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Abstract: This study aims to assess the effectiveness of water-based formulations featuring m-
2HEAOL and talc particles in deep drawing applications. The coefficient of friction (COF) was
measured through bending under tension (BUT) tests, while the interaction mechanism between
protic ionic liquid (PIL) and talc particles was analysed using FTIR, XPS, and TGA analyses. The
results indicate that the formulation containing 8 wt% PIL and 0.5 wt% talc exhibited the best
lubricating performance. This was due to the interaction of the PIL oleate molecules with the Mg
found in the talc basal layer, which enhanced the cleavage capacity of this mineral, ultimately
improving the lubricity of the formulation.

Keywords: protic ionic liquid; talc; bending under tension; steel

1. Introduction

If not well managed, tribological phenomena in sheet-metal-forming processes can
lead to unfavourable outcomes, such as changes in force and energy parameters [1]. These
phenomena can also cause a premature reduction in tool life and defects in stamped
parts [2]. Controlling friction resistance is essential, as it influences the material flow in the
tool and the surface finish of produced parts [3].

The bending under tension (BUT) test is the most widely used procedure to simulate
and isolate the friction generated in a stamping process. In this test, a force is applied to
one end of the sample to cause movement relative to the bending pin. At the other end of
the sample, a force opposite to the movement is applied when subjecting it to the effect
of stretching [4]. The test is designed for studying the influence of parameters on friction
and limits of lubrication, simulating stamping operations [5]. Numerous studies have
investigated this subject and obtained the value of friction as a result.

In their study, Moghadam et al. [6] employed the acoustic emission measurement
technique to monitor friction conditions during the BUT test. The results showed that
this accurately assessed lubrication limits and described friction conditions during well
formation. In another research, a combination of 2D and 3D models of the tensile bending
test with thermal and thermomechanical procedures in steady and transient states was
used. The methodology proposed by the authors effectively and accurately predicted the
interface temperature in the test tool under specific conditions [7].
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Folle and Schaeffer [8] devised a new methodology and equation for measuring the
coefficient of friction (COF) in BUT tests. Their study revealed that previously devel-
oped equations fail to accurately predict friction at the sheet interface. Consequently, the
researchers created a simpler-to-apply equation that provides satisfactory results.

The increasing demand for environmentally friendly production methods has resulted
in a transition from conventional lubricants used in mechanical forming operations to
water-based lubricants [9]. To optimize the performance of these lubricants, top-quality
additives are used, including surface/interface active molecules [10].

Currently, there is a search by several researchers to develop environmentally friendly
lubricants. Polajnar et al. [11] investigated the lubricity of four base oils with different
chemical structures (paraffinic, naphthenic, and water) for application in steel stamping.
Low-viscosity naphthenic oil performs very similarly to high-viscosity oils, and can reduce
friction and wear.

In their recent review article, Aiman et al. [12] discussed recent research that proposed
the application of biolubricants based on vegetable and animal oil to replace mineral
oils. According to the results of these studies, the properties of the fatty acids present
in these lubricants guarantee good lubrication in mechanical forming manufacturing.
Furthermore, they highlighted that there is a better affinity on the surface of the metal
where the unsaturated fatty acid is present. However, all of these studies are still in the
experimental phase.

Castor and sesame oils are examples of studied vegetable oils. Tests carried out on a
ball-on-disc tribometer under boundary lubrication conditions demonstrate performance
similar to mineral oils [13].

Combinations of natural and ecological materials such as boric acid (H3BO3) and
edible vegetable oils [14] are also being studied in mechanical forming operations. It was
found that pure palm oil and the formulation with the addition of 5% by weight of H3BO3
was the most effective in reducing the coefficient of friction. Furthermore, the authors
highlight that the addition of boric acid can increase lubrication efficiency by up to 15%.

In addition to oils of vegetable origin, solid nanoparticles and ionic liquids are exam-
ples of environmentally friendly additives that improve tribological properties, reducing
friction, wear, and corrosion [15].

