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Abstract: The emergence of biodegradable stents addresses the limitations of the long-term pres-
ence of permanent bare metal stents in the human body. Following implantation, these stents can
significantly reduce the occurrence of chronic complications such as inflammation and thrombosis,
thus becoming a mainstream approach in the treatment of interventional cardiovascular diseases.
Currently, the materials used for biodegradable stents are typically polymers. However, the inherent
properties of the materials dictate that polymer stents exhibit lower mechanical performance and
biocompatibility. Magnesium alloy materials, on the basis of their biodegradability, exhibit superior
mechanical performance when compared to polymers, possessing the potential to address this issue.
However, the presence of stress concentration in the stent structure necessitates further designs and
mechanical performance analyses of magnesium alloy stents. In this work, a biodegradable stent
based on WE43 alloy is designed. The stent incorporates the micro-protrusion structure to enhance
the mechanical performance. Furthermore, to evaluate the clinical applicability of the stent, the
mechanical performance of the biodegradable magnesium alloy stent is conducted through finite
element analysis (FEA). The results show that the maximum equivalent stress in all four aspects
is below the ultimate tensile strength of 370 MPa for the WE43 magnesium alloy, demonstrating
excellent mechanical performance. Additionally, after crimping and expansion, the radial support
strength and radial support force reached 780 mN/mm and 1.56 N, respectively. Compared to the
advanced reported stent structures, the radial support strength and radial support force are enhanced
by 13% and 47%, respectively. Additionally, flexibility analysis indicated that the flexibility of the
stent design in this study is improved by a factor of 9.76, ensuring the stent’s capability to navigate
through complex vasculature during implantation.

Keywords: vascular stent; biodegradable stent; magnesium alloy; finite element analysis; fatigue
analysis

1. Introduction

Currently, coronary artery disease is the leading cause of death globally among car-
diovascular diseases (CVDs). With changes in human living environments and lifestyles,
the prevalence of CVDs continues to rise [1,2]. It necessitates innovative medical interven-
tions to effectively treat acute coronary syndromes. At present, coronary artery bypass
grafting and percutaneous coronary interventions (PCIs) serve as vital methods for the
prevention and treatment of CVDs, aside from pharmacological treatments. PCI, based
on stent implantation technology, plays a crucial role in restoring vascular patency [3–5].
Traditional vascular stents, including bare-metal stents and drug-eluting stents, have been
used to prevent arterial collapse post-balloon angioplasty [6,7]. However, their permanent
presence in the body post-implantation leads to complications such as in-stent resteno-
sis [8–11], chronic inflammation, and late thrombosis [12–14]. Furthermore, permanent
stents can create artifacts in diagnostic imaging such as magnetic resonance imaging and
CT angiography. This phenomenon will complicate diagnostic process [15–17]. To address
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these issues, biodegradable stent technology has been proposed and is rapidly developing.
It provides temporary vascular support until the positive remodeling of the diseased ves-
sel is completed, ultimately degrading to eliminate the risks associated with permanent
implantation [18–20].

Initial research on biodegradable stents primarily focused on polymer materials. The
PLLA material, owing to its excellent biocompatibility, is more suitable for stent struc-
tures [21]. However, the mechanical properties of polymers typically fall short of traditional
metal materials. Weak mechanical properties can lead to poor adherence to the vascular
wall, thereby increasing the risk of late thrombosis [22]. Jinnouchi et al. summarized six
fundamental causes of late in-stent thrombosis, induced by biodegradable polylactic acid
stents [23]. Additionally, studies by Wang et al. observed that the asymmetric degradation
of polylactic acid is a primary cause of stent inflammation responses, recoil, fracture, and
stent failure [24,25]. To ensure sufficient support strength, it is necessary to increase the
thickness of the stent struts, which may lead to complications such as late thrombosis and
in-stent restenosis.

