the output layer.

2. According to the gradient descent method, the connection weight parameters and
threshold parameters between neurons are updated to minimize the total loss function.

3. Steps (1) and (2) are repeated until a preset stop condition such as network conver-
gence or the maximum number of iterations is reached.

2.1.3. Support Vector Regression (SVR)

Support vector regression is a supervised learning algorithm. The main idea is to map
the feature variables to the high-dimensional feature space by using the kernel function,
and then perform linear regression in the high-dimensional feature space and nonlinear
regression in the low-dimensional space.

The implementation process of the support vector machine algorithm is as follows [29]:

1. One must estimate the sample data (x1 − y1) . . . . . . (xN , yN), xi, yi ∈ R which defines
the regression function as follows:

f(x) = wTx + b (1)

where f(x) is the predicted value, w is the weight vector and b is the bias term.
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2. In order to find the minimum w, the relaxation factor ξi, ξ∗i is introduced to avoid
underfitting the model. The optimization objectives are as follows:

min
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (2)


f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

where C is the penalty coefficient. The Lagrange function is introduced, α, α* is
introduced for each constraint, and then the kernel function k(xi, x) is introduced in
the process of solving α, α*.

3. The regression function is as follows [30]:

f (x) =
N

∑
i=1

(α∗i − αi)k(xi, x) + b (3)

2.2. Model Building

In this work, a constitutive model of porous titanium materials was constructed ac-
cording to Figure 1. The input characteristics in the model are strain, porosity, temperature
and strain rate, and the response variable is stress.
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Figure 1. Flow chart of machine learning algorithm model establishment and analysis.

2.2.1. Data Description

The sample data come from the experimental data in a previously published paper [4].
The experimental data are the stress–strain curves of porous titanium materials at different
temperatures and strain rates, which are obtained by conducting orthogonal experiments
using the split Hopkinson pressure bar (SHPB). The raw material of the experiment is
high-purity titanium powder provided by Shijiazhuang Yida Co., Ltd. (Shijiazhuang,
China), and the experimental material is made of cylindrical samples with a diameter of
8 mm and a height of 3 mm, 4 mm and 6 mm by using the powder sintering method.
The sintering additive uses a 2 wt% polyvinyl alcohol aqueous solution. Considering the
high chemical activity of titanium, it can react with oxygen, hydrogen, nitrogen and other
elements, so the vacuum sintering method is used, and the vacuum degree is 10−4 Pa.



Metals 2024, 14, 634 5 of 13

The sintering temperature of titanium powder with a particle size less than or equal to
27 µm is 1200 ◦C, the holding time is 2 h and natural cooling is achieved. The sintering
temperature of titanium powder with a particle size less than or equal to 74 µm is 1100 ◦C,
the holding time is 2 h and natural cooling is achieved. In the split Hopkinson pressure
bar experiment, the sample size was adjusted according to different loading strain rates. A
pressure bar with a diameter of 15 mm was used in the experiment, and the experimental
conditions of different strain rates were achieved by adjusting the speed of the impact bar.
The experiment was repeated 2 to 3 times for each group, and the average value of the
effective data of the experimental results was taken to reduce the experimental error. The
specific parameters of porous titanium materials are shown in Table 1, which shows the
percentage of each element of the experimental material in the overall mass, particle size,
pore size and porosity, and the sample data are shown in Table 2. A JSM-6480 scanning
electron microscope (Nihon Technology Co., LTD., Osaka, Japan) was used to observe the
surface morphology of the sample, and the results are shown in Figure 2.

Table 1. Specific parameters of materials.

Porosity Aperture Grain Size Ti Fe Cu C O N

26% 15 µm ≤27 µm ≥99.7% ≤0.15% ≤0.005% ≤0.05% ≤0.2% ≤0.03%
36% 250 µm ≤74 µm ≥99.7% ≤0.25% ≤0.003% ≤0.06% ≤0.2% ≤0.03%

Table 2. Sample data information.