Among the different types of ionic liquids, protic ionic liquids (PILs) have shown
promise as a good lubricant due to their high viscosity and low volatility. PILs are also effec-
tive solvents and can be used as additives to reduce friction in various contacts [16]. Several
researchers have proposed PILs as potential lubricant additives [17–19]. Gussain et al. [20]
used ionic liquids synthesized from fatty acids as additives to a polyol ester lubricant
base oil, which demonstrated a substantial improvement in friction reduction (28–60%)
and anti-wear (20–28%) properties under the lubrication regime limit. Furthermore, the
addition of 2% fatty acid ionic liquid to polyol ester, composed of fatty acid, proved to be
non-corrosive.

To optimize the lubricity of water-based lubricants, many manufacturers have incor-
porated graphite particles [21,22]. However, this addition has caused galvanic corrosion
when in contact with steel in aqueous solutions due to graphite’s noble electrochemical
potential, which increases cathodic reactions and leads to equipment and component cor-
rosion. Therefore, using solid lubricants such as talc instead of graphite is a viable and
cost-effective option for water-based lubricants.

Our research group has previously found that PIL m-2HEAOL is an effective lubricant
in its pure state [23] and in water-based formulations with talc and bentonite lubricating
particles [24,25]. PIL m-2HEAOL also improves corrosion inhibition [26–28] and has low
toxicity [29]. Despite these positive attributes, this molecule has yet to undergo testing for
mechanical forming applications such as stamping.

The main objective of this work is to evaluate the effectiveness of water-based for-
mulations that contain m-2HEAOL and talc particles in deep drawing applications. The
COF was determined using BUT tests, while FTIR, XPS, and TGA analyses were used to
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determine the interaction mechanism between PIL and talc particles. The performance
of formulations with PIL was compared to those containing a commercial additive as
a reference.

2. Materials and Methods
2.1. Characterization of Lubricants

This research evaluates the effectiveness of lubricants containing deionized water,
lubricating particles, and PIL (m-2HEAOL—Table 1) for deep drawing applications. The
m-2HEAOL was synthesized by the research group at the Federal University of Bahia
(UFBA). The characterization of the PIL was carried out and presented in a previously
published paper [23]. The performance of these lubricants was compared to a commercial
water-soluble lubricant that was used as an additive. The commercial lubricant is charac-
terized by being non-corrosive and odourless hybrid synthetic release agent, without the
addition of petroleum jelly, mineral, or vegetable oils. It is applied in lubrication in metal
forming, casting, and die-casting. It is characterized by forming a friction-reducing film. To
determine the optimal proportion of PIL and commercial additive, tests were conducted
using 1 wt%, 3 wt%, and 8 wt% of each. Schumacher brand talc particles were also in-
cluded in the formulations at a concentration of 0.5 wt%, which is consistent with previous
studies [30]. Notably, the concentration of 8% by weight is close to the solubility limit of
m-2HEAOL in water. After incorporating the particles, the lubricants were allowed to settle
for 24 h. Before conducting wear and corrosion tests, the dispersions were mechanically
agitated for 30 min.

Table 1. PIL used as an additive in the investigated lubricants. Adapted from Vega et al. [23].

PIL Structure

m-2HEAOL
N-methyl-2-hydroxyethylammonium oleate
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The formulation nomenclatures are presented in Table 2. Each component of the
formulation, except the deionized water, is referred to by the term “additive”. The pH of
the formulations presented values close to 8.0.

Table 2. Composition of the formulations.

Lubricant Nomenclature Composition
(% by Weight)

m-2HEAOL_1%_WP H2O + 1 wt% m-2HEAOL
m-2HEAOL_3%_WP H2O + 3 wt% m-2HEAOL
m-2HEAOL_8%_WP H2O + 8 wt% m-2HEAOL

m-2HEAOL_1%_TC_0.5% H2O + 1 wt% m-2HEAOL + 0.5 wt% Talc
m-2HEAOL_3%_TC_0.5% H2O + 3 wt% m-2HEAOL 0.5 wt% Talc
m-2HEAOL_8%_TC_0.5% H2O + 8 wt% m-2HEAOL 0.5 wt% Talc

* Commercial_1%_WP H2O + 1 wt% commercial additive *
* Commercial_3%_WP H2O + 3 wt% commercial additive *
* Commercial_8%_WP H2O + 8 wt% commercial additive *

* Commercial_1%_TC_0.5% H2O + 1 wt% commercial additive *+ 0.5 wt% Talc
* Commercial_3%_TC_0.5% H2O + 3 wt% commercial additive * + 0.5 wt% Talc
* Commercial_8%_TC_0.5% H2O + 8 wt% commercial additive *+ 0.5 wt% Talc

* Water-soluble commercial lubricant.

