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Abstract: In this paper, hybrid coatings based on ZnO dispersion in water soluble chitosan oligosac-
charides (COS) as dispersion medium were prepared. The obtaining procedure of anti-corrosion
hybrid zinc-based coatings containing COS coated ZnO particles in the metal matrix has been de-
scribed. The available ZnO particles coated with COS were observed by TEM and thereafter added
to the starting electrolyte for electrodeposition of hybrid zinc coatings on low-carbon steel substrates.
The newly developed objects were collated with ordinary zinc coatings concerning the peculiarities
of the morphology, topography and hydrophilicity of the surface (SEM and AFM analyses, water
contact angle measurements), as well as corrosion behavior and electrochemical characteristics (cyclic
voltammetry, potentiodynamic polarization curves, polarization resistance measurements). XRD and
XPS methods were applied for studying of the crystallographic structure, as well as chemical and
phase composition of the newly appeared corrosion products during the corrosion treatment in the
test medium. Protective parameters of the coatings were evaluated in chloride environment of 5%
NaCl solution. The results showed the effect of the concentration of the COS coated ZnO particles on
the crystallographic structure and on the anticorrosion stability of the hybrid coatings.

Keywords: hybrid zinc coatings; corrosion; chitosan oligosaccharides; ZnO

1. Introduction

The corrosion degradation of metals and alloys is undesirable process which may
cause serious safety and environmental problems accompanied with economic loses. This
is very dangerous for the steels, especially for the low-alloyed ones. Traditionally, the latter
are widely applied in many branches—transport industry, building industry, bridge and
railway constructions etc. Due to the presence of various chemical and other pollutants in
the water, soil and air as well as due to climate changes the application of mild steels often
leads to significant financial expenses. The reason for this is the urgent need of cheap and
increased protection measures against corrosion destruction [1,2].

This dangerous process is often a result of the interaction of the metals with chloride
ions from the surrounding environment [3]. One possible way to reduce the corrosion
damages is the usage of low-carbon steels with accessorial protection based on corrosion
resistive coatings (metallic, alloy, hybrid etc.) or conversion films. The application of
protective coatings has an important role for the decreasing of the damages since it leads
to a safety barrier against the aggressive surrounding media. Generally, these coatings
distinguish with relatively low cost and good mechanical strength. One economically
favorable possibility for safe corrosion protection of mild steel is the galvanizing [4,5].
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Zinc coatings are widely used for corrosion protection since this metal is more active
than iron, i.e., it demonstrates a sacrificial action during the corrosion process [6]. Nowa-
days it is well-known practice to substitute the zinc coatings with composite or hybrid
ones [7,8]. The embedding of different metal, oxide, polymer or other particles meliorates
the protective characteristics of the usual zinc coatings [9–17]. The particles incorporated
in the metal matrix can fill some of the micro-holes, pores, gaps, or other surface coatings
defects which could act as active sites for corrosion development. They also are to a certain
degree a physical barrier minimizing in such a way the appearance of corrosion process.
This statement is based on the additional formation of “mixed” barrier layers the latter
containing corrosion products with low solubility and the incorporated particles [18].

A promising solution to enhance the corrosion resistance of zinc is to coat its surface
with protective film of natural polymers [19,20]. Among natural polymers, chitosan is
very promising not only because of its biocompatibility and biodegradability, but also
because of its good film-forming and binding ability, as well its adhesion [21,22]. Chitosan
is a deacetylated derivative of chitin—the second most abundant renewable biopolymer
after cellulose. However, chitosan is not a homopolymer and apart from β(1→4)-linked
D-glucosamine units it also contains β(1→4)-linked N-acetylglucosamine units. As a
polycationic polysaccharide, due to the presence of reactive amino groups, chitosan is
soluble only at acidic pH. In particular, the presence in the structure of chitosan of reactive
functional groups (hydroxyl and amino groups) capable of chelating various metal ions
(Cu, Fe, Ni, Zn, Pb, Mn), predetermines its ability to form complexes with them. In
addition, chitosan might be deposited on metal electrodes by electrodeposition, forming a
thin protective film. Recently, chitosan oligosaccharides (COS) prepared by chemical or
enzymatic hydrolysis of chitosan, provokes special interest. In addition to the beneficial
physical and biological properties of chitosan, COS also has a number of advantages over it,
but the main is its excellent water solubility, regardless of the pH of the medium. Therefore,
the usage of COS as dispersing agent of ZnO is an elegant solution to create a protective
anti-corrosion coating by electrochemical deposition.

