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Abstract: Plate turning is an essential step in the plate rolling process. The traditional control mode
relies on the manual observation of billets and mainly manual operation. Manual plate turning
becomes an external disturbance of the automatic control system of plate mills, which reduces the
reproducibility and accuracy of the rolling process. The automatic plate turning function is urgently
needed to improve the control level of the rolling line. In this paper, based on the improved image
processing algorithm, the position and angle information of the billet conversion process are detected
in real time, and the real-time processing of detection data in a complex production environment
is realized. Based on the change in the billet rotation angle in the actual plate turning process, a
mathematical model is constructed to simulate the plate turning process. On this basis, the digital
model and optimization algorithm for automatic plate turning based on reinforcement learning are
established, and the automatic optimization of plate turning speed and accuracy is completed. The
field application of data-driven plate turning systems replaces manual plate turning control. The
plate turning angle detection error of the system is ≤2◦. The average plate turning time of each billet
is greatly shortened compared with manual plate turning mode, and the fastest time can be shortened
by more than 1 s, which greatly improves the production efficiency and is of great significance for
improving the automatic control level and digital upgrade of plate mills.

Keywords: automatic plate turning; machine vision; image processing; data-driven; reinforcement learning

1. Introduction

Plates are among the most important varieties of steel, which is extremely important
for infrastructure construction, major engineering projects, and the national economy [1,2].
According to the international development trend of the plate industry and the major
demand at present, it is of great significance for the technological progress and development
of China’s iron and steel industry to improve the rolling automation level and build
intelligent rolling integration.

As shown in Figure 1, the plate rolling process generally includes the following three
stages: sizing, broadening, and elongation [3,4]. In order to meet the requirements of the
rolling process, it is necessary to carry out 1~2 plate turning operations in some passes.
The specific operation is to rotate the billet by 90 degrees so that the length and width
dimensions are reversed [5]. The traditional manual plate turning operation determines
the speed and direction of a conical roller table by visually judging the position of a billet,
manually setting the rotational speed of the variable frequency motor of the conical roller
table, stopping the plate turning when the billet turns to a suitable angle, starting side
guide clamping, moving the side guide to the billet from both sides of the conical roller
table to carry out the centering operation, and starting the conical roller table again to
transport the billet into a rolling mill for rolling.
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Figure 1. Schematic diagram of the plate rolling process.

The layout of the plate turning roller table is shown in Figure 2.

Figure 2. Schematic diagram of the conical roller table layout for plate turning.

Plate turning is an essential link in plate rolling production. Reducing the time of plate
turning and improving the stability of the plate turning process are important means to
improve the intelligent control of the rolling process. Nowadays, newly built modern plate
production lines are well equipped and highly automated, especially in the rolling area,
except for the plate turning operation, which has been automatically controlled. The plate
turning operation has become the only bottleneck of automatic control in the plate rolling
zone [6]. There are several main reasons that restrict automatic plate turning, as follows:

(1) Because of the severe environment in the rough rolling area, the traditional visual
inspection method cannot effectively perceive the position and angle information of
the billet.

(2) The control process of plate turning has characteristics of nonlinearity, strong coupling;
it is multivariable; and there is no unified operation standard or control logic, so it is
difficult to use a mechanism model for direct control.
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At present, there are few studies in the field of automatic plate turning, both at home
and abroad. Meng [7] proposed automatic plate turning technology in 2006 based on
the image detection method. The original image is processed in advance through image
grayscale, binarization, and opening an operation to remove the noise. The recognition
program judges the coordinates of four vertices of ABCD of a rectangular billet in a binary
image by setting effective values, predicting the position of the billet and the starting time
of the side guide, and completing the plate turning process.

He [8] put forward a method of automatic plate turning for plate mills in 2009. The
image processing includes histogram equalization, median filtering, optimal threshold
image binary processing, Sobel operator billet image edge extraction, and sub-pixel edge
location. Finally, high-precision billet edge information is obtained. In order to meet the
requirements of image distortion and calibration, an eight-point correction method is used
to establish the corresponding relationship between the billet size in the image and the
actual size. Using the key points on the billet profile, the four boundaries of the billet
are adjusted using the Hough transform method, and the rotation angle of the billet on
the conical roller table is obtained. Finally, the conical roller table is driven to complete
plate turning.