The rheological properties of the formulations were examined using an Ar 1500 ex
rheometer, which applied shear rates ranging from 0 to 1000 s−1 at a constant temperature
of 23 ◦C for 2 min. The tests were conducted according to the guidelines of DIN 545012.001.
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2.2. Manufacturing and Characterization of Steel Samples

SAE 1050 steel pins samples were machined with 50 mm length and 24 mm diameter.
The pins were surface quenched, and were tempered at 400 ◦C. Afterwards, the cylindrical
grinding process was applied to the pins’ surfaces. SAE 1010 steel plates samples measuring
21 mm wide and 1300 mm long were polished with silicon carbide sandpaper (#100). These
materials are employed in a variety of stamping functions.

To determine the chemical composition of the samples, a Bruker emission spectrometer
(OES) of the model Q2 ION was used. The microhardness was measured using a Mitutoyo
microhardness meter, model HV-100, with a 50 g load. The microstructures were evaluated
using a Zeiss optical microscope, model Axio Lab.A1, after conditioning with 3 wt% Nital.
An image analysis was performed with the ZEN 2.6 software (blue edition).

To measure the average surface roughness (Ra and Rz), we used the Mitutoyo linear
rugosimeter, model SJ-400. The samples underwent a thorough cleaning process, including
using water and neutral detergent, followed by ultrasound cleaning with acetone, which in
turn was followed by cleaning using ethyl alcohol and deionized water, for 15 min each,
and then they were finally dried with a portable air device.

2.3. Bending under Tension (BUT) Test

BUT tests were conducted to evaluate the lubricity of the proposed formulations
in the stamping operations. The equipment we used was developed at the Corrosion
Research Laboratory (LAPEC) of the Federal University of Rio Grande do Sul (UFRGS). It
is computationally controlled and coupled to an universal traction machine (Intermetric,
model 4156 ESP). The lubricants were applied to the plates and pins by brushing, and we
applied a counter tension force of 843 N (86 kgf). We performed tests in triplicate for each
condition, calculating the COF during the test (sliding distance of 200 mm). The COF was
calculated using the equation proposed by Folle and Schaeffer [8]:

COF =
4T

πR(F1 + F2)

where:
T represents the torque on the pin, R is the radius of the pin, F1 is the actuation force,

and F2 is the counter tension force.

2.4. Characterization of Talc Particles

The talc particles used in the formulations proposed on Table 2 were analysed. To
separate the emulsion particles, the formulations were centrifuged at 2000 RPM for 30 min.
The talc particles were removed from the PIL formulations, and the samples were shaken
in deionized water and centrifuged three times.

TA instruments equipment, model SDT Q600, was used for thermogravimetric analysis
(TGA) with N2 5.0 gas (flow rate of 100 mL/min) up to a temperature of 800 ◦C and
platinum pans.

Fourier Transform Infrared Spectroscopy (FTIR) measurements were conducted at
25 ◦C using a Bruker Vertex 70 V spectrometer and the KBr tablet method.

X-ray photoelectron spectroscopy (XPS) was performed with Omicron-SPHERA anal-
ysers using an Al-K α X-ray source (hν = 1486.7 eV). The measurements were conducted
in the long scan, and C 1s, O 1s, Si 2p, and Mg 2p electronic regions. The spectra were
calibrated using the peak of the Si 2p region at 103.5 eV. The Casa XPS software version
2.3.15, with a Shirley-type background was used to analyse the XPS spectra.