Magnesium, an essential mineral for the human body, exhibits superior biocompat-
ibility. Meanwhile, the degradation rate with the healing process of vascular tissues is
compatible. It ensures that the long-term complications associated with traditional metal
stents are not present during the support period. Magnesium alloy materials exhibit
superior mechanical properties when compared to polymers, demonstrating significant
advantages [26,27]. Furthermore, the gradual loss of the mechanical integrity of magnesium
alloys occurs in a controlled manner, providing sufficient support until the vessel has fully
healed and can withstand normal physiological stresses [28,29].

Therefore, numerous studies have been conducted on magnesium alloy vascular
stents. In 2003, Biotronik, a German company, implanted WE43 magnesium alloy stents
into porcine coronary arteries. After 35 to 36 days post-implantation, vascular remodeling
and luminal expansion are observed without any inflammatory reactions in the pigs [30].
Researchers Di Mario [31] and Waksman [32] noted that magnesium alloy stents begin
endothelialization on the 6th day post-implantation, earlier than ABSORB poly-lactic acid
stents. Furthermore, the results indicated that the stents began to degrade on the 28th day
after implantation. By 2016, Biotronik’s magnesium alloy stent, Magmaris, successfully
received CE certification from the European Union [33–36]. Clinical trials demonstrated that
the Magmaris stent exhibited high safety and efficacy six months post-implantation [37].
Additionally, the incidence of in-stent thrombosis is 0% at six months and 0.5% at twelve
months post-implantation, leading to a shortened duration of dual antiplatelet therapy for
patients due to the low thrombosis rate.

In this context, the WE43 magnesium alloy is one of the most promising options. WE43
degrades through corrosion, releasing ions that are either naturally absorbed by the body
or excreted through physiological processes [38,39]. Despite these benefits, the mechanical
behavior of magnesium alloy stents under physiological conditions post-implantation
remains unclear, limiting their application [40]. Additionally, due to the small size of
cardiovascular stents, constructing an experimental setup to simulate real conditions is
challenging. Furthermore, uncertainties also exist in animal experiments. Therefore, the
numerical simulation of the vascular stent implantation-service process has become an
important means of predicting stent performance. In this study, a biodegradable stent
based on the WE43 magnesium alloy was initially designed. Finite element analysis (FEA)
techniques are employed to simulate the mechanical behavior of the stent under various
implantation-service conditions. The maximum equivalent stresses during the crimping
process are 277.9 MPa and 243.5 MPa, respectively, which is below the ultimate tensile
strength of the WE43 magnesium alloy (370 MPa). After crimp expansion, the radial
support strength reached up to 780 mN/mm. These results provide a comprehensive
assessment for the clinical applications of the stent.
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2. Materials and Models
2.1. Structural Design of Stent

The stents manufactured based on laser etching manufacturing technology are typi-
cally composed of support rings and connecting struts. The support rings, which directly
sustain the diseased vessels, usually consist of multiple repeating basic units arranged in
sequence. The connecting struts serve to link the adjacent support rings. The optimized
design of the magnesium alloy support rings is shown in Figure 1a. The support rings of
the stent employ a sinusoidal waveform shape as the supporting unit, and the connecting
struts are designed with an arc structure. Typically, stress concentration occurs at the bends
of stent structures, leading to the service failure of the stent. To reduce the occurrence of
stress concentration during the stent’s service, the tops of the support rings are designed
with a convex platform to facilitate stress release. Micro-protrusion structures serve to
increase the wall thickness at the bends of the stent. This structural design aims to optimize
the stent’s flexibility and support strength to adapt to complex vascular environments.
According to ISO 25539-2:2020 [41], stents should be compatible with the dimensions of
the vessel. Additionally, the Chinese standard YY/T 0693-2008 [42] specifies that the stent
diameters should range between 3 mm and 5 mm. Therefore, a 3 mm stent is utilized in
this study.
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Figure 1. Vascular stent modeling. (a) support ring model; (b) mesh delineation; (c) real and
engineering stress–strain curves for WE43 magnesium alloys; (d) mesh model of the initial state of
the stent.