Wang [9] proposed full-automatic plate turning technology based on material tracking
and positioning and image recognition technology. A canny edge detection algorithm is
used to automatically extract billet edge contour information from field camera coordinates.
The slope of a billet edge curve is fitted using the least square method. When the slope
value changes by 90◦ (the error is 5%), the end of the plate turning is determined. In order
to solve the water vapor problem caused by high-pressure primary descalers and laminar
cooling, an axial flow fan is added to the purge, which improves the anti-interference ability
of the image processing system.

The above scholars have applied machine vision technology to realize automatic plate
turning. However, most of the above research methods only use simple image detection
technology, and it is difficult to achieve high-speed, accurate, and automatic measurements
in the harsh environment near the rolling mill in the actual production process to avoid
the influence of complex factors such as water vapor and pollution. Moreover, the control
strategy of a conical roller table is realized directly in the L1 basic automation control
system, which is relatively simple and has a low success rate of plates turning in place at
one time.

Based on machine vision technology, this paper designs a billet angle detection scheme
for an automatic plate turning control system and puts forward the image defogging algo-
rithm, the improved image adaptive enhancement algorithm, the external rectangle fitting
algorithm based on Tukey weight, and the angle smoothing algorithm, which realizes the
automatic elimination of water vapor interference and abnormal angle situations and im-
proves the stability of billet angle detection. Combining the reinforcement learning theory
with the motion model of plate turning, the reinforcement learning model of the intelligent
control of plate turning is constructed by defining reinforcement learning elements and
defining state space and action space, which can learn the optimal roller speed setting rules
independently. The automatic plate turning control system greatly improves productivity,
reduces the labor intensity of workers, can realize unmanned and intelligent operation
of the plate turning process, effectively improves the automatic production level of plate
plants, and has important practical significance for the future development of the intelligent
steel industry.

2. Billet Angle Measurement Method Based on Machine Vision

The detection algorithm of the billet angle is the precondition for realizing automatic
control in the process of plate turning. The traditional manual plate turning operation
mainly inspects billets visually, which depends too much on the working experience of
the operators, and it also has low efficiency and accuracy levels. With the development
of intelligent technology, machine vision recognition technology has been widely used in
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industrial fields, with advantages of fast processing speed, high detection accuracy, and
easy integration. It has also been widely used in steelmaking, continuous casting, and
rolling processes in the domestic steel industry [10,11].

In the production process, due to the limitations of the actual environment, the col-
lected billet images are partially blocked or disturbed by water vapor and other factors.
Traditional image processing algorithms have few factors to consider, and it is difficult to
obtain continuous and stable billet angle changes, which affect the input rate of automatic
plate turning. In order to realize billet angle measurement in a complex production en-
vironment, the image defogging algorithm, the improved image adaptive enhancement
algorithm, the external rectangle fitting algorithm based on Tukey weight, and the angle
adaptive smoothing algorithm are proposed, which can accurately detect the rotation angle
information of the plate turning process and provide all-weather real-time measurement
results for the plate turning control process.

2.1. Detection Device

In order to realize the real-time extraction of a billet angle, an industrial camera is
installed in the entry and exit parts of the plate mill, as shown in Figure 3. The cam-
era adopts Basler acA640-120gm; the pixel size is 5.60 × 5.60 µm; and the resolution is
659 × 494 pixels. The billet image data are collected by connecting with the industrial
camera through the special image network; the position and rotation angle information
of the billet are obtained using machine vision technology; and the recognition results are
stored on the local disk [12].

Figure 3. Schema of camera installation position.

2.2. Image Defogging Processing

In order to remove the scale on the surface of a rolled piece, a high-pressure primary
descaler is needed during rough rolling. During this process, water comes into contact with
the surface of the billet, and a large amount of water mist is produced due to temperature
differences. This water mist shrouds around the billet, which causes the billet in the
image to be partially or completely blocked and, at the same time, makes the billet image
inevitably blurred along with other defects, which seriously affects the image quality and
visibility. In this paper, the defogging algorithm based on the dark channel prior theory [13]
is applied to restore a clear billet image, so as to solve the influence of water mist occlusion
on billet recognition.

In the field of machine vision, the atmospheric scattering model is widely used in the
field of image defogging, and the definition of the formula is as follows:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

In the formula, I(x) denotes the foggy image; J(x) denotes the fogless image to be
restored; t(x) is transmittance; and A represents the global atmospheric light value.