Porosity/% Temperature/◦C Strain Rate/s−1

26 25 1200, 2000, 3000, 3600, 5200
100 950, 1200, 2200, 3000, 4200
200 800, 1500, 1950, 2750, 3800
300 1200, 2000, 2900,3600, 3700

36 25 1000, 2000, 3000
100 1380, 2050, 2350, 3400, 3700
200 1000,1800, 2000, 2400, 3000
300 1200, 2000, 3000, 3400, 4500
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Pearson correlation coefficient is used to view the degree of linear correlation between
features. Its value ranges from −1 to +1. The larger the value, the stronger the correlation.
Its expression [30] is as follows:

p =
cov(X, Y)

σXσY
=

E(X− µX)(Y− µY)

σXσY
(4)
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where cov(X, Y) is the covariance of the data set X, Y; µX ,µY are the average value of for
X, Y; σX, σY are the deviation of X, Y, respectively. It can be seen from Figure 3 that most of
the features are nonlinear. However, there is a certain positive correlation between stress
and strain, which is caused by the proportional increase in stress in the plastic deformation
stage and the nonlinear increase in the elastic stage. The porosity will reduce the mechanical
strength of the material, so there is a weak negative correlation between porosity and stress.
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2.2.2. Data Preprocessing

In order to improve the final prediction quality of the data quality assurance model, it
is necessary to carry out data cleaning on the sample set, such as missing value processing,
outlier processing and standardization processing. Among them, standardization process-
ing can eliminate the dimension gap between the data and accelerate the convergence rate
of the model. Here, the Z-score standardization method is used, and its expression [30] is
as follows:

X =
X− µ

σ
(5)

where X is the value after data standardization; X is the value before data standardization;
µ is the average value of the sample; σ is the standard deviation of the sample. Because
the activation function in the MLPR model has scale requirements on the data, if the scale
difference between features is large, it will affect the convergence speed of the gradient
descent method; so, the data used to construct the MLPR model need to be standardized.
Because the calculation of the kernel function in the SVR model depends on the distance be-
tween features, the calculation accuracy of the kernel function will be affected if the feature
scale is different, so the data used to construct the SVR model needs to be standardized.
The prediction result of the RF model is mainly related to the distribution of variables and
the conditional probability between variables, and has nothing to do with the size of the
value itself; so, the data used to build RF model do not need to be standardized.

2.2.3. Data Set Partitioning and Model Evaluation

On the basis of data preprocessing, the sample set is divided into a training set and
a test set. The training set is used to train the model, and the test set is used to test
the model’s performance. In general, the more data used to train the model, the higher
the prediction accuracy of the model, but excessive training will lead to a decline in the
overfitting generalization ability of the model; so, the ratio of the training set to the test set
is 8:2.

Goodness of fit R2, mean absolute error MAE and mean absolute percentage error
MAPE were used to evaluate the performance of regression models. The best fit represents
the degree to which the regression curve fits the experimental value, and the closer the
goodness of fit is to 1, the better the regression curve fits the predicted value. The mean
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absolute error represents the mean of the absolute error between the predicted value and
the experimental value. The calculation formula [31] is as follows:

R2 = 1−

n
∑

i=1
(
∧
Yi −Yi)

2

n
∑

i=1
(Yi −Y)2

(6)

MAE =
1
n

n

∑
i=1

∣∣∣∣(Yi −
∧
Yi)

∣∣∣∣ (7)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi
Yi

∣∣∣∣∣ (8)

where
∧
Yi represents the predicted value of the model, Yi represents the experimental value,

Y represents the average of the experimental value, and n represents the number of samples.