3. Results
3.1. Characterization

Table 3 presents the chemical composition, hardness, and roughness, Ra and Rz. The
percentage of alloy elements in both the pin (SAE 1050) and the plate (SAE 1010) met
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the specifications for their respective materials. After surface heat treatment, the pins
displayed a homogenous, tempered martensitic structure on the surface, while the core
exhibited a primarily pearlitic microstructure (Figure 1A,B). As a result, the material’s
surface hardness was measured to be approximately 550 HV (52 HRC). The sheets’ mi-
crostructure (Figure 1C,D) consisted mostly of a ferritic matrix with pearlite islands at the
grain boundary. The micrograph of the longitudinal sample position (Figure 1D) showed
elongated grains, likely due to the manufacturer’s cold rolling process. Therefore, the
surface hardness of the material was about 128 HV (71 HRB).

Table 3. Chemical composition, hardness, and roughness of the steel samples.

Steel Fe
(%)

C
(%)

Si
(%)

Mn
(%) P (%) S

(%)
Hardness

(HV)
Ra

(µm)
Rz

(µm)

SAE 1010 Balance 0.10 0.10 0.40 0.02 0.01 128
(±23)

0.24
(±0.03)

4.63
(±0.53)

SAE 1050 Balance 0.51 0.18 0.76 0.01 0.01 550
(±50)

0.132
(±0.01)

1.49
(±0.14)
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Figure 1. Micrographs of the samples used in the study. Attack: Nital. (A): Pin surface; (B): centre of
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Cylindrical grinding of the pins yielded a surface roughness Ra and Rz of 0.132 µm
and 1.49 µm, respectively. The surface preparation process also produced a roughness Ra
of 0.132 µm and Rz of 4.63 µm.

The current study utilized talc particles that our research group had previously anal-
ysed for their particle size distribution, morphology, and phases [24]. The average particle
diameter was determined to be approximately 29.6 µm. Particles larger than 0.5 µm tend
to precipitate and create unstable suspensions [31]. Talc has a known lubrication capacity
generated by its layered structure linked by Van der Waals bonds that move easily [32],
in addition to the lamellar shape observed in these particles, which can also contribute to
increased lubricity [24,33].
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3.2. Rheological Behaviour of Particle-Free Formulations

Moving onto the rheological behaviour of particle-free formulations, Figure 2 shows
that the formulations exhibit non-Newtonian behaviour, specifically pseudo-plasticity [34],
which is characterized by decreasing viscosity with increasing applied tension [35]. This
viscosity behaviour is caused by the solvation of polar solute molecules and solvents,
which increases viscosity at rest, but decreases it with increasing applied tension as the
shear action destroys the solvated layers. Recent research suggests that lubricants with
Newtonian behaviour may not meet the demands of newer technological applications, such
as those in wire drawing [36]. Arif et al. [37] demonstrated that pseudo-plastic lubricants
can reduce the friction coefficient in high-pressure systems like bearings.
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Although these formulations present similar rheological behaviour, it is noted that
the formulation containing 8 wt% PIL maintains viscosity at higher values than the other
formulations at a shear rate of up to two orders of magnitude between 100 s−1 and 102 s−1,
presenting values close to 0.01 Pa·s until the end of the test.

3.3. Bending under Tension Test
3.3.1. Formulations with Commercial Additives

Figures 3 and 4 show the friction coefficients obtained in BUT tests for the formulations
presented in Table 2. Tests were conducted for the formulations containing commercial
additives, and formulations containing PIL (item b) were used for comparative purposes.
Formulations without talc particles showed similar behaviour. The COF values were
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close to 0.08 after 300 s of testing in all three studied concentrations. This result suggests
that small percentages of commercial lubricant in an aqueous medium can achieve the
maximum possible lubrication capacity, and increasing the amount of lubricant in the
mixture does not necessarily result in better lubrication.
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The addition of talc particles (Figure 3B) changed the lubricity of the formulations
containing commercial additives. In formulations containing 3 wt% and 8 wt% commercial
additive, the COF was reduced to values close to 0.04, a 50% reduction resulting from
the action of these particles. This indicates a synergistic effect between the commercial
lubricant and the talc particles at concentrations of 3 wt% and 8 wt% in this lubricant.
These results confirm a previous study by our research group, where talc particles added
to similar formulations were able to reduce the worn volume in tribometer tests carried out
in a ball-on-plate configuration [24].