The present manuscript focuses on the obtaining of combined anticorrosion effect of
COS and ZnO. The obtained hybrid coatings with incorporated COS and ZnO particles
were electrodeposited on low carbon steel substrates to protect them from chloride caused
corrosion attack. The effect of the COS coated particles as active anticorrosion components
has been evaluated in comparison to the ordinary zinc coating.

2. Materials and Methods
2.1. Materials

Commercially available chitosan oligosaccharides (COS, 10,000 g/mol, Kitto Life Co.,
Ltd., Seoul, Republic of Korea) and zinc oxide nanopowder (ZnO, Zano®20, Umicore Zinc
Chemicals, Brussels, Belgium) were used as received. The rodlike ZnO particles size was
about 10–30 nm in diameter and 100 nm in length with bulk density of 280 g/L and specific
surface area (BET) of 25–35 m2/g.

2.2. Preparation of Dispersions to Obtain Hybrid Coatings

In order to obtain suitable dispersions, ZnO nanopowder (20 wt.% and 40 wt.%
with respect to COS) was added to the aqueous COS solution (0.1 wt.%). The obtained
dispersions were homogenized by sonication for 1 h in an ultrasonic bath (Bandelin Sonorex,
Berlin, Germany, 160/640 W, 35 kHz).

2.3. TEM Studies

The obtained ZnO/COS dispersions were observed by high-resolution Scanning
Transmission Electron Microscopy HR STEM JEOL JEM 2100 (JEOL Ltd., Tokyo, Japan)
operating at a voltage of 200 kV and equipped with the Selected Area Electron Diffraction
(SAED). Samples were prepared by drop-casting of the ZnO/COS dispersion onto a copper
grid covered with formvar, followed by solvent evaporation.
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2.4. Electrodeposition of the Hybrid Coatings

Zinc and two types of hybrid zinc-based coatings were electrodeposited on low-carbon
steel plates with sizes 2 cm × 1 cm × 0.1 cm. The starting electrolytes have the following
composition: 150 g/L of ZnSO4·7H2O, 30 g/L of NH4Cl, 30 g/L of H3BO3, as well as
wetting agent AZ1 (50 mL/L), brightener AZ2 (2 mL/L) and pH value in the range 4.5–5.0.
Two different concentrations (described below) of COS-coated ZnO particles as disper-
sion were added to the electrolytes. The electrodeposition has been carried in out glass
cell (volume 600 ml) at ambient temperature, cathode current (direct current) density of
2 A/dm2 and metallurgical zinc anodes. All the coatings obtained had equal thickness
of ~12 µm. After the end of the electrodeposition the samples were subtracted from the
experimental bath and dried in air. The obtained hybrid coating types are designated as
follows:

- COS1—hybrid coatings electrodeposited from a starting electrolyte with a concentra-
tion 0.02 wt.% ZnO;

- COS2—hybrid coatings electrodeposited from a starting electrolyte with a concen
tration of 0.04 wt.% ZnO.

2.5. Surface Morphology

The characteristics of the surface morphology and the distribution of the incorporated
COS-coated ZnO particles in both hybrid coatings were observed with Scanning Electron
Microscopy device (INCA Energy 350 unit, Oxford, UK).

2.6. Corrosion Characterization and CVA Studies

In order to obtain valuable and realistic information concerning the protective ability
and electrochemical parameters of the investigated hybrid coatings, two well-known exper-
imental methods were used—potentiodynamic (PDP) polarization curves (as accelerated
method) and polarization resistance (Rp) measurements during a prolonged time interval.
The corrosion data received from these methods was compared with the data of ordinary
zinc coating. The electrochemical processes occurring in the cathodic and anodic regions
were investigated with Cyclic Voltammetry (CVA) in the starting electrolytes. A PAR
“VersaStat 4” device was applied for the experiments. Saturated Calomel Electrode (SCE)
was chosen as the reference electrode, and a platinum plate was the counter one. During
the PDP tests, a visual observation by the “naked eye” indicates the state of the sample,
and after the appearance of bare steel substrate, the anodic polarization was stopped. The
Rp measurements have been carried out for a period of 45 days. The studies with Cyclic
Voltammetry (CVA) were pursued between −1.4 V and 0 V potential interval with a scan
rate of 10 mV/s.

