Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis Methods
2.3. Experimental Procedure
3. Results and Discussion
3.1. Mineralogical Characteristics of the Clinker
3.2. Optimizing Zinc Recovery: Efficacy of Microwave-Assisted Versus Traditional Electrothermal Calcination of Clinker
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Information Agency INSIDER. Observed Growth in Zinc Prices on the London Metal Exchange (LME) Market Overview. Available online: https://metallicheckiy-portal.ru/index-cen-lme (accessed on 31 March 2024).
- Kaplunov, D.R. Rationale for the role and significance of geotechnological modules in the design of combined development of ore deposits. In Combined Geotechnology: Comprehensive Development and Preservation of the Earth’s Subsoil; Magnitogorsk State Technical University: Magnitogorsk, Russia, 2011; pp. 12–22. [Google Scholar]
- Annually, Kazakhstan Produces 300 Thousand Tons of Zinc and 150 Thousand Tons of Lead. Available online: https://dknews.kz/ru/ekonomika/105991-v-kazahstane-ezhegodno-proizvoditsya-300-tysyach-tonn (accessed on 18 June 2020).
- Review of Price Dynamics for Key Products in the Mining and Metallurgical Sector. Available online: https://home.kpmg/content/dam/kpmg/ru/pdf/2019/10/ru-ru-metals-and-mining-prices-report-3q-2019.pdf (accessed on 22 December 2023).
- Esezobor, D.E.; Balogun, S.A. Zinc accumulation during recycling of iron oxide wastes in the blast furnace. Ironmak. Steelmak. 2006, 33, 419–425. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2020; U.S. Geological Survey: Reston, VA, USA, 2020; p. 200. [Google Scholar] [CrossRef]
- Yang, C.; Sun, B. Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process. In Emerging Methodologies and Applications in Modelling; Identification and Control; Academic Press: Cambridge, MA, USA, 2021; pp. 213–221. [Google Scholar] [CrossRef]
- Klein, S.E.; Kozlov, P.A.; Naboychenko, S.S. Extraction of Zinc from Ore Raw Materials; Ural State Mining University: Yekaterinburg, Russia, 2009; p. 492. [Google Scholar]
- Akhtamov, F.E.; Nishonov, B.U. On the issue of processing zinc cakes. Theory Technol. Metall. Prod. 2016, 1, 69–72. Available online: https://cyberleninka.ru/article/n/k-voprosu-pererabotki-tsinkovyh-kekov (accessed on 22 December 2023).
- Naboychenko, S.S.; Karelov, S.V.; Mamayachenkov, S.V.; Yakornov, S.A. Complex processing of zinc-containing technogenic wastes of Ural copper smelting enterprises. Min. J. 1997, 11–12, 250–255. [Google Scholar]
- Kozlov, P.A. Extraction of a range of non-ferrous and rare metals from industrial waste: Physico-chemical basis and technical solutions. Tsvetnye Met. 2020, 5, 28–36. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fediuk, R.; Kolesnikova, O.G.; Zhanikulov, N.N.; Zhakipbayev, B.; Kuraev, R.M.; Akhmetova, E.; Shal, A. Processing of Waste from Enrichment with the Production of Cement Clinker and the Extraction of Zinc. Materials 2022, 15, 324. [Google Scholar] [CrossRef]
- Yessengaziyev, A.; Kenzhaliyev, B.; Berkinbayeva, A.; Sharipov, R.; Suleimenov, E. Electrochemical Extraction of Pb and Zn from a Collective Concentrate Using a Sulfur-Graphite Electrode as a Cathode. J. Chem. Technol. Metall. 2017, 52, 975–980. [Google Scholar]
- Beisembaev, B.B.; Kenzhaliyev, B.K.; Gorkun, V.I.; Govyadovskaya, O.U.; Ignatyev, M.M. Deep Processing of Lead-Zinc Ores and Intermediary Products with Receiving of Products with Increased Marketability. Almaty 2002, 3, 220. [Google Scholar]
- Singh, C.; Khanna, V.; Singh, S. Sustainability of Microwave Heating in Materials Processing Technologies. Materials Today: Proceedings. 2022. Available online: https://www.sciencedirect.com/science/article/pii/S2214785322048398 (accessed on 25 July 2022).
- Toshkodirova, R.E.; Abdurakhmonov, S. Processing of Clinker—Technogenic Waste of Zinc Production. Univers. Tech. Sci. 2020, 11, 78–81. [Google Scholar] [CrossRef]
- Lobanov, V.G.; Kolmachikhina, O.B.; Polygalov, S.E.; Khabibulina, R.E.; Sokolov, L.V. Features of the Presence of Precious Metals in the Zinc Production Clinker. Russ. J. Non-Ferr. Met. 2022, 63, 594–598. [Google Scholar] [CrossRef]
- Li, J.; Niu, H.; Peng, J.; Zhang, S.; Zhang, L.; Wei, X.; Fan, X.; Huang, M. Present Situation and Prospect about Comprehensive Utilization of Zinc Kiln Slags. Multipurp. Util. Miner. Resour. 2008, 6, 44–48. [Google Scholar] [CrossRef]
- Ramesh, S.; Teng, W.D.; Sopyan, I.; Bang, L.T.; Sarhan, A.A.D. Comparison between microwave and conventional sintering on the properties and microstructural evolution of tetragonal zirconia. Ceram. Int. 2018, 44, 8922–8927. [Google Scholar] [CrossRef]
- Kamariah, N.; Kalebic, D.; Xanthopoulos, P.; Blannin, R.; Araujo, F.P.; Koelewijn, S.F.; Spooren, J. Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. Miner. Eng. 2022, 183, 107587. [Google Scholar] [CrossRef]
- Soni, A.; Smith, J.; Thompson, A.; Brightwell, G. Microwave-induced thermal sterilization-A review on history, technical progress, advantages, and challenges as compared to conventional methods. Trends Food Sci. Technol. 2020, 97, 433–442. [Google Scholar] [CrossRef]
- Kalebic, D.; Dehaen, W.; Spooren, J. Additive-Free Aqueous Extraction of Copper and Zinc from Sulfidic Tailings Using Fast Microwave-Assisted Pre-and Post-Treatments. Ind. Eng. Chem. Res. 2022, 61, 13303–13313. [Google Scholar] [CrossRef]
- Wei, W.; Shao, Z.; Zhang, Y.; Qiao, R.; Gao, J. Fundamentals and applications of microwave energy in rock and concrete processing—A review. Appl. Therm. Eng. 2019, 157, 113751. [Google Scholar] [CrossRef]
- Feng, D.; Bai, L.; Xie, H.; Tong, X. Study on separation of low-grade zinc oxide ore with sulfurization-amination flotation. Physicochem. Probl. Miner. Process. 2019, 55, 1082–1090. [Google Scholar]
- Hamidi, A.; Nazari, P.; Shakibania, S.; Rashchi, F. Microwave irradiation for the recovery enhancement of fly ash components: Thermodynamic and kinetic aspects. Chem. Eng. Process. 2023, 191, 109472. [Google Scholar] [CrossRef]
- Kumar, P.; Ingle, A.; Jhavar, S. Parametric review of microwave-based materials processing and its applications. J. Mater. Res. Technol. 2019, 8, 3306–3326. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Gao, L.; Li, K.; Omran, M.; Chen, G. Enhanced Leaching of Zinc from Zinc-Containing Metallurgical Residues via Microwave Calcium Activation Pretreatment. Metals 2021, 11, 1922. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, L.; Yang, K. Application of the Microwave and Ultrasonic Combined Technique in the Extraction of Refractory Complex Zinc Ore. Superalloys 2023, 13, 356. [Google Scholar] [CrossRef]
- Erans, M.; Durán-Jimenez, G.; Rodríguez, J.M.; Stevens, L.; Dodds, C. Microwave Thermal Pre-treatment and Calcination of Biomineralised Sorbents for Calcium Looping. J. CO2 Util. 2024, 83, 102794. [Google Scholar] [CrossRef]
- Okress, O. (Ed.) Title in English: Microwave Power Engineering; Mir: Moscow, Russia, 1971; p. 272. [Google Scholar]
- Karimi, S.; Rashchi, F.; Ghahreman, A. The Evaluation of Sphalerite Surface Formed During Oxidative Leaching in Acidic Ferric Sulfate Media. J. Sustain. Metall. 2021, 7, 1304–1313. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Wu, Y. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials. J. Eur. Ceram. Soc. 2020, 40, 2130–2140. [Google Scholar] [CrossRef]
- Junwei, H.; Liu, W.; Zhang, T.; Xue, K.; Li, W.; Fen, J.; Qin, W. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature. Sci. Rep. 2017, 7, 42536. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-K.; Yang, C.-Y. A study on the preparation of zinc ferrite. Scand. J. Metall. 2001, 30, 238–241. [Google Scholar]
- Xin, C.; Xia, H.; Jiang, G.; Zhang, Q.; Zhang, L.; Xu, Y. Studies on Recovery of Valuable Metals by Leaching Lead–Zinc Smelting Waste with Sulfuric Acid. Minerals 2022, 12, 1200. [Google Scholar] [CrossRef]
- Li, H.X.; Li, B.W.; Deng, L.B.; Xu, P.F.; Du, Y.S.; Ouyang, S.L.; Liu, Z.X. Evidence for non-thermal microwave effect in processing of tailing-based glass-ceramics. J. Eur. Ceram. Soc. 2019, 39, 1389–1396. [Google Scholar] [CrossRef]
- Li, H.; Shi, S.; Lin, B.; Lu, J.; Lu, Y.; Ye, Q.; Wang, Z.; Hong, Y.; Zhu, X. A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal. Fuel Process. Technol. 2019, 189, 49–61. [Google Scholar] [CrossRef]
Elemental Content, % | |||||||||||
O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Ti | Cr |
41.644 | 0.173 | 1.030 | 0.912 | 4.581 | 0.055 | 0.807 | 0.011 | 0.109 | 3.807 | 0.101 | 0.020 |
Mn | Fe | Ni | Cu | Zn | As | Sr | Zr | Mo | Sb | Ba | Pb |
0.110 | 37.532 | 0.033 | 1.037 | 1.217 | 0.138 | 0.043 | 0.012 | 0.026 | 0.034 | 0.825 | 0.154 |
Compound Name | Formula | S-Q, % |
---|---|---|
Hematite | Fe2O3 | 24.2% |
Magnesium iron oxide | Mg1.55Fe1.6O4 | 18.2% |
Diopside, ferrian | Ca1.007(Mg0.805Fe0.214) ((Si1.75Fe0.241)O6) | 16.5% |
Calcium magnesium iron aluminum silicate | Ca2(Mg,Fe+3,Al)6(Si,Al)6O20 | 15.1% |
Gypsum | CaSO4·2H2O | 12.2% |
Quartz | SiO2 | 8.1% |
Albite, potassian | (K0.22Na0.78)(AlSi3O8) | 4.4% |
Sphalerite | ZnS | 1.4% |
Indicator Name | Experiment No. 1 | Experiment No. 2 | Experiment No. 3 | Experiment No. 4 |
---|---|---|---|---|
Microwave power, kW | 25 | 25 | 25 | 25 |
Wave frequency, MHz | 915 | 915 | 915 | 915 |
Duration of experiment, min | 5–7 | 5–7 | 5–7 | 5–7 |
Temperature, °C | 250 | 460 | 600 | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhaliyev, B.; Surkova, T.; Berkinbayeva, A.; Baltabekova, Z.; Smailov, K. Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals 2024, 14, 699. https://doi.org/10.3390/met14060699
Kenzhaliyev B, Surkova T, Berkinbayeva A, Baltabekova Z, Smailov K. Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals. 2024; 14(6):699. https://doi.org/10.3390/met14060699
Chicago/Turabian StyleKenzhaliyev, Bagdaulet, Tatiana Surkova, Ainur Berkinbayeva, Zhazira Baltabekova, and Kenzhegali Smailov. 2024. "Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker" Metals 14, no. 6: 699. https://doi.org/10.3390/met14060699
APA StyleKenzhaliyev, B., Surkova, T., Berkinbayeva, A., Baltabekova, Z., & Smailov, K. (2024). Harnessing Microwave Technology for Enhanced Recovery of Zinc from Industrial Clinker. Metals, 14(6), 699. https://doi.org/10.3390/met14060699