2.2. Geometry Model of Stent

The planar model of the vascular stent is drawn using Solidworks (2023, Dassault
Systèmes, Waltham, MA, USA) software. The mesh division and mesh biasing operations
are completed in Hypermesh (2021.2, Altair Engineering Inc., Troy, MI, USA), as illustrated
in Figure 1b,d. Subsequently, the mesh model is imported into Abaqus, and the annular
bending is performed using the WrapMesh (2023) plugin. The three-dimensional model
of the stent, as shown in Figure 1d, has a length of 15 mm, an outer diameter of 3 mm,
and a wall thickness of 160 µm. In the mechanical performance analysis, the stent under-
goes significant plastic deformation, necessitating the simulation software to accurately
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handle large deformation nonlinear problems. Therefore, the static analysis module of
Abaqus/Standard (Dassault Systèmes Simulia Corp., Johnston, RI, USA) is employed for
the simulations in this study.

2.3. Material Properties

The WE43 magnesium alloy (3.94 wt% Y, 1.47 wt% Gd, 2.33 wt% Nd, and 0.52 wt%
Zr) [43] is selected as the fabrication material of the stent. The density of the WE43
magnesium alloy is 1.84 × 103 kg/m3, the Young’s modulus is 45 GPa, the Poisson’s ratio
is 0.35, and the yield strength is 199 MPa [44]. The engineering stress–strain curve of the
WE43 magnesium alloy is depicted as the red line in Figure 1c. However, engineering stress–
strain curves do not accurately descript the true mechanical properties of the materials.
Consequently, it is necessary to derive the true stress–strain curves for magnesium alloys.
The detailed derivation process can be found in the Supplementary Materials (S1–S9).

Following the derivation process in the appendix, the constitutive model of the WE43
magnesium alloy is established. The transformed true stress–strain curve for the magne-
sium alloy is represented by the blue line in Figure 1c, from which the ultimate tensile
strength of 370 MPa is obtained.

2.4. Meshing

In the finite element model of vascular stents, the commonly selected mesh types are
the four-node shell element and the hexahedral element [45]. Four-node shell elements are
used for simulating thin-shell problems, while hexahedral elements are widely applied
to handle orthogonal structures. In this study, both the expansion shell and crimping
shell, as well as the rigid platen, utilize the rigid four-node shell element S4R for meshing.
For the vascular stent, which often has a periodically repeating structure, the hexahedral
C3D8R mesh is employed to enhance the precision and efficiency of the calculations. The
magnesium alloy stent elements have a size of 40 µm, with a total of 111,744 elements,
using a 4 × 4 division method for meshing.

2.5. Boundary Conditions and Load Settings
2.5.1. Crimping and Expansion Process

After the biodegradable magnesium stent is delivered to the lesion, the radial dis-
placement, or the vessel position, it radially expands under balloon action, undergoing
plastic deformation to support the diseased vessel. The magnesium alloy is fragile during
the crimping and expansion. Therefore, it is crucial to simulate this process. During the
stent crimping and expansion process, the constraints and loads on the stent model must
be properly set. The crimping-expansion process of the stent consists of four stages. The
values of the loads in the process is according to the ISO 25539-2:2020 and the Chinese
standard YY/T 0693-2008, with corresponding load applications as follows:

(1) Crimping: The radial displacement load is applied to the crimping shell, compressing
the stent from an outer diameter of 3 mm to 2 mm. Constraints are applied to
the crimping shell to prevent rigid body displacement and rotation, allowing only
radial deformation.

(2) Recoil: Set the radial displacement load of the crimping shell to x = 0 mm, allowing
the stent to elastically recover, and the crimping shell returns to its initial position.

(3) Expansion: The radial displacement load is applied to the expansion shell, expanding
the stent from an outer diameter of 2 mm to 4 mm. The constraints are similar to those
during the crimping process, and the contact elements between the crimping shell
and the outer surface of the stent are deactivated.