For the Commercial_1%_TC_0.5 formulation, the COF value rose close to 0.12. This
suggests that the addition of talc particles reduced the lubricity compared to the Com-
mercial_1%_WP formulation, which does not contain talc particles. It is possible that the
known lubricant adsorption/absorption capacity of talc [38,39] reduced the concentration
of commercial additive available in the aqueous solution, leading to a decrease in the
lubricity of this formulation.
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3.3.2. Formulations with m-2HEAOL Lubricant

After 300 s of testing, it was discovered that formulations containing m-2HEAOL
without added particles (Figure 4A) exhibited comparable COF values to those containing
commercial additives (COF value close to 0.08). This suggests that using m-2HEAOL as a
lubricant additive could be a viable alternative to current market products.

When comparing the friction coefficients of the tests of the formulations with PIL
(Figure 4B), in the formulations with 1 wt% and 3 wt%, it is clear that adding 0.5 wt% of
talc particles did not change the COF. This implies that the dominant factor in the COF
values obtained from these tests was the lubricity provided by the adsorption/absorption
of m-2HEAOL on the metal surfaces of the plate and pin [24,25].

The addition of 1 wt% PIL and 0.5 wt% talc did not increase the COF, unlike what was
observed in the commercial lubricant. This suggests a difference in the mechanism of action
of PIL in comparison to the commercial additive. However, the m-2HEAOL_8%_TC_0.5
formulation displayed the lowest average COF value, approximately 0.035, after 300 s
of testing.

It was observed that the 8 wt% formulation had a higher viscosity compared to other
formulations (Figure 2). However, this increase in viscosity was not the sole reason for the
increase in lubricity of the m-2HEAOL_8%_TC_0.5% formulation. This was evident from
the fact that there was no significant difference in the friction coefficients measured in the
three formulations with PIL and without talc particles. It is possible that the lubricity of
this formulation was enhanced due to the interactions between PIL and talc particles.
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Due to the standardization of the surface roughness and hardness of the samples of
both steels used in the BUT test, only the properties of the lubricants were significant in the
COF differences detected.

3.4. Analysis of the Talc–PIL Interaction

Various tests were conducted to study the interaction between talc particles and m-
2HEAOL molecules. The particles were added to formulations and removed after 24 h, as
described in item 2 of the Materials and Methods Section. The particles were named m_1%,
m_3% and m_8%, and were each included in formulations containing 1 wt%, 3 wt%, and
8 wt% PIL, respectively.

3.4.1. FTIR Analysis

Figure 5D shows the FTIR spectra for m-2HEAOL. The broadband between 3580 cm−1

and 3250 cm−1 is related to the stretching (ν) of the O–H (hydroxyl) with hydrogen bonding.
At approximately 1714 cm−1, the typical peak of C=O carbonyl bonds stretches (ν) is
observed. The characteristic symmetric and asymmetric stretching of the C-H bonds of
alkanes was detected between 2960 cm−1 and 2850 cm−1 [40]. At 1560 cm−1 and 1629 cm−1,
there are vibrations related to N-H bending, which are associated with the positively
charged part of the ionic liquid. Furthermore, the peak at 1260 cm−1 is possibly associated
with the C-N bond, which is related to the hydroxyethylammonium molecule [28].
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In Figure 5E, a typical pattern of talc is observed. Characteristic peaks of Mg3OH
appear in 3677 cm−1 and 670 cm−1. A weak band in 3660 cm−1 due to Mg2FeIIOH
can indicate a trace of FeII contamination in octahedral talc sheets. The sharp peak in
approximately 1016 cm−1 was related to Si-O stretching [41,42].