2.7. Atomic Force Microscopy (AFM) and Water Contact Angle Measurements

A Bruker Dimension Icon AFM microscope (Santa Barbara, CA, USA) working under
ST mode was applied for the obtaining of samples surface topography. The images were
analyzed in air at room temperature applying silicon tips (RTESPA) with resonance fre-
quency of approx. 300 kHz, spring constant 40 N/m, and a scan rate of 1.0 Hz. The water
contact angle (WCA) of the obtained coatings was determined at room temperature using a
DSA20E Drop Shape Analyzer (KRÜSS GmbH, Hamburg, Germany). The contact angle
was measured using the image of a sessile droplet of distilled water (10 µL), deposited by
a computer dosing system onto the hybrid coatings surface, at the points of intersection
between the drop contour and the projection of this surface (baseline). By DSA1 software
(v 1.92-05), the average WCA was calculated by measuring at least 5 droplet images for
each sample.

2.8. Chemical and Phase Composition (XPS Analysis)

The XPS measurements were performed in VG ESCALAB II (Seattle, WA, USA) elec-
tron spectrometer using AlKα radiation with an energy of 1486.6 eV. C1s line at 285 eV
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(from an adventitious carbon) with an accuracy of ±0.1 eV as a reference was used to deter-
mine the binding energies. The chemical composition of the films was evaluated having in
mind the areas and binding energies of C1s, O1s, Zn2p, Cl2p and Na1s photoelectron peaks
(after linear subtraction of the background) and Scofield’s photoionization cross-sections.

2.9. XRD Analyses

X-ray diffraction analysis was applied to define the phase composition and metallo-
graphic orientation of the electrodeposited hybrid coatings by using of X-ray diffractometer
(CuKα radiation; generator voltage 40 kV), equipped with a PW1830 generator and a
PW1050 goniometer manufactured by Philips (Amsterdam, The Netherlands). Data were
obtained in the angular range of 10–60◦ 2-theta with a step of 0.05◦ 2-theta and exposure of
3 s. HighScore Plus 3.0 program, Inorganic Crystal Structure Database (ICSD) and Powder
Diffraction File™ (PDF-2 2023) were performed for the phase analysis.

2.10. Corrosive Medium and Reproducibility of the Investigation Results

Electrochemical and corrosion experiments were realized in a model medium of 5%
NaCl solution (pH ~6.7). The results were summarized as an average from the data obtained
of five samples per type, i.e., either ordinary zinc or hybrid zinc coatings with COS-coated
ZnO particles.

3. Results
3.1. TEM Studies

In the present study, stable ZnO/COS dispersions were used to create a protective
anti-corrosion coating on low-carbon steel by electrochemical deposition method. In
particular, hydroxyl and amino groups of COS form a coordination bond with Zn-ions, thus
stabilizing ZnO/COS dispersion [23]. Moreover, the polycationic COS adsorbed on the
ZnO surface due to electrostatic attraction between the negative surface of ZnO particles
and positively charged COS. Finally, the film-forming ability of COS also had an influence
on the properties of the protective anti-corrosion coating (Figure 1).
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samples are covered with a layer of corrosion products, the latter being more even and 
smooth in the case of COS1. As is well known from our other investigations, the main 
corrosion product after such kind of treatment is zinc hydroxide chloride ZHC [14,18,24]. 
This compound has low solubility and takes part in the corrosion protection by forming a 
“mixed” layer containing simultaneously ZHC from the dissolution process and COS-
coated ZnO particles. 

Figure 1. Schematic representation of COS-coated ZnO particles and chemical structure of COS.