Firstly, for each pixel point in the billet image, the smallest pixel value in the three
RGB channels is selected as the gray value, and the dark channel image is generated. The
brightest 0.1% pixels are extracted according to the brightness in the dark channel image,
and the value with the highest brightness point at the corresponding position is found in
the original foggy image as the atmospheric light value A.
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According to the atmospheric light component, the transmittance of each pixel in the
original image is estimated. The formula for calculating transmittance is as follows:

t̃(x) = 1 − ωmin
c

( min
y∈Ω(x)

(
Ic(y)

Ac )) (2)

where ω is 0.95, Ω(x) represents the window centered on pixel x.
Finally, the lower bound t0 is restricted to t, and its value is 0.1, when t < t0, make

t = t0. The final fog-free image J(x) can be expressed as the following formula:

J(x) =
I(x)− A

max[t(x), t0]
+ A (3)

Based on the above formula, the billet image can be defogged according to the perspec-
tive and atmospheric light composition, and the processed picture is shown in Figure 4.

Figure 4. Schematic diagram of defogging billet surface: (a) fogged original image; (b) images after defogging.

2.3. Adaptive Enhancement of Billet Image

Due to the temperature change in the billet and the water vapor caused by the laminar
cooling system, the brightness of the billet image is seriously uneven. Because of the
dynamic change in the water vapor shielding process, the threshold segmentation algorithm
for obtaining the billet’s surface area has difficulty determining the appropriate threshold,
which leads to a big difference between the obtained billet surface area and the actual one.

In this paper, an adaptive enhancement algorithm for a gray image is proposed, which
can eliminate the influence of unstable factors and extract the surface area of the billet from
the image background more clearly [14]. The flow of the adaptive enhancement algorithm
is shown in Figure 5.

Firstly, the gray value of each pixel is changed by a linear transformation of the gray
value, so as to improve the contrast between the light and dark parts of the billet image.
The linear transformation formula is shown in Equation (4):

g′ = g × Mult + Add (4)

In the formula, g denotes the gray value of the billet image before the gray stretching
operation; g′ denotes the gray value of the billet image after the gray stretching operation;
Mult denotes the multiplier factor; and Add denotes the addend factor.

Then the mean filter is used to smooth the image after the linear transformation,
and the average gray value of the filter mask window is calculated, which is used as the
background estimation value of the local area. The billet image after contrast enhancement
is compared with the billet image after smoothing one by one, and the threshold value is
dynamically determined by the deviation between them. According to the dynamic thresh-
old, the region that is several gray values higher than the smoothed image is segmented;
that is, the foreground region. The background pixels are scanned in the foreground region;
the holes in the foreground region are determined based on the scanning results; and the
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holes are filled to make the region more continuous and complete. The isolated and small
points and rough edge lines are removed by opening the operation, and the original areas
of most areas are retained. The calculation formula for opening the operation is as follows:

A ◦ B = (AΘB)⊕ B (5)

In the formula, A ◦ B denotes the opening operation of A by using the structural
element B, AΘB denotes that A is corroded by B, and (AΘB) ⊕ B denotes that A is
expanded by B.

Figure 5. Flow chart of adaptive image enhancement algorithm.

Finally, the segmented regions are traversed by the 8-neighborhood adjacent relation.
According to the actual production situation, the regions are screened according to the
basic area range and rectangular degree of the billet; the screened connected regions are
sorted according to the pixel area; and the connected region with the largest pixel area is
selected as the billet feature image.

According to the steps in Figure 5, after the adaptive enhancement processing is
finished for the collected original billet gray image, the billet surface with a rectangular
shape in the segmented area can be obtained. Figure 6a is the original collected image;
Figure 6b is the gray distribution of the original image surface; and the interference of
water vapor leads to serious uneven light and shade on the surface. Figure 6c is the image
processed by the adaptive enhancement algorithm, and the brightness uniformity of the
billet surface is obviously improved. The image enhancement algorithm automatically
adapts to billet detection under the condition of water vapor interference and provides
support for the subsequent high-precision rotation angle measurement.
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Figure 6. Processing results of the image adaptive enhancement algorithm: (a) image of the original
billet; (b) gray scale distribution on the surface of the original billet; (c) surface area of the billet after
adaptive reinforcement.

2.4. External Rectangle Fitting Algorithm Based on Tukey Weight

The enhanced billet contour is extracted by sub-pixel contour to obtain contour point
sets at all edge positions [15]. Firstly, the traditional least square fitting method [16,17] is
used to initially fit the pretreated contour point set. Its basic principle is to minimize the
error by calculating the sum of squares of the distances from all points to the fitting straight
line. Assuming that the straight line is expressed as y = kx + b, calculate the residual from
each contour point to the initial fitting rectangle as follows:

R =
N

∑
i=1

[
yi − (kxi + b)2

]
(6)

In some cases with large edge noise, the data contain a large number of noise points,
and the traditional least square method cannot obtain the optimal result, so this paper
adopts the least squares method based on Tukey’s weight for fitting. The line fitting with
increasing weight function takes into account the distance from different points to the
line, which can improve the fitting accuracy. The Tukey-based weight function is defined
as follows:

t(γ) =


[

1 −
(
|γ|
η

)2
]2

, |γ| ≤ η

0, |γ| > η

(7)

In the formula, γ represents the distance from a point to a straight line, and η is the
clipping coefficient, which represents the distance, and its function is to judge outliers.