The IR spectra of samples of talc m_1% and m_3% (Figure 5C,D) shows the typical
pattern of untreated talc and characteristic peaks of organic groups with weak intensity,
such as O-H, C-H, and C=O. This can indicate a partial interaction between ionic liquid
and talc in minor percentages of the mixture. However, more pronounced changes were
observed in the m_8% talc (Figure 5A). This spectrum shows all the main peaks of untreated
talc and ionic liquid (described previously) with high intensity. At this mixing percentage,
m-2HEAOL can interact with talc crystallographic planes, forming bonds.

3.4.2. XPS Analysis

X-ray photoelectron spectroscopy (XPS) measurements were used to examine the
chemical states and compositions of talc samples with different concentrations: m_1%,
m_3%, and m_8% (Figure 6). The samples contained carbon (C), oxygen (O), magnesium
(Mg), and silicon.
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The core-level XPS spectra for C 1s, O 1s, Si 2p, and Mg 2p were analysed. The
high-resolution XPS spectra of the O 1s for all samples showed a peak at ~532.8 eV related
to the Si-O bond. In addition, for the m_8% sample, another component was observed at
531.7 eV related to the Mg-O bond [43]. This indicates that when talc is added to an 8 wt%
m-2HEAOL formulation, a bond is formed between the talc and the ionic liquid.

In the high-resolution spectrum of the Si 2p region, a component related to silicon oxide
was observed at 103.5 eV for all samples. This bond is formed by the tetrahedron-layered
talc structure. At 131.9 eV, a component related to the Si-C bond was also observed [44].
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When analysing the high-resolution spectrum of Mg 2p, two components related to
metallic Mg and in the 2+ oxidation state were observed for samples of m_1% and m_3% at
49.6 and 50.6 eV. Both components are related to the brucite structure (basal plane). For
the m_8% sample, a component related to the 2+ oxidation state and another component
at ~51.1 eV related to the Mg-O bond were observed [45]. This result is consistent with
the results obtained in FTIR, which indicate that the bonding of talc with the ionic liquid
occurs through the bonding of magnesium with a hydroxyl of the ionic liquid.

3.4.3. TGA Analysis

To determine the amount of PIL adsorbed, TGA analyses were conducted on the talc
particles (Figure 7). The particles that were not used in the formulations and were only
used as a reference showed almost zero mass loss. This is because talc is known for its
thermal stability in the temperature range evaluated [46].
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The thermal degradation of m-2HEAOL was analysed at different temperatures, and it
was found that there was a two-stage process (Figure 7A). Up to 100 ◦C, water vaporization
occurred, followed by a phase of stable degradation rate. The mass loss increased above
200 ◦C, which coincided with the temperature at which oleic acid degrades. The increase in
the degradation rate observed from 300 ◦C onwards is likely due to the breaking of the C-C
bonds of PIL, which requires higher energy to break these strong covalent bonds [23].

The results of the study showed that the behaviour of the samples of m_1% parti-
cles was similar to untreated talc particles (Figure 7B), indicating that the amount of PIL
adsorbed/absorbed by the particles in the m-2HEAOL_1%_TC_0.5 formulation was negli-
gible. The total mass loss for m_3% particles was about 0.5% at 500 ◦C, while for m_8%
particles, it was approximately 2%, indicating a greater amount of PIL adsorbed on the
particles. The degradation of m-2HEAOL began at around 300 ◦C, which coincided with
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the onset of the acceleration of m-2HEAOL degradation, confirming that this degradation
is linked to the PIL molecules adsorbed/absorbed in the talc samples.

It was observed that the gradual mass loss of the particles increased as the amount
of m-2HEAOL (m_1%, m_3%, and m_8%) increased. Therefore, higher concentrations
of PIL led to a greater amount of this additive interacting with these particles, resulting
in prominent peaks associated with the presence of PIL detected in the FTIR analyses
(Figure 5E).

3.4.4. Lubrication Mechanism

As shown in previous studies [24,25], PIL m-2HEAOL exhibits lubricating properties
when diluted in water. Its ability to adsorb on metal surfaces makes it an effective lubri-
cant [31]. The viscosity of the formulations tested did not affect the lubrication capacity
of the lubricants. Therefore, the adsorption capacity of PIL on metal surfaces is even
more important in the lubricity of these lubricants in boundary lubrication regimes [47].
Potentially, the adsorption lubrication mechanism, characteristic of PIL, was present even
at the lowest concentrations of m-2HEAOL. Therefore, increasing the concentration did not
significantly affect the COF in the higher m-2HEAOL concentration.