2.2.4. Model Hyperparameter Tuning
Random Forest Model (RF)

The number of weak learners (n_estimators) and the maximum depth (max_depth) are
tuned in the RF model. In this study, the number of weak learners ranged from 10 to 235,
with steps of 15, and the maximum depth ranged from 10 to 38, with steps of 2, respectively;
R2 and MAE were used to evaluate the influence of parameter values on the predicted
results. According to Figure 4a,b, it is found that R2 increases with the increase in the
number of weak learners and the maximum depth, and MAE decreases with the increase
in the number of weak learners and the maximum depth. However, after the number of
weak learners reaches 70, MAE fluctuation greatly occurs at 70 and 160, respectively, and
160 is taken as the minimum value after comparison. When the maximum depth is greater
than 24, R2 and·MAE converge gradually; so, the optimal parameters of the number of
weak learners and the maximum depth are 160 and 24, respectively.
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Multi-Layer Perceptron Model (MLPR)

We now discuss how to tune the solver, activation and hidden_layer_sizes in the
MLPR model. The solvers used for weight optimization include lbfgs, which is a quasi-
Newtonian optimization method; sgd, which is a stochastic gradient descent method;
adam, which is an optimization method based on stochastic gradient. Excitation functions
include Rectified Linear Unit function (relu), hyperbolic tangent function (tanh), logistic
function and identity function. The identity function is suitable for tasks with linear
relationships that lack nonlinearity, but it limits the representation of the model. Both
tanh and logistic belong to generalized S-type activation functions, both of which have
bidirectional saturation, but there are still some problems such as gradient disappearance
and large computation in the derivation process. The relu function solves the gradient
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disappearance problem and is fast to compute, but it may result in the “death” of neurons.
The formula for these four activation functions are as follows:

relu : f (x) = max(0, x) (9)

tanh : f (x) =
ex − e−x

ex + e−x (10)

log istic : f (x) =
1

1 + e−x (11)

identity : f(x) = x (12)

where x is the input value.
In order to improve the computational efficiency and generalization ability of the

model, the multi-layer perceptron here uses only one hidden layer. As shown in Figure 5a,b,
in the combination of 12 solvers and excitation functions, the relu function and lbfgs solver
have the best performance; so, the MLPR model should use the relu function and lbfgs
solver. According to Figure 5c, it is found that R2 increases with the increase in the number
of hidden layer elements, and MAE decreases with the increase in the number of hidden
layer elements. When the number of hidden layer elements is greater than 70, R2 and·MAE
gradually converge, so the optimal parameter of the number of hidden layer elements is 70.
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Support Vector Machine Model (SVR)

In the SVR model, the error penalty coefficient (C) and kernel function are optimized,
and the influence of parameter changes on the prediction results is evaluated by using R2

and MAE, respectively. C is an important parameter used to balance the complexity of
the model and the accuracy of the fitted data. The larger the value, the more accurately
the model learns from the sample, but the easier it is to overfit. The kernel includes linear
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kernel functions (linear), polynomial kernel functions (poly), radial basis kernel functions
(rbf) and S-type kernel functions (sigmoid). The linear kernel function is fast to calculate,
but its ability to fit nonlinear data is limited. The polynomial kernel function can handle
nonlinear data to some extent, but the computational complexity is high. The radial basis
kernel function has a strong ability to fit nonlinear data, but it is easy to overfit. Because
the error penalty coefficient is too large, the model is easy to overfit, so C is taken from 0.1
to 100. Figure 6a,b shows that the SVR model should use the radial basis kernel function
(rbf), and C should take 100.
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2.3. Comprehensive Analysis of Model Prediction Ability

Comparing R2 and MAE of the optimized model, the results are shown in Figure 7.
After tuning, R2 of the three models is relatively different, and R2 of the RF model is
the highest. However, MAE of the three models is quite different, among which the
RF model has the smallest MAE. Compared with the three optimized models, the RF
model has excellent comprehensive performance, so the RF model should be used for the
establishment of a porous titanium constitutive model.
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Zhu Tianyu et al. [4] used the DP model to build a constitutive model of porous
titanium, and verified the accuracy of the DP model by comparing the predicted values
of the model with the experimental values. The DP model was proposed by Drucker and
Prager in 1952. It was initially applied to the study of plastic mechanics of geological
materials. Later, researchers found that the model parameters could be adjusted to describe
the plastic deformation process of metals. In this paper, the prediction ability of the DP
model and RF model for porous titanium materials is compared and analyzed.

Porous titanium is temperature-sensitive due to its substrate material. As shown
in Figure 8, when the temperature is less than 300 ◦C, the yield limit and flow stress of
porous titanium decrease with the increase in temperature, indicating that the material has
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a temperature-softening effect. The RF model predicted the data well, and MAPE did not
exceed 3.5%. The predicted value of the DP model can reflect the temperature sensitivity,
but the error is large, and the average MAPE is as high as 11.4%.
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Affected by the microstructure strain efficiency and the matrix material, porous tita-
nium has strain rate sensitivity due to the influence of its matrix material [5,32–34]. From
the perspective of the microstructure, the pore wall of porous titanium has plastic bending
during the compression process, so the strain rate effect will be produced. As shown in
Figure 9, when the strain rate is less than 3000/s−1, the yield limit and flow stress of the
porosity increase with the increase in the strain rate. When the strain rate reaches 3000/s−1,
the distribution of the stress–strain curve is irregular. The predicted results of the RF model
can reflect the strain sensitivity of porous titanium materials, and the average MAPE is
3.8%. However, the prediction results of RF show small errors in part of the stress–strain
curve. The predicted value of the DP model can reflect the strain rate sensitivity of porous
titanium materials when the strain rate is less than 3000/s−1, but the error is large, and the
average MAPE is as high as 27.5%.
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As shown in Figure 10, the presence of pores significantly reduces the mechanical
strength of porous titanium materials. The RF model can predict the data well. The
prediction results of the DP model can show that the existence of pores significantly
reduces the mechanical strength of porous titanium materials, but the error is large.
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As shown in Figures 8–10, both the RF model and the traditional DP model can predict
the strain rate effect and temperature sensitivity of porous titanium materials, but the
prediction accuracy of the latter is lower than that of the former. Because the traditional
constitutive model is usually based on physics and phenomenology and describes the struc-
ture and properties of materials through mathematical equations, its prediction accuracy
is limited by its own explicit mathematical description ability. Machine learning models,
on the other hand, predict the properties of materials by training large amounts of data
to establish patterns and associations. As shown in Table 3, the average MAPE of the RF
model is much smaller than that of the DP model, so the predictive performance of the
constitutive model constructed using the RF model is better than that of the DP model.

Table 3. Error comparison between DP model and RF model.

Model Maximum MAE Maximum MAPE Mean MAE Mean MAPE

RF 22.5 8.0% 10.9 4.4%
DP 185.9 44.9% 94.4 25.5%

3. Results

1. For the data set obtained by the split Hopkinson pressure bar experiment, the perfor-
mance of the RF model is optimal when max_depth and n_estimators are 24 and 160,
respectively. When the relu function is combined with the lbfgs solver and the number
of hidden layer elements are 70, the performance of the MLPR model is optimal.
When the rbf function is used and C is 100, the SVR model has the best performance.

2. Based on the data set obtained from the split Hopkinson pressure bar experiment, the
prediction performance of three machine learning algorithms, RF, MLPR and SVR,
on porous titanium materials is discussed. Through comparative analysis, it can be
seen that the prediction performance of the RF model with 160 weak learners and a
maximum depth of 24 is the best, and R2 is 0.9998, while MAE is 1.413.

3. The traditional DP model can predict the strain rate effect and temperature sensitivity
of porous titanium materials. However, the prediction accuracy of the latter was lower
than that of the former, with an MAPE of 4.4% for the RF model and 25.5% for the
DP model.

4. In general, the RF model has good predictive performance for the constitutive rela-
tionship of porous titanium materials.
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