The successful coating of the rodlike ZnO particles with COS was observed by HR-TEM
equipped with SAED (Figure 2). Obviously, the addition of rodlike ZnO particles into aqueous
COS solution results in the formation of shell onto the particles surface (Figure 2a). The SAED
patterns (Figure 2b) showed the strong and bright diffraction spots that evidence the lattice
spacing of the crystals, indexed to the hexagonal structure of ZnO with a = 3.24900 Å and
c = 5.20700 Å [COD Entry #96-901-1663].
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Figure 2. TEM images (a) and SAED patterns (b) of ZnO/COS.

3.2. Surface Morphology

Scanning Electron micrographs micrographs of COS1 and COS2 hybrid coatings (as
received) are presented in Figure 3a,c. Obviously, both samples are distinguished by
relatively uneven and partially rough surfaces. However, the surface morphology of the
COS1 sample seems to be more even and smooth compared to the COS2 one, which is
characterized with greater inhomogeneity. Some individual white spheres appear on the
surfaces of both sample types, indicating the presence of the incorporated COS-coated
ZnO particles. The changes in the surfaces of the hybrid coatings after their prolonged
stay in the experimental test medium of 5% NaCl solution are shown in Figure 3b,d. Both
samples are covered with a layer of corrosion products, the latter being more even and
smooth in the case of COS1. As is well known from our other investigations, the main
corrosion product after such kind of treatment is zinc hydroxide chloride ZHC [14,18,24].
This compound has low solubility and takes part in the corrosion protection by forming
a “mixed” layer containing simultaneously ZHC from the dissolution process and COS-
coated ZnO particles.
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Figure 3. SEM images of hybrid COS1 (a,b) and COS2 (c,d) coatings before (a,c) and after
(b,d) corrosion treatment in model medium of 5% NaCl solution.
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3.3. Cyclic Voltammetry (CVA) Studies

CVA voltammetry studies of ordinary zinc, COS1, and COS2 probes are presented in
Figure 4. These tests have been conducted in the starting electrolytes applied for the elec-
trodeposition of ordinary and both hybrid zinc coatings, respectively. It can be registered
that the electrodeposition process of the ordinary zinc takes part at much higher cathodic
current and begins at more negative potential value compared to both hybrid coatings.
This observation confirms that the cathodic deposition of the hybrids is depolarized and
occurs at more positive cathodic potentials and much lower cathodic current −0.009 A for
COS1 probe and −0.010 A for COS2, respectively. For comparison, the cathodic deposition
peak of the zinc is registered at −0.051 A, i.e., its value is about five times higher. These
data can be regarded as a sign for the greater deposition rate of the ordinary zinc despite
the fact that its cathodic process seems to be overpolarized according to Figure 4.
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Figure 4. Cyclic voltammetry investigations of both hybrid coatings COS1 and COS2 and of ordinary
zinc (Zn).

The anodic regions of all curves present the course of the anodic dissolution process.
Their presence confirms also the availability of the electrodeposited coatings on the low-
carbon steel substrate. The figure clearly shows that the Zn dissolution peak is the greatest
one (0.065 A at −0.725 V) which indicates the presence of greater electrodeposited mass.
Contrary to this, the anodic peaks of both hybrids are much lower and practically almost
equal −0.021 A. The inset in Figure 4 demonstrates the occurring cathodic processes in
more details.

Obviously, the incorporation of COS coated ZnO particles in the starting electrolytes is
the reason for this observation. The above mentioned particles are bigger in size compared
to the zinc ions and when they electrodeposit on the substrate it is presumed that they
will physically block to a certain degree the substrate for the deposition of the free zinc
ions. Nevertheless, ZnO particles most probably support the electrodeposition of the zinc
ions building hybrid coating with simultaneously incorporated metal, oxide and organic
components.

3.4. Potentiodynamic Polarization (PDP) Curves

Potentiodynamic polarization can be defined as accelerated investigation aimed to
receive preliminary information about the corrosion behavior of the hybrid coatings (COS1
and COS2, respectively) compared to the ordinary zinc one in the model test medium.
The results obtained are shown in Figure 5. Some of the most important electrochemical
parameters obtained from the figure are demonstrated in Table 1.
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are practically identical. The same parameter of COS2 probe is slightly more positive (see 
Table 1). The values of the corrosion current densities differ—Icorr of ordinary zinc is higher 
compared to both hybrids. The anodic curve of the usual zinc increases gradually in the 

Figure 5. Potentiodynamic polarization curves of both hybrid coatings COS1 and COS2 and of
ordinary zinc (Zn).

Table 1. Electrochemical parameters obtained from Figure 5.

Sample Icorr, A·cm−2 Ecorr, V

Zn 1.7 × 10−5 −1.07
COS1 8.2 × 10−6 −1.07
COS2 1.3 × 10−5 −1.05

As seen from the figure, the corrosion potentials of ordinary zinc and COS1 sample
are practically identical. The same parameter of COS2 probe is slightly more positive (see
Table 1). The values of the corrosion current densities differ—Icorr of ordinary zinc is higher
compared to both hybrids. The anodic curve of the usual zinc increases gradually in the
zone after the corrosion potential and then shows a maximum at potential of about −0.8 V.
Thereafter, the coating complete dissolute in the potential area of about −0.6 V and the
bare steel surface appears. Both hybrid zinc-based coatings COS1 and COS2 demonstrate
different behavior since their anodic parts are longer compared to that of the ordinary
Zn. This result is an evidence that the newly obtained hybrid coatings are more resistive
at external anodic polarization. The length of COS1 sample anodic curve is up to about
−0.4 V and that of COS2 is until −0.44 V. In the area of the maximal anodic dissolution
both hybrid samples characterize with lower maximal current densities in comparison to
the same parameter from the zinc curve.

In addition, the anodic curve of COS2 increases rather steeply in the potential area
after the corrosion potential (which generally means accelerated dissolution) while for the
COS1 sample some deceleration is observed (i.e., the rate in this zone of about −0.1 V
partially decreases) and only then increases again.

The observed results can be explained with the hybrid coatings composition as well
as the type and quantity of the corrosive products arising during the polarization. The
corrosion product that appeared in that test medium is expected to be mainly zinc hydroxide
chloride Zn5(OH)8Cl2·H2O, which is characterized by a very low product of solubility
value [24]. Its availability leads to better protection of the low-carbon steel substrate since it
impedes partially the penetration of the chloride ions deeply inside. The presence of COS
coated ZnO particles in the zinc matrix also improves the protective characteristics of the
coating and supports the appearing of “barrier effect” against the chloride ions. In general,
it might be concluded that the presence of COS coated ZnO particles influences positively
the corrosion characteristics of the ordinary zinc at conditions of external potential, i.e. at
accelerated corrosion test. This effect can be stated from the presence of longer anodic
curves and lower corrosion current densities compared to the zinc. This observation can
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be regarded as a parameter for their better stability and increased corrosion resistance in
model medium containing corrosion activators (chloride ions).

3.5. Polarization Resistance (Rp) Measurements

The results from the Polarization resistance measurements received after 45 days’
immersion period of the tested samples in 5% NaCl solution are shown in Figure 6. The
ordinary zinc coating demonstrates on average Rp values of about 780–850 ohm·cm2 during
this period, and the maximum can be observed after 25 days’ investigation.
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Figure 6. Polarization resistance of ordinary zinc (Zn) and hybrid coatings COS1 and COS2. Figure 6. Polarization resistance of ordinary zinc (Zn) and hybrid coatings COS1 and COS2.

The experimental maximal Rp values for COS1 (~1400 ohm·cm2) and COS2 (~1310 ohm·cm2)
are about twice as high compared to the zinc. This means that the presence of the COS-coated
ZnO particles in the metal matrix of the zinc positively influences the anticorrosion behavior
in that medium. The influence of the embedded particles is weaker expressed for the COS2
sample. According to the obtained results it is obvious that both samples demonstrate their
highest polarization resistance after 35 days’ immersion in the model medium.

These results could be interpreting with the existence of a layer of corrosion product/s
in that model medium, in comparison with some other studies [24]. Generally, this is the
compound zinc hydroxide chloride (ZHC) with a low product of solubility value which
ensures additional protection against the corrosion activators, creating a “barrier” layer.
The presence of COS-coated ZnO particles seems to improve this effect.

Generally, the local corrosion process of the ordinary zinc coating (dissolution) in
chloride-containing medium occurs in selected areas. The latter gradually develop/penetrate
deeply inside and, after a certain time, will reach the low-carbon steel substrate. Zinc cor-
rosion products, for example, zinc hydroxide chloride (ZHC)—Zn5(OH)8Cl2·H2O—also
forms, covering some areas of the surface.

In the cases when polymer particles are present in the metal matrix, the corrosion
process will localize in the metal zones surrounding the particles. As a result, accelerated
dissolution of zinc will begin, and a “mixed” film consisting of ZHC (sometimes also
with other zinc-based corrosion products like, for example, zincite, etc.) and the particles
will occur. In this case, the corrosion process will take place around the particles and the
probability of obtaining local deep penetrations of the coating will be reduced/minimized.

Therefore, such a development of the process will increase the probability that local
corrosion will partially transform into a general one, which in turn will reduce the possibil-
ity of destruction deeply inside. When general corrosion occurs, surface damages are well
visible, which means that the prevention can be realized in time.
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However, when the immersion test (“open-circuit” conditions) is applied, the forma-
tion of ZHC occurs differently contrary to the case of the external polarization (the latter is
accelerated test).

3.6. Surface Topography and Wettability

It is well known that more hydrophobic surface is beneficial for the anti-corrosion
protection of metals. For that reason, wettability of the samples was evaluated by measuring
the water contact angle (Figure 7). As seen, COS1 coatings were more hydrophobic than
COS2, which suggests better expressed corrosion resistance and protective ability.
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Figure 7. Water contact angle measurements and representative images of the droplets onto hybrid
coatings of COS1 (blue) and COS2 (red).

The surface topography images of the non-treated and the corrosion-treated hybrid
samples evaluated by AFM are shown in Figure 8. Obviously, the non-treated hybrid
samples COS1 and COS2 show smooth and uniform surface of coated material rarely
enclosing domains of size 0.2–0.6 µm. Some of the embedded COS-coated ZnO particles
are well visible, confirming the availability of a hybrid coating.

Oppositely, the corrosion-treated hybrid samples COS1T and COS2T show very rough
and non-uniform surface of coated material mainly containing large domains of size 2–5
µm, which are the newly appeared corrosion products as a result of the treatment.

The roughness values for all samples are summarized in Table 2.
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Table 2. Roughness parameters from AFM surface topography images.

Sample COS1 COS1T * COS2 COS2T *

Image (µm × µm) 5 × 5 5 × 5 5 × 5 5 × 5
Rq (nm) 15.9 213.0 14.7 128.0
Ra (nm) 10.8 153.0 11.0 104.0

* T—corrosion treatment.

3.7. XRD Studies

The diffractograms of the investigated samples were recorded in a standard omega–
2 theta diffractometer geometry. In this way, data are obtained on the distribution of
crystalline phases in the coating relative to the normal to the substrate. If, for example, a Zn
polycrystalline powder sample is studied (prepared according to all standards of sample
preparation), the probability of occurrence of all crystal planes would be equally likely. The
type of such diffractograms is presented in Figure 9.
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Figure 9. XRD pattern of Zn polycrystalline powder sample.

When obtaining thin-film coatings (for example, during electrodeposition), this is often
not the case. The electrodeposition process is influenced by many factors such as potential,
current density, temperature, various types of additives, stirring, etc. In the coatings
obtained by us, these effects are also present. Under the same conditions but with different
amounts of COS-coated ZnO particles concentration in the starting electrolyte, a preferential
growth of different crystal planes of the zinc crystals can be observed—Figure 10a,b. The
diffractograms show that the intensity of the substrate peak is comparable for both samples,
which means that they are approximately of the same thickness. Moreover, at both dopant
concentrations, the growth along (002) planes is strongly suppressed, as a result of which
its corresponding diffraction peak is almost invisible. Examining the intensity distribution
further, it can be seen that at additive concentrations of 0.02 wt.% COS-coated ZnO particles
in the starting electrolyte, the growth is stimulated along the crystal plane (010), and at
0.04—along the crystal plane (011). It is important to note that in this diffraction geometry,
the growth of the zinc crystals relative to the substrate normal is observed. Thereafter,
a rough approximation (guess) can be made of the growth of the zinc crystal relative to
its habit (crystal shape). This would help more easily to navigate the way it grows on
the surface of the substrate. The shape of the crystals was generated according to their
symmetry in a program for visualization of crystal structures and shapes—VESTA [25].
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Figure 10. XRD patterns of ordinary zinc (Zn) and hybrid coatings COS1 (a), COS2 (b), COS1T (c), 
COS2T (d). 

In Figure 11, the crystalline forms of a zinc crystal are shown and are oriented with 
respect to the substrate normal which is directed upwards. The conclusions drawn could 
give us an argument for better understanding of the manifested differences in the anti-
corrosion properties of the coating, since it is expected that different planes in the crystal 
have different properties/susceptibility to corrosion. 

Figure 10. XRD patterns of ordinary zinc (Zn) and hybrid coatings COS1 (a), COS2 (b), COS1T
(c), COS2T (d).

In Figure 11, the crystalline forms of a zinc crystal are shown and are oriented with
respect to the substrate normal which is directed upwards. The conclusions drawn could
give us an argument for better understanding of the manifested differences in the anti-
corrosion properties of the coating, since it is expected that different planes in the crystal
have different properties/susceptibility to corrosion.
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dopant concentrations.

After corrosion treatment, the diffractograms change, demonstrating many additional
peaks, the latter being characteristic for the newly appeared corrosion products like zinc
hydroxide chloride (ZHC), hydrozincite (HZ)—most probably as a result of ZHC interaction
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with air—and zincite (Z). Additional peaks indicating the presence of NaCl also appear in
the patterns—Figure 10c,d. Some of the characteristic peaks for Zn, ZHC, HZ, and Z are
shown in Table 3.

Table 3. Some characteristic peaks of the corrosion products registered.

Sample Peaks, 2 Theta Degree

Zn 39.08; 39.11; 43.33; 43.35; 54.46

ZHC 11.36; 16.69; 22.23; 22.69; 24.98; 30.52; 31.22; 32.96; 33.63; 34.57; 36.39;
38.02; 43.92; 45.61; 46.20; 48.00; 51.80; 54.30; 58.28; 58.70; 59.58

HZ 13.00; 28.27; 30.52; 31.22; 32.96; 41.72; 45.61; 51.10; 56.64; 58.70; 59.57
Z 34.57; 36.39; 47.60; 56.64

The discussion concerning the influence of the crystallographic orientation on the corrosion
behavior has been investigated also by other scientists by testing different materials [26–30].

For example, the relation of corrosion behavior of aluminum on crystallographic
orientation has been investigated in four concentrations of hydrochloric acid aqueous
solutions. The corrosion behavior is strongly affected from the crystallographic orientation
of the planes parallel to the surface. The orientation dependence was varied with the
concentration of the solution. While {101} and {111} plane have corrosion resistance in low
concentrations of 1.5 mol/L and 2.9 mol/L HCl, the pitting rate on {111} plane was highest
in high concentrations of 5.8 mol/L and 11.6 mol/L HCl [26,27].

The influence of crystallographic orientation on the corrosion was investigated for
pure magnesium in 0.1 N HCl. The corrosion depth and orientation of surface features were
mapped against crystallographic orientation for many off-principal magnesium crystals.
The most corrosion resistant orientation has been confirmed [28].

The corrosion behavior of magnesium single crystals with various crystallographic
orientations was also examined. The effects of surface orientation on the corrosion be-
havior were characterized with potentiodynamic polarization and potentiostatic tests as
well as electrochemical impedance spectroscopy measurements in 3.5 wt.% NaCl solu-
tion. The results obtained from potentiostatic tests were in agreement with the trend in
potentiodynamic polarization tests as a function of rotation angle [29].

A highly corrosion-resistant Mg-Zn-Y-Al alloy featuring an α-Mg/LPSO two-phase
multimodal microstructure was investigated. The alloy showed orientation-dependent
corrosion behavior; the longitudinal section exhibited a higher corrosion rate than the trans-
verse section. The orientation dependence was attributed to the varying in-plane atomic
densities of the crystallographic planes on the longitudinal and transverse sections [30].

3.8. XPS Analysis

The surface compositions and chemical states of COS-coated ZnO hybrid layer elec-
trodeposited on low-carbon steel were investigated by XPS method. The XPS spectra reveal
that the surface consists of C, O, Zn as well as Cl and Na (only for the corrosion-treated
samples)—(Table 4). The C1s spectra of the corrosive untreated surface was asymmetric and
corresponded to three binding energies: 285.0 eV for adventitious carbon, 286.2 eV for C–O
bond, and 288.8 eV for carboxyl groups, describing from COS. Another peak at 283.6 eV is
also observed in sample COS1, which is due to carbide species (Figure 12a). The O1s signal
consists of three peaks, which can be associated with oxygen in zinc oxide lattice at 530.3 eV,
carboxyl groups at 531.8 eV, and C-O bond at 533.0 eV (Figure 12b). Figure 12c shows Zn2p
spectra of untreated and treated surfaces of samples after immersion in 5% NaCl solution
with binding energies of 1021.8 eV and 1022.1 eV, respectively.
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Table 4. XPS results of quantitative composition of ZnO/COS layer.

Samples C, at. % O, at. % Zn, at. % Cl, at. % Na, at. %

COS1 71.7 20.2 8.1 - -
COS2 51.3 33.7 15.0 - -

COS1T 27.0 29.0 15.6 16.5 11.9
COS2T 28.2 36.6 20.6 8.6 6.0

T—corrosion treatment.
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(c) of ZnO/COS hybrid layer.

For a more precise determination of the state of the zinc, the modified Auger parameter
was also calculated, and its values are 2009.3 eV and 2010.6 eV. From the Auger spectra
of zinc Zn LMM and the calculation of the Auger parameter, it is established that zinc
is in the 2+ oxidation state, and for treated samples in addition to ZnO, Zn(OH)2 is also
observed [31].

XPS analysis shows that the shape of the spectra of the chemical elements consisting
on the surface before and after corrosion tests are different, and there are chemical shifts
of binding energies. The spectrum of C1s decomposes into one more component, which
is attributed to the carbonyl groups. The change in the O1s spectra is the presence of
Zn(OH)2 and carbonyls groups as well. On the surface is the registered amount of Cl and
Na, because of the corrosion treatment in the model medium. There is no iron observed on
the surface, which shows that the layers cover the low-carbon steel substrate well and can
be used as anti-corrosion coatings.

4. Conclusions

The successful obtaining of electrodeposited hybrid zinc coatings containing COS-
coated ZnO particles in the metal zinc matrix with a potential for low-carbon steel protection
in aggressive corrosion environment was reported. The incorporation of these particles in
the zinc allows the formation of hybrid coatings with nearly homogeneous ZnO distribution
from dispersions stabilized against aggregation.

SEM and AFM characterization revealed the disposal of COS-coated ZnO particles
near or directly on the coatings’ surface, which made them able to ensure better protection
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against the corrosive agents. The contact angle measurements proved that the hybrid coat-
ing with low content of COS-coated ZnO particles (COS1) is more hydrophobic compared
to the hybrid coating with higher ZnO content.

Hybrid zinc coatings provided enhanced corrosion protection for the low-carbon steel
in model medium of 5% NaCl solution during a prolonged period of 45 days compared
to the ordinary zinc. Their protective characteristics are better expressed, most probably
due to the appearance of a “mixed” layer consisting mainly of zinc hydroxide chloride
(ZHC) and COS-coated ZnO particles. This mixed layer ensures a “barrier” effect against
the aggressive Cl− ions presenting in the test solution and impedes their penetration
deeply inside the coating. The combined anticorrosion effect of COS and COS-coated ZnO
particles on the corrosion process was stronger expressed in the case of the lower ZnO
content (COS1 sample), most probably due to the more suitable from a corrosion point of
view crystallographic orientation of the electrodeposited hybrid coatings. It seems that the
crystallographic orientation (010) provides a denser coverage of the steel substrate, unlike
(011) where some cracks and gaps are likely to appear through which the corrosive agents
can reach the pad more easily.
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