Unlike the formulations with commercial additives, talc particles did not reduce
the COF of formulations containing m-2HEAOL, except for m-2HEAOL_8%_TC_0.5%.
The talc-PIL interactions described in item 3.2 had a strong influence on the lubricity of
this formulation.

The TGA tests (Figure 7) indicated a greater number of molecules and particles in-
teracting in the 8 wt% PIL formulation, as seen in the identification of peaks associated
with PIL in the talc particles through the FTIR analysis (Figure 5). In the XPS analysis
(Figure 6), interactions between Si and C and between Mg and O were detected. The Si and
C interaction was also detected in the m_3% particle, but it occurred at a lower intensity
and had little impact on the lubricity of the formulations in the BUT test. The XPS analysis
detected the interaction of Mg and O only in the m_8% particle, which was present in the
formulation with the best lubrication performance.

It is known that talc particles have a good lubrication capacity because of their mi-
crostructural characteristics. The atoms of the octahedral basal plane, formed by Mg and
OH, are weakly linked to the tetrahedral layers of SI and O through Van der Waals bonds.
This is why talc has the ability to perfect cleavage in this plane [48]. Then, the settle particles
were interposed between the surface of the plate and the pin. Thus, the relative movement
between these surfaces during the test can cause the known perfect cleavage of talc and
reduce sliding resistance.

According to Schmitzhaus et al. [28], the m-2HEAOL molecule tends to divide in
the weakest bond between the oleate ion and the ammonium radical due to the inherent
electropositivity of metals. The Mg and O interaction detected using XPS (Figure 6) is likely
due to the bond between Mg and the oleate ion, which contains an oxygen atom with a
negative charge, favouring this interaction. When the PIL molecule approaches the talc
particles, it tends to release the amine radical and form more stable bonds with Mg.

Moreover, the FTIR analysis of the talc particles did not detect the characteristic peak of
the NC bond (1020–1220 cm−1), which is present only in the amine radical of PIL, as shown
in Table 1. This reinforces the idea that there was a rupture of the weak Van der Waals bond
between the ammonium radical and the oleate ion in the PIL molecule, providing the bond
between the Mg (+δ) of talc and the oleate ion (−δ).

The presence of the oleate ion linked to magnesium in the basal plane structure
{0 0 1}, as per the proposed mechanism, could potentially enhance the separation of talc
particles in this plane. This would increase the lubricity of m_8% particles and the m-
2HEAOL_8%_TC_0.5% formulation, ultimately leading to a decrease in the COF value.
Figure 8 graphically illustrates this mechanism.
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4. Conclusions

The synergic effect of talc particles and PILs in water-based lubricants was investi-
gated. The tests aimed to evaluate the tribological performance of these formulations in
bending under tension tests, which simulate deep drawing operations. The main results
are presented below.

- The tests that did not include additional particles demonstrated that m-2HEAOL
has comparable lubricating potential to that of commercial additives in water-based
lubricants for stamping operations.

- In the m-2HEAOL_1%_TC_0.5% and m-2HEAOL_3%_TC_0.5% formulations, the
addition of talc particles did not notably contribute to COF reduction. Therefore, the
lubrication effectiveness of the PIL was more powerful than the influence of the talc.

- It was discovered that m-2HEAOL can interact with talc particles. When the concen-
tration of PIL is higher, as in the case of the m-2HEAOL_8%_TC_0.5% formulation,
this interaction becomes more noticeable, affecting the COF value. The PIL oleate
molecules bind with the Mg in the basal layer of talc, which increases the mineral’s
cleavage capacity. This results in an improvement in the lubricity of the formulation.

The results show that the combination of 8 wt% concentrations of m-2HEAOL and talc
is beneficial for BUT tests, indicating that this particle has the potential to replace graphite
in water-based formulations.
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