(4) Expansion unloading: Set the radial displacement load of the expansion shell to
x = 0 mm, allowing the stent to elastically recover.
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2.5.2. Radial Support Testing Process

After crimping and expansion, the stent undergoes plastic deformation, followed by
radial support force testing. During the complete compression process of the stent, the
stent model must be correctly constrained and loaded. It is essential to ensure that during
the radial support force testing, the cross-sectional shape of the stent changes without any
slippage or displacement in other directions. To simulate the actual compression process
of the stent, a smooth hard contact between the stent and the plate is set, with a penalty
function of 0.2 to constrain the stent. The applied loads simulating the radial support
performance of the stent are as follows:

(1) Planar compression: The radial displacement is applied to 12 planar compression
plates, crimping the magnesium alloy vascular stent to 2 mm [46]. The rigid body
displacements and rotations of the planar compression plates are constrained in all
directions except for the radial direction, thus allowing only the radial displacement
loads. Circumferential constraints are applied at both ends of the stent to prevent
rotation, and axial constraints are applied at the center of the stent to prevent axial
rigid body displacement.

(2) Planar compression unloading: The radial displacement load r = 0 mm is applied
to the planar compression plates to allow the elastic recovery of the stent while the
planar compression plates return to their initial positions.

2.5.3. Flexibility Analysis Process

In the FEA model, bending moments are directly applied to both ends of the stent.
Initially, rigid control points are established at the axial positions of both ends of the
stent in order to facilitate the application of uniform bending moments. The degrees of
freedom of the rigid control points and the nodes at the stent ends are coupled, respectively.
Simultaneously, a vertical direction bending moment M must be applied to the control
points, where the magnitude of the moments is equal but in opposite directions. To prevent
translational and rotational movements of the model, the degrees of freedom at the control
points need to be constrained.

2.5.4. Fatigue Performance Process

After crimping and expansion, the stent undergoes plastic deformation, followed by
fatigue performance testing. A cylindrical tube is used to simulate a real blood vessel, and
a cyclic pressure load is applied to the simplified vascular model. The pressure values
range from 0.0107 MPa to 0.0203 MPa, simulating the extreme values of blood pressure that
the stent would encounter, corresponding to a patient diastolic pressure of 80 mmHg and a
systolic pressure of 160 mmHg [47]. This value corresponds to the typical blood pressure
range of a stage 2 hypertensive patient, indicating a relatively high pressure. The fatigue
performance analysis involves repeatedly applying pulsatile cyclic loads to evaluate the
stent’s durability under these conditions.

3. Analysis of the Mechanical Properties of the Stent
3.1. Crimping and Expansion Analysis

In the crimped and expanded states, the stent initially undergoes elastic deformation
before transitioning to plastic deformation. The corresponding equivalent stress contour
maps are shown in Figure 2a,b, respectively. The design of the sinusoidal support rings and
the arc-shaped connecting struts ensures that the stent body can deform uniformly without
interference, thereby guaranteeing the feasibility of the stent during the implantation
process. In the sinusoidal wave support ring at phase zero and the bridge position, the
maximum equivalent stress is less than 120 MPa. The maximum equivalent stress in the
bent sections of the support ring ranges between 185 MPa and 243.5 MPa, which is only
50–66% of the magnesium alloy’s ultimate tensile strength (370 MPa). For the crimping
process, the maximum equivalent stress is 238.1 MPa. Correspondingly, the maximum
equivalent stress during the expansion process is 243.5 MPa.
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The equivalent stresses during the crimping and expansion processes are both below
the ultimate tensile strength of the magnesium alloy material, which is 370 MPa. This
effectively prevents the structural failure of the stent due to stress concentration. It is
primarily attributed to the micro-protrusion structure of the support rings, which effectively
reduces stress concentration, thereby preventing structural failure. Additionally, both the
axial shortening ratio and radial elongation rate during crimping and expansion are low,
thus meeting the practical requirements for stent use. Compared to the advanced reported
magnesium alloy stents, the stent designed in this study exhibits superior crimping and
expansion performance [45,48]. Specifically, the described stent tends to fracture during
expansion to 4 mm, whereas the stent designed in this study continues to function normally
under the same conditions.