When |γ| > η, the value of the weighting function is 0, it means that a larger residual
gives a smaller weight. When |γ| ≤ η, the value of the weighting function varies with
the distance in the (0, 1) interval. The smaller the distance from the point to the line, the
larger the value of the weighting function, which means that a smaller residual gives a
larger weight.

Under the conditions of the weighted least square method, the expression for finding
the minimum residual is as follows:

R′ =
N

∑
i=1

[(yi − (kxi + b))t(γ)]
2

(8)

According to the weighted residual, the rectangle is re-fitted. When the residual error
is the smallest, the parameters of the linear equation are obtained.

Fitting based on the Tukey weight function can eliminate the influence of outliers
and achieve more accurate fitting results. The results processed by the external minimum
rectangle fitting algorithm are shown in Figure 7, and the included angle between the
rectangular long axis and the x axis (−89.45◦) is the real-time rotation angle of the billet.
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Figure 7. Schematic diagram of the circumscribed minimum rectangle fitting.

2.5. Smoothing Treatment Method of the Billet Angle

In the process of billet angle detection, due to the influence of partial occlusion, envi-
ronmental interference, and other factors, the external rectangle fitting algorithm may fail
to measure the angle and jump the angle in the implementation process, and the instability
of the feedback angle seriously affects the real-time control process of plate turning.

In order to eliminate the unstable phenomenon of angle detection, this paper adopts
the queue management method of “first-in, first-out” [18] to track the billet rotation angle.
Through the logic relation of the billet rotation angle at different times, the angle is smoothed
so as to avoid the influence of angle detection failure on plate turning control. When the
billet reaches the turning position, the trigger event is given, and the billet angle is set near
0◦ as the initial angle. After starting the automatic turning control, the billet rotation angle is
tracked according to the queue management method of “first in, first out” in each detection
period. Before the billet detection angle is added to the queue, the angle is comprehensively
judged by the stored preamble information in the queue. If the continuous condition is
met, it is allowed to join the queue, thus realizing the adaptive processing of billet angle
smoothing and detection failure. A threshold value is set to judge whether the current
detection angle is normal, and if it exceeds the given threshold value, it indicates that the
angle detection fails.

If angle detection fails, according to the preceding n groups of measurement infor-
mation in the queue, a prediction model is established, and the Newton interpolation
method [19] is adopted in the prediction model, as shown in Equation (9). The output
value of the current angle α is calculated as the actual angle output after the smoothing
processing and is added to the angle tracking queue.

f (x) = f (xt−n) + (x − xt−n) f [xt−n, xt−(n−1)] + · · ·
+(x − xt−n)(x − xt−(n−1)) · · · (x − xt−1) f [xt−n, xt−(n−1), · · · , xt]

(9)

where xt is the last time to join the queue, xt−n is the time to join the queue at time t − n,
and the corresponding f (xt−n) is the angle to join the queue at time t − n.

The abnormal handling process of the measuring angle based on the tracking queue
is shown in Figure 8. For the angle jump caused by long and short edge detection
errors caused by billet occlusion and the detection failure within protection time, an
effective and credible feedback angle can be obtained by using the angle smoothing
processing algorithm.
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Figure 8. Smoothing treatment of billet measurement angle.

3. Automatic Plate Turning Control Model

Improving the efficiency of plate turning is the research and development goal of
the automatic plate turning control system. In the actual production process, the plate
turning efficiency is affected by many interwoven parameters, such as billet size, roller
speed, equipment capacity, production environment, etc. There is no unified operation
specification and control logic, which makes it difficult to further improve the plate turning
efficiency using traditional model control methods. In recent years, with the continuous
development and improvement to big data and artificial intelligence, data-driven intelligent
optimal control methods have been widely used, and more and more engineering tasks
have begun to try to use reinforcement learning algorithms to choose optimal control
strategies. For sequential decision-making tasks, reinforcement learning can interact with
the environment in real time and consider long-term returns. Compared with traditional
control methods, reinforcