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Abstract: The structural design of steel–titanium composite plates significantly affects their corrosion
resistance. To investigate the impact of defects of different shapes and sizes on the corrosion behavior
of steel–titanium composite plates, this study designed six types of defects and conducted a series
of characterization tests. The results showed that due to the galvanic interaction between carbon
steel and titanium alloy, small defects initially accelerate corrosion, resulting in 50% to 200% more
corrosion weight loss compared to large defects. However, in the later stages of immersion, the
corrosion rate of small defects decreased by up to 35%, which was attributed to the accumulation of
protective corrosion products. Additionally, there is an inverse relationship between the corrosion
rate and the thickness ratio of the composite plate. The reduction in the area of Q345B also results in
additional corrosion loss of up to 32%.

Keywords: titanium/steel composite plates; defect morphology; marine environment; corrosion
dynamics; thickness ratio

1. Introduction

Steel–titanium composite plate plates [1–4], as an emerging class of composite materi-
als, capitalize on the synergistic benefits of carbon steel’s superior mechanical properties
and cost-effectiveness, coupled with the corrosion resistance of titanium alloys [5,6]. This
combination has led to their extensive application in various large-scale infrastructure
projects, such as bridges, pipelines, and offshore platforms, offering significant advantages
in terms of cost-effectiveness and corrosion resistance. However, due to their unique
structure and inevitable defects, steel–titanium composite plates still face significant cor-
rosion challenges in harsh marine environments characterized by high humidity, high
temperatures, and corrosive ions [7–10].

Previous studies have extensively explored the corrosion behavior of these composite
plates in marine environments [11–13], focusing on aspects such as surface corrosion,
electrochemical behavior, and long-term stability. Li et al. investigated the performance
of 316L stainless steel and A6 carbon steel composite plates under neutral salt spray tests,
observing significant elemental overlap at the composite interface [12]. Patnaik et al.
indicated that the coupling of titanium with steel accelerates the corrosion of steel due to
titanium’s more noble position in the electrochemical series [13]. Prolonged exposure led
to accelerated corrosion along the interface of A6 carbon steel components, surpassing the
corrosion rate of the carbon steel matrix. Li et al.’s results indicate that the corrosion of
titanium–steel composite plates is influenced by various corrosion behaviors in both the
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near-interface and far-interface regions [5,6]. In regions far from the interface unaffected
by galvanic effects, the corrosion reaction begins with localized corrosion, which then
transitions to uniform corrosion. At the interface, carbon steel experiences accelerated
corrosion through galvanic effects in the early stages. In the later stages, once the corrosion
at the interface reaches a certain level, it transitions to a combined action of galvanic
corrosion and crevice corrosion.

In marine environments, various factors significantly influence the corrosion of titanium-
clad steel plates. Salinity, temperature, pH levels, and oxygen concentrations are pivotal in
determining the rate and nature of corrosion [14–19]. These environmental variables can ei-
ther accelerate corrosive processes or, in some instances, help form protective barriers on the
materials [20,21]. Liu et al. studied the corrosion behavior of steel–titanium composite plates
in different marine environments [22]. The composite interface area has a complex, layered
structure and can be divided into five areas. Among them, areas III and IV have higher electro-
chemical activity and are corrosion-inducing areas. The microcurrent in zone III is twice that of
carbon steel and titanium. At the same time, the accumulation of Cr in the corrosion product
layer promotes the generation of α-FeOOH, further improving the protection of the corrosion
product layer. Furthermore, effective strategies for corrosion prevention are essential in extend-
ing the lifespan of these composite materials. Techniques such as applying protective coatings,
implementing cathodic protection, or modifying the alloy composition are commonly employed.
However, the effectiveness of these strategies varies based on environmental conditions and
the specific application of the material. Additionally, the long-term durability and maintenance
of titanium-clad steel plates in harsh marine environments remain a critical concern. Regular
maintenance practices, proactive inspection schedules, and timely repairs play a crucial role in
ensuring the structural integrity and performance of these materials over time.

The presence of surface defects has been identified as a critical factor exacerbating
corrosion in composite plates. Hu et al. examined the galvanic corrosion behavior of
Titanium-Clad Steel Plates (TCSP) with defects penetrating the titanium layer from the
side and underside [11]. The galvanic corrosion on the TCSP side resulted in extensive
pitting corrosion, with pits distributed differently across splash zones, tidal zones, and
submerged areas. Severe corrosion occurred beneath TCSP titanium layer defects, with the
size of the defect impacting the density of corrosion products. Zhao et al.’s research showed
that defects increased the corrosion rate, and while welds did not alter the structure of the
corrosion product film, defects led to a lack of protective corrosion products [23]. Addition-
ally, defects invariably increase the corrosion rate. Under flowing systems, samples with
shallow defects tended to deepen radially, and under high shear rates [24], the upper and
rear edges of defects showed tendencies to deepen and expand the affected area. However,
existing studies lack a comprehensive understanding of the corrosion mechanisms and
influencing factors of various sizes and types of defects, leaving knowledge gaps that
require further exploration to address practical engineering challenges.

To deepen the understanding of the corrosion behavior of titanium–steel composite
plates in marine environments, this study focuses on pinpointing corrosion mechanisms in
simulated marine solutions, examining point defects [25–27], surface defects, and samples
with varying thickness ratios [28]. Through systematic experimental investigations, this
research aims to enhance the understanding of the corrosion mechanisms of titanium–steel
composite plates in marine settings, providing crucial insights for the design of more
corrosion-resistant engineering materials.

2. Materials and Methods
2.1. Immersion Test

This study conducts a comprehensive examination of the corrosion resistance of
titanium–steel composite plates, specifically focusing on different types of surface defects
and varying thickness ratios. The experimental design was structured into four distinct
periods: 7, 15, 30, and 45 days. The simulated marine environment for these experiments
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was using Xisha simulated solution, comprising 0.1 wt% NaCl, 0.05 wt% Na2SO4, and
0.05 wt% CaCl2, with a pH maintained at 4.9.

The experimental samples were categorized into three distinct groups based on their
defect types and thickness ratios, as illustrated in Figure 1a–c. The first two groups com-
prised three sets of point defect samples and three sets of line defect samples, respectively.
In these groups, the titanium plates were consistently 2 mm thick, while the Q345B steel
plates were 4 mm thick. The third group consisted of two types of titanium–steel composite
plates with varying thickness ratios. The specific thicknesses of the titanium and Q345B
steel in this group are depicted in Figure 1(c1,c2), designed with ratios of 1:4 and 1:1,
respectively. The sample size and structural design of three types of point defects and three
types of line defects are shown in Figure 1e,f. The chemical compositions of titanium alloy
plate and carbon steel are shown in Tables 1 and 2, respectively.
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Figure 1. Preparation process for specimen immersion and initial state after immersion. (a1–a3) are
samples with three types of point defects, (b1–b3) are samples with three types of point defects,
(c1,c2) are samples with two different thickness ratios, (d1–d4) show the four main steps of the
immersion experiment, (e) is the design drawing of three point defect samples, (f) is the design
drawing of three line defect samples.

Table 1. Chemical composition of titanium (wt%).

H C N O Si Fe Ti

0.002 0.03 0.01 0.01 0.04 0.18 Bal.



Metals 2024, 14, 652 4 of 21

Table 2. Chemical composition of Q345B low alloy steel (wt%).

C Si Mn P S Fe C

0.16 0.35 1.34 0.22 0.11 Bal. 0.16

2.2. Weight Loss Measurement

In this investigation, eight carbon steel specimens were methodically prepared, each
exhibiting varying exposed areas from 5.598 cm2 to 17.6 cm2. The initial preparation of each
sample involved a standard procedure of polishing, followed by degreasing using acetone
and subsequent cleansing with anhydrous ethanol. Upon drying, their initial weights were
meticulously recorded. The samples were then subjected to a series of four immersion
cycles, during which the non-experimental areas were carefully sealed. After each cycle,
the corrosion morphology was documented to track progressive changes.

The removal of rust was carried out in accordance with the GB/T16545-1996 stan-
dards [29], employing a designated solution and conducting the procedure within a fume
hood to ensure safety and accuracy. Following this, each specimen underwent ultrasonic
cleaning and was extensively rinsed with distilled water and anhydrous ethanol, after
which they were dried, and their post-corrosion weights were accurately measured. To
avoid errors, all measurements were performed three times and averaged in the final results.

To elucidate the influence of surface defects on the corrosion resistance of the specimens,
a detailed examination of their surface micromorphology post-rust removal was conducted
using a scanning electron microscope (SEM, ZEISS Gemini SEM 500, Jena, Germany).

2.3. Electrochemical Testing

Electrochemical measurement is carried out in PARSTAT4000A (AMETEK, San Diego,
CA, USA) electrochemical workstation. A standard three-electrode system comprising a
saturated calomel electrode (SCE) as the reference electrode, a Pt plate as the counter elec-
trode (CE), and specimens as the working electrode (WE) were hired in the electrochemical
test. Before the electrochemical experiment, the open circuit potential was measured for
60 min until it reached a stable state. When the dynamic polarization curve is measured, the
scanning rate is 0.5 mV/s, and the scanning potential ranges from 0.5VvsOCP to 0.5VvsOCP.
EIS tests were performed over the frequency range of 100 kHz to 0.01 Hz at open-circuit
potential (OCP) with a 10 mV sinusoidal amplitude. The EIS data were analyzed using the
ZsimpWin 3.1 software. The test solution was consistent with the soaking experiment. The
displayed results are selected based on tests conducted three times or more to ensure the
reproducibility of the experiment.

3. Results
3.1. The Impact of Point Defects

In Figure 2a, the first type of point defects shows these trends: After 7 days, slight
corrosion products accumulate around the through-hole, while noticeable corrosion, in-
dicated by red rust traces, appears in the non-through-hole area. At 15 days, rust layers
significantly increase in both regions, with noticeable corrosion products at the hole and
exposed carbon steel edges. By 30 days, surface rust flow is significantly enhanced for
both defect types. After 45 days, despite a slight increase in corrosion products and rust
flow, the corrosion rate slows, with minimal changes from the 30-day mark. The titanium
plate remains uncorroded, while the carbon steel surface shows progressively deepening
corrosion over time. In Figure 2b, the second type of point defect shows limited rust layer
accumulation in both through-hole and non-through-hole regions after 7 days of immersion
testing, with red rust streaks on the titanium plate surface. With increased immersion
time, corrosion products continue to accumulate in the through-hole area and gradually
increase in the non-through-hole area, filling the holes and accumulating externally. The
proportion of loose, easily detached red rust decreases, while dense rust layers significantly
accumulate in the hole defect area, and red rust streaks on the titanium plate deepen.
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After rust removal, corrosion traces inside the holes are slight at early stages but become
more pronounced with time, forming corrosion pits on the hole surfaces. In Figure 2c,
the third type of point defect shows more pronounced corrosion in both the through-hole
and surrounding non-through-hole areas. With prolonged immersion, corrosion products
gradually cover the entire exposed carbon steel surface, and red rust streaks become more
prominent. After rust removal, the dissolution of the steel matrix at the hole-like defect
areas is evident, with corrosion traces deepening over time.
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Figure 2. Macroscopic corrosion morphologies of different point-defect samples in simulated marine
solution after various immersion durations: (a) type I point defects; (b) type II point defects; (c) type
III point defects.
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After 45 days of immersion in a simulated marine solution, detailed observations were
made on the corrosion behavior of three types of point-defect titanium–steel composite
plates. As shown in Figure 3, the carbon steel surface with type I point defects exhibited sig-
nificant longitudinal corrosion, especially in areas far from the composite plate (Figure 3a).
Type II point defects displayed dense pitting on the carbon steel longitudinal surface, par-
ticularly in regions distant from the composite plate, with small, deep pits at the composite
interface (Figure 3b). Type III point defects exhibited uniform longitudinal corrosion in the
titanium–steel composite plates, with smaller and shallower pits (Figure 3c).
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In contrast, focusing on surface corrosion, as shown in Figure 4, the titanium–steel
composite plate with type I point defects exhibited uniform surface corrosion, with larger
corrosion pits and notable pitting. Longitudinal galvanic corrosion of titanium–steel was
more pronounced (Figure 4a). Type II point defects also showed uniform surface corrosion,
but the pits were smaller and shallower, with more evident accelerated longitudinal gal-
vanic corrosion (Figure 4b). Lastly, the titanium–steel composite plate with type III point
defects exhibited uniform surface corrosion (Figure 4c). Due to the differences between
ferrite and pearlite, deeper surface corrosion mainly occurred in ferrite areas, with less
accelerated galvanic corrosion.
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Figure 5 shows the weight loss and corrosion rate of the three types of point-defect
samples in the simulated marine solution after various immersion durations. The increasing
weight loss for all three types of point defects indicates an intensifying degree of corrosion.
The corrosion rate increased in the first three cycles and decreased in the fourth cycle
(45 days) due to the early formation of loose, easily detachable corrosion products. Among
them, the corrosion rate of point defect 1 dropped by 35%, and the corrosion rate of point
defect 2 dropped by 16%.
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Figure 5. (a) Weight loss and (b) corrosion rate of different point-defect samples in simulated marine
solution after various immersion durations.
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Over time, these products accumulated and became denser and harder to detach,
forming a protective layer and reducing the corrosion rate of carbon steel. In the simulated
marine solution, the period of increased corrosion rate for the three types of point defects
was longer than in a neutral salt spray environment. This is because the titanium–steel
composite plates corroded more severely in the salt spray environment, forming a dense
corrosion product film more quickly, hence the reduction in corrosion rate starting in
the third cycle. The decrease in corrosion rate with increasing defect size is due to the
significant effect of galvanic acceleration in small-sized defects. In the fourth cycle, the
accumulation of corrosion products in type I point defects provided some protection to the
carbon steel, leading to a reduced corrosion rate. The delay in the onset of the decrease in
the rate of type I point defects, compared to salt spray, is due to the overall lower corrosion
rate in the simulated marine solution, making it difficult to accumulate enough products to
fill the entire defect hole early on.

It can be seen from Figure 6a that the potentials of composite plates with three different
point defects are very close to the self-corrosion potential of carbon steel. As the size of point
defects increases, the potential shifts slightly positively. The galvanic current shifts slightly
negatively with increasing point defect size. The galvanic potential and galvanic current
change slightly with the size of point defects, and the corrosion rate of titanium/steel
galvanic pairs with small-size point defects is slightly larger, which is consistent with the
weight loss and characterization results.
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Figure 6. Continuous monitoring results of (a) open circuit potential and (b) galvanic current of three
different point defect samples.

3.2. The Impact of Linear Defects

As shown in Figure 7a, with increasing immersion time, significant corrosion occurred
inside the linear defects, with corrosion products accumulating within these defects. After
an initial 7-day immersion, the exposed carbon steel areas were filled with easily detachable
red rust due to the narrowness of type I linear defects and the ease of filling these defects
with galvanic corrosion when in contact with titanium. With time, the corrosion intensified,
and the rust layer became denser and continued to accumulate. After derusting, the
titanium alloy surface of the titanium–steel composite plate was visibly uncorroded, with
a metallic luster, while the carbon steel surface inside the linear defects became rougher
and showed clear signs of corrosion, which deepened over time. Figure 7b shows the
corrosion morphology of type II linear defect samples after various immersion durations.
After 7 days of immersion, the entire surface of the linear defect was covered with an
orange-yellow rust layer, which, after 15 days, transformed into a denser corrosion product
in about 80% of the area, with continuous accumulation and formation of more dense
rust layers over time. After derusting, the titanium alloy surface was uncorroded, but the
carbon steel surface inside the linear defects became increasingly rough, showing clear
signs of deepening corrosion. Figure 7c shows the corrosion morphology of type III linear
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defect samples in a simulated marine environment after various immersion durations. The
exposed carbon steel areas inside the linear defects were uniformly covered with corrosion
products, which were not very dense initially, exposing the carbon steel substrate. As
immersion time increased, more corrosion products accumulated, increasing their density.
After 45 days, all exposed carbon steel substrates were covered with corrosion products.
After derusting, the exposed carbon steel areas showed uniform corrosion, which deepened
over time.
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Figure 7. Macroscopic corrosion morphologies of linear-defect samples post various immersion
durations: (a) type I linear defects; (b) type II linear defects; (c) type III linear defects.

After 45 days of immersion in the simulated marine solution, the titanium–steel
composite plates with three types of linear defects showed unique characteristics in terms
of longitudinal corrosion. As shown in Figure 8, for type I linear defects, the surface point
defects of the titanium–steel composite plate exhibited uniform corrosion, but the corrosion
depth was slightly greater in areas closer to the titanium. Type II linear defects showed a
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difference in the density of pitting pits along the longitudinal direction of the carbon steel,
especially with denser pits near the composite interface, accompanied by deeper pits and
slight delamination. Additionally, longitudinal corrugated corrosion morphologies were
observed due to sample processing. Lastly, the situation with type III linear defects was
that the carbon steel had more and larger pitting pits near the composite interface, deeper
in depth, while areas farther from the interface exhibited uniform corrosion.
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Regarding surface corrosion, the titanium–steel composite plates with three types
of linear defects exhibited distinct characteristics. As shown in Figure 9, for type I linear
defects, the titanium–steel composite plate displayed uniform corrosion at the surface
defect sites, with varying depths, particularly near the titanium. This type also showed
pronounced longitudinal galvanic corrosion effects. In type II linear defects, pitting was
present, but overall surface corrosion was uniform, with smaller and shallower pits. Longi-
tudinal galvanic corrosion effects were also observed. Lastly, for type III linear defects, the
titanium–steel composite plate had dense pitting near the titanium but uniform corrosion in
areas farther away, with less pronounced longitudinal galvanic corrosion effects compared
to the other types.
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In the simulated marine solution, the weight loss and corrosion rate of the three
types of linear defects after various immersion durations are shown in Figure 10. The
corrosion rate pattern for all three types of linear defects was relatively uniform, increasing
initially and then decreasing due to the early formation of loose, easily detachable corrosion
products. With time, the products accumulated and became denser and harder to detach,
forming a protective layer on the substrate and reducing the corrosion rate. The corrosion
rate of the composite plates with linear defects decreased from type I to type III as the size
of the linear defects increased, reducing the area affected by the galvanic acceleration of the
titanium–steel couple. The reason for the difference in behavior compared to point defects
is that, although linear defects have the same width as point defects, they are continuous
along the length, making it harder for corrosion products to accumulate in linear defects
than in point defects. Similar to point defects, the corrosion rate of smaller line defects
(types 1 and 2) decreases more, about 20%, in the later stages of immersion.
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Figure 10. (a) Corrosion rate and (b) weight loss of linear-defect samples after various immer-
sion durations.

It can be seen from Figure 11a that as the size of the linear defect increases, the
potential shifts slightly positively. On the contrary, the galvanic current shifts negatively
with the increase in line defect size, and when the line defect size increases to type 3, the
negative shift of the curve is very large. This shows that increasing the size of line defects
in composite plates can slow down corrosion to a certain extent, which is consistent with
the weight loss and characterization results.
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Figure 11. Continuous monitoring results of (a) open circuit potential and (b) galvanic current of
three different line defect samples.

3.3. Impact of Different Thickness Ratios on the Corrosion of Titanium–Steel Composite Plates

Figure 12a reveals the corrosion patterns of 1:4 thickness ratio titanium–steel composite
plates after varying immersion times in a simulated marine environment. The carbon
steel on the titanium plate’s reverse side corrodes, with corrosion deepening and product
accumulation increasing over time. The side touching the titanium showed similar trends,
with pronounced corrosion at the interface. Figure 12b displays similar findings for 1:1
thickness ratio plates, showing increased surface corrosion over time. After de-rusting, the
carbon steel side shows severe corrosion, worsening with time. Initially, no holes were
evident at the interface, but they appeared after 30 days.
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Figure 12. Compares the corrosion morphologies of composite plates with (a) 1:4 and (b) 1:1 thickness
ratios after marine environment immersion tests.

For the titanium–steel composite plate with a thickness ratio of 1:4 immersed in a
marine simulated solution for 45 days, as shown in Figure 13, the carbon steel along
the longitudinal direction exhibited more numerous, larger, and deeper pitting near the
composite interface compared to farther regions, where corrosion was more uniform. The
carbon steel surface showed uniform corrosion with pit presence.
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Figure 13. The corrosion morphology of the titanium–steel specimen with a thickness ratio of 1:4 after
45 days of immersion in a simulated marine solution, post-rust removal: (a1–a3) are longitudinally;
(b1–b3) are laterally.

As shown in Figure 14, for the titanium–steel composite plate with a thickness ratio of
1:1 immersed for 45 days, the corrosion along the longitudinal direction was more severe
near the composite interface, with more pits that were larger and deeper compared to
farther regions. The overall corrosion severity was greater than that of the plate, with a
thickness ratio of 1:4. The carbon steel surface showed uniform corrosion with pit presence.
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Figure 14. The corrosion morphology of the titanium–steel specimen with a thickness ratio of 1:1 after
45 days of immersion in a simulated marine solution, post-rust removal: (a1–a3) are longitudinally;
(b1,b2) are laterally.

Figure 15 indicates that for both ratios, weight loss and corrosion severity increased
over time. The corrosion rates showed an initial increase, followed by a decrease, suggesting
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that corrosion products eventually form a protective layer. The corrosion rate per unit area
was higher in the 1:1 ratio plate than in the 1:4 plate, mainly due to changes in the carbon
steel component.
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Figure 15. The (a) weight loss and (b) corrosion rate of different thickness ratio titanium–steel
composite plate samples after immersion tests.

The polarization curves of two different titanium/carbon steel thickness ratio samples
(1:1 and 1:4) in the simulated solution are shown in Figure 16. The cathodic process of all
curves is clearly dominated by electron transfer, and their anodic process is controlled by
the dissolution of the Q345B matrix. The fitting results show that the thicker the carbon
steel, that is, the larger its area, the lower its corrosion current density (icorr). This is
consistent with the results of weight loss and microscopic characterization.
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Figure 16. Electrochemical polarization curve test results of steel plates with different thickness ratios.

Figure 17 shows the results of electrochemical impedance spectroscopy testing. Both
curves on the Nyquist plot exhibit a single semicircular arc, indicating that their electro-
chemical kinetics are controlled by charge transfer. It is worth noting that compared with
the 1:1 titanium/carbon steel composite plate, the curve corresponding to the titanium
alloy of the 1:4 titanium/carbon steel composite plate has a larger radius. Rs in the equiva-
lent circuit diagram represents the solution resistance, Rf and CPEf are the resistance and
capacitance of the membrane, respectively, and Rct represents the charge transfer resistance.
Fitting results show that thicker carbon steel can provide composite plates with higher
charge transfer resistance (Table 3), thereby slowing down corrosion.
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Figure 17. Electrochemical impedance spectroscopy test results of steel plates with different thickness
ratios: (a) Nyquist plot (with the equivalent circuit shown as an inset); (b) Bode-phase plot; (c) Bode-
|Z| plot.

Table 3. EIS fitting parameters of steel plates with different thickness ratios.

Sample RS
(Ω·cm2) n Rf

(Ω·cm2) n Rct
(Ω·cm2) n

1:1 119.2 0.89 58.9 0.89 995 0.89
1:4 125.6 0.89 62.6 0.89 1072 0.89

4. Discussion
4.1. Small-Scale Defects and Corrosion Dynamics

In the context of minor defects, the exposed carbon steel area, in conjunction with the
adjacent titanium alloy, forms a galvanic couple [30–32]. This electrochemical interaction
can be represented by the following reactions:

Fe → Fe2+ + 2e−

O2 + 2H2O + 4e− → 4OH−

The galvanic coupling significantly accelerates the oxidation of iron, subsequently
leading to a rapid accumulation of corrosion products, predominantly iron oxides and
hydroxides [33–35]. These corrosion products, over time, obstruct the diffusion paths for
oxygen and chloride ions [36,37], thus impeding further corrosion. This phenomenon can
be described by the formation of a semi-permeable barrier [38,39]:

Fe2+ + 2OH− → Fe(OH)2

4Fe(OH)2 + O2 → 2Fe2O3·H2O + 2H2O
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However, in larger defects, the localized galvanic effect is more pronounced at the
defect edges, leading to preferential corrosion in these regions. The hypothesis is that
the central areas of larger defects, being relatively isolated from the galvanic interaction,
experience a slower corrosion rate. This observation suggests a non-uniform corrosion
pattern influenced by defect size and distribution [40–42].

4.2. Impact of Thickness Ratio on Corrosion Rate

The corrosion rate per unit exposed area of titanium–steel composite plates increases
as the thickness ratio decreases. This phenomenon can be primarily attributed to the varia-
tions in surface area ratios between the anodic and cathodic regions [43,44], influenced by
the constant dimensions of the titanium alloy (cathode) and the variable dimensions of the
carbon steel (anode). In detail, the titanium alloy maintains a consistent cathodic surface
area, while the anodic area of carbon steel varies. This variation leads to a fluctuating
anodic-to-cathodic area ratio, which is a crucial factor in galvanic corrosion [45–48]. The
electrochemical principle that governs this behavior is based on the fact that the corro-
sion rate through the galvanic couple is a function of the surface area of both the anode
and cathode.

As the anodic area decreases, the anodic current density increases. This increase in
current density at the anode leads to a more rapid dissolution of the carbon steel, thereby
accelerating the overall corrosion process. Moreover, this inverse relationship between
anodic area and corrosion rate underlines the significance of balancing the thickness ra-
tio in composite material design. A smaller anodic area concentrates the galvanic effect,
intensifying the local corrosion [49]. Furthermore, the observed phenomenon suggests
that the distribution of the galvanic current over the anodic surface is not uniform, espe-
cially in the case of varying thickness ratios. This non-uniform distribution can lead to
localized areas of severe corrosion, which could compromise the structural integrity of the
composite material.

Therefore, optimizing the thickness ratio in the design of titanium–steel composite
materials is not only about achieving the desired mechanical properties but also about
mitigating the corrosion rate. This optimization would involve a careful balance between
the structural requirements and the corrosion resistance properties, possibly leading to
innovative designs that extend the lifespan and enhance the durability of such materials in
corrosive environments.

4.3. Corrosion Mechanisms of Defective Titanium/Steel Composite Plates

In simulated oceanic solutions, the corrosive attack on carbon steel involves a complex
interaction of ions, primarily Cl− [50–52], SO4

2− [52,53], and Ca2+ [50,54]. The presence of Cl−

and SO42− ions disrupts the passive layer of iron, potentially through the following reactions:

Fe + 2Cl− → FeCl2

Fe + SO4
2− → Fe2SO4 + 2e−

These reactions lead to the breakdown of passivity and acceleration of corrosion, often
resulting in pitting corrosion [55,56]. On the other hand, Ca2+ ions are hypothesized to
play a role in inhibiting corrosion by decreasing the porosity of the corrosion product film,
although their limited concentration in this study resulted in a minimal protective effect.

At the anode, the dissolution of carbon steel, as previously mentioned, is coupled with
the oxygen reduction reaction at the cathode, primarily occurring on the titanium alloy:

O2 + 2H2O + 4e− → 4OH−

The proximity of carbon steel to titanium alloy exacerbates the corrosion at the inter-
face, suggesting that the galvanic interaction plays a pivotal role in the localized corrosion
dynamics (Figure 18).
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5. Conclusions

In summary, our study reveals that the corrosion mechanism of titanium/steel com-
posite plates in a simulated marine environment is complex and significantly influenced by
defect size and thickness ratio:

(1) Small-scale defects accelerate initial corrosion but eventually lead to a decrease in
corrosion rate due to the buildup of protective corrosion products. Larger defects
show a more localized corrosion impact.

(2) The overall corrosion rate in a simulated marine environment has a distinct negative
correlation with defect size.

(3) When the thickness of the anode carbon steel in the composite plate increases, both
RCT and RF increase and the corrosion loss is reduced by 32%, which can slow down
the corrosion rate.
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