3.2. Radial Support Analysis

Radial support performance is a critical mechanical property of vascular stents, as
the strength of radial support directly influences the effectiveness of vessel remodeling
post-stent implantation. Currently, there is no unified testing standard for the radial sup-
port performance of vascular stents. Kwiecinski et al. employed a planar compression
testing method to investigate the mechanical performance of stents under radial loading.
Consequently, this study utilizes a planar compression method in simulations to accurately
extract the radial support performance [49]. Common testing methods include the planar
compression test and the radial compression test. This study employs the radial compres-
sion method, where the characteristic parameter is the radial support force. To quantify the
radial support performance of the stent, the radial support force is normalized to the radial
support strength Pload, expressed as follows:

PLoad =
F

Lcrimp
(1)

where F represents the radial support force and Lcrimp denotes the radial compression distance.
To obtain the radial support force, 12 rigid planar compression plates are added to

stent geometric model, as shown in Figure 3a. The interaction between the stent and the
plates is modeled as smooth hard contact, with the penalty function set to 0.2 to constrain
the stent. After the stent is crimped and expanded, the radial displacement load is applied
to the rigid planar compression plates, compressing the stent to the diameter of 2 mm.
Figure 3b shows the stress contour map from the planar compression plate test, where the
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maximum equivalent stress in the stent during this test is 277.9 MPa, which is below the
fracture stress of 370 MPa for the WE43 magnesium alloy.

Metals 2024, 14, x FOR PEER REVIEW 7 of 15 
 

 

maximum equivalent stress in the stent during this test is 277.9 MPa, which is below the 

fracture stress of 370 MPa for the WE43 magnesium alloy. 

The relationship between the stent’s radial support force and its diameter is depicted 

in Figure 4. In the initial phase of compression (A–C), the radial support force and diam-

eter exhibit a linear relationship. During this process, the stent undergoes only elastic de-

formation. As the compression distance of the rigid plates is increased further (C–B), the 

stent undergoes plastic deformation, and the relationship between the support force and 

diameter becomes nonlinear. As shown in Figure 4, the maximum radial support force 

provided by the stent is 1.56 N. Substituting this value into Equation (1), the radial support 

strength of the stent after undergoing crimping and expansion is calculated to be 780 

mN/mm. The advanced reported stent structure has a radial support strength of 692 

mN/mm and a radial support force of 1.06 N. The stent designed in this study demon-

strates a performance improvement of 13% and 47%, respectively [45,48]. 

 

Figure 3. The process of planar compression plate test. (a) Platen stent FEA analysis model; (b) stent 

mises stress contour map of the radial support force. 
Figure 3. The process of planar compression plate test. (a) Platen stent FEA analysis model; (b) stent
mises stress contour map of the radial support force.

The relationship between the stent’s radial support force and its diameter is depicted
in Figure 4. In the initial phase of compression (A–C), the radial support force and di-
ameter exhibit a linear relationship. During this process, the stent undergoes only elastic
deformation. As the compression distance of the rigid plates is increased further (C–B),
the stent undergoes plastic deformation, and the relationship between the support force
and diameter becomes nonlinear. As shown in Figure 4, the maximum radial support
force provided by the stent is 1.56 N. Substituting this value into Equation (1), the radial
support strength of the stent after undergoing crimping and expansion is calculated to
be 780 mN/mm. The advanced reported stent structure has a radial support strength
of 692 mN/mm and a radial support force of 1.06 N. The stent designed in this study
demonstrates a performance improvement of 13% and 47%, respectively [45,48].
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3.3. Flexibility Analysis

Flexibility determines whether a stent can smoothly enter a lesioned area of a vessel
post-crimping. Bending stiffness is commonly utilized to quantify flexibility. The prevalent
testing methods include the three-point bending test and the direct application of bending
moments at both ends of the stent. The method of applying bending moments at both ends
allows for the uniform distribution of the moment across the stent, and is extensively used
in FEA. Bending stiffness is defined as follows:

EI =
M

2φ/L
(2)

where EI represents the bending stiffness, M is the bending moment applied at the ends of
the stent, φ is the deflection angle of the stent, L denotes the length of the stent, and 2φ/L
represents the angle of rotation per unit length of the stent.

In the FEA model, the bending moments are directly applied to both ends of the stent.
Initially, rigid control points are established at the axial positions of both ends of the stent to
facilitate the application of uniform bending moments. The degrees of freedom of the rigid
control points and the nodes at the stent ends are coupled, respectively. Simultaneously,
a vertical direction bending moment M must be applied to the control points, where the
magnitude of the moments is equal but acts in opposite directions. To prevent translational
and rotational movements of the model, the degrees of freedom at the control points need
to be constrained.

The deflection angle φ represents the angle between the central axes of the bracket
before and after the application of the moment M. The flexibility within a bending angle
range of 0◦–12◦ is analyzed, with the equivalent stress distributions at 3◦, 6◦, 9◦, and 12◦

shown in Figure 5a–d. The analysis reveals that the maximum equivalent stress during
bending is 232.1 MPa, which is below the ultimate tensile strength (370 MPa) of the WE43
magnesium alloy, indicating that no fracture occurs during the bending process. The
relationship between the stent bending angle and bending moment is illustrated in Figure 6.
By calculating the initial slope of the deformation curve, the bending stiffness is determined
to be 4.31 N·mm2. This value is slightly higher than the bending stiffness of the commercial
Absorb GT 1 polymer stent, which is 4.20 N·mm2 [50].

Compared to the advanced reported U.S. patented structure, which has bending
stiffness values of 60.1 N·mm2 and 42.1 N·mm2, the bending stiffness of the stent designed
in this study is improved by a factor of 13.9 and 9.76, respectively. This reduction ensures
that the stent can navigate through complex vasculature during implantation [45,48]. As
indicated in Figure 6, the bending moment of the stent linearly increases with the bending
angle from 0◦ to 9◦. When the bending angle increases to the range of 9◦ to 12◦, the
bending moment no longer changes. At this stage, the stent undergoes additional plastic
deformation during the implantation process, which affects its biomechanical performance.
Therefore, the recommended bending angle for this stent should be within 10◦.
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3.4. Fatigue Performance Analysis

Vascular stents must endure long-term vascular pressures and dynamic blood forces
in the body without fracturing. Therefore, fatigue analysis is an indispensable part of
the design and evaluation process for vascular stents. In the fatigue analysis of cardio-
vascular stents, the Goodman fatigue analysis method is an effective tool [51]. In this
study, the fatigue performance of the stent is assessed using the Goodman diagram method
recommended by the U.S. FDA, following the formula described below:

σa = σe(1 −
σm

σb
) (3)

σa =
(σsystolic − σdiastolic)

2
(4)

σm =
(σsystolic + σdiastolic)

2
(5)

where σa represents the stress amplitude and is half the difference between the maximum
and minimum stresses during cyclic loading, and σm represents the mean stress and is half
the sum of the maximum and minimum stresses. The ultimate tensile strength is denoted
as σb, and the fatigue limit stress of the material is σe. The stresses σsystolic and σdiastolic
correspond to the stent stresses under systolic (0.0203 MPa) and diastolic (0.0107 MPa)
pressures, respectively.

If the fatigue limit stress σe and the ultimate tensile strength σb are known, connecting
the points (0, σe) and (σb, 0) provides the limit stress line. By extracting the stress values
at all nodes of the stent at the end of the diastolic and systolic phases, and calculating
the mean stress and stress amplitude, the Goodman distribution for the stent’s fatigue
performance is obtained. If the stress values lie above the limit stress line, it indicates the
fatigue failure of the stent. Conversely, stress values below this line imply that the stent
meets the application standards.

As shown in Figure 7, under cyclic pressure loads of 0.0107 MPa and 0.0203 MPa, the
maximum equivalent stresses before and after stent expansion are 266.1 MPa, 273.9 MPa,
255.5 MPa, and 264.9 MPa, respectively. All these values are below the ultimate tensile
strength (370 MPa) of the WE43 magnesium alloy. In the regions of the support rings and
connecting struts, the average stress ranges from 150 MPa to 200 MPa, with the mean stress
between them being less than 150 MPa. Only at the crest of the sinusoidal waves, the
average stresses are greater than 250 MPa. The results demonstrate that the introduction of
micro-protrusion structures effectively reduces stress concentration in the stent.

Based on the fatigue analysis results presented in Figure 7, the minimum and maxi-
mum equivalent stresses for the 3 mm stent are 2.967 MPa and 273.924 MPa, respectively,
while for the 4 mm expanded stent, the minimum and maximum equivalent stresses are
3.713 MPa and 264.920 MPa, respectively. By locating these corresponding points on the
stress–strain curve depicted in Figure 1c, the total strain during the simulation process
is estimated to be approximately 1.4%. According to the experimental results reported
in reference [43], the fatigue limit of the T6-treated WE43 magnesium alloy decreases to
170 MPa at a total strain of 1.4% (for 1000 cycles). Throughout the reduction in the fatigue
limit, the stent undergoes both elastic and plastic deformation. During this period, the
plastic strain amplitude in the T6 magnesium alloy gradually increases, exhibiting plastic
softening. This plastic softening reduces the extent of plastic deformation that the material
undergoes, thereby resulting in a lower overall fatigue damage.

Figure 8 shows the Goodman fatigue distribution, where all node stresses on the
stent are below the limit stress line, satisfying the fatigue performance requirements.
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Furthermore, the dynamic safety factor is used to quantify the fatigue performance. The
safety factor is described as follows:

1
SFdynamic

=
σ′

m
σb

+
σ′

a
σe

(6)

where SFdynamic is the dynamic safety factor. In the context of analyzing the fatigue perfor-
mance of degradable magnesium alloys under finite element analysis, points σm’ and σa’
represent the equivalent stress amplitude and mean equivalent stress of the stent under
pulsatile blood flow loading. By applying the parallel line method on the limit stress
line depicted in Figure 8, the points (175, 85) and (135, 105) are identified. Substituting
these values into Equation (6), the safety factors SFdynamic are calculated to be 1.03 and
1.02, respectively.

The calculations indicate that the initial safety factor of the stent is 1.03, and the safety
factor after expansion is 1.02. Both values satisfy the requirements for stent fatigue life
usage, as they are greater than 1. These results indicate that both the initial state stent and
the crimped-expanded stent do not experience fatigue failure after undergoing multiple
cyclic pressure loads. This ensures that the stent can provide long-term effective support
for the diseased vessel after implantation.
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pressure; (c) expanded to 4 mm stent diameter stent at 0.0107 MPa pressure; (d) expanded to 4 mm
diameter stent at 0.0203 MPa pressure.
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4. Conclusions

In this study, a magnesium alloy biodegradable stent based on a micro-protrusion
structure is designed. To evaluate the quality of the designed stent, FEA is employed to
assess its mechanical performance from the following four aspects: crimping and expansion,
radial support force, flexibility, and fatigue resistance. The mechanical performance analysis
results indicate that the maximum equivalent stress in all four aspects is below the ultimate
tensile strength of the WE43 magnesium alloy. The radial support performance analysis
results show that the radial support strength and radial support force are 780 mN/mm
and 1.56 N, respectively. When compared to the advanced reported stent structure, these
values represent improvements of 13% and 47%, respectively. Flexibility analysis results
suggest that the recommended bending angle for the design of the stent should be within
10 degrees. Additionally, the stent’s bending height can reach 4.31 N·mm2, and its flexibility
is enhanced by a factor of 9.76. This ensures that the stent possesses the capability to
navigate through complex vasculature during implantation. Fatigue analysis indicates
that the initial safety factor of the stent is as high as 1.03, and after expansion, it is 1.02,
both exceeding the minimum allowable safety factor of 1. The results indicate that the
magnesium alloy stent with micro-protrusion structures exhibits superior mechanical
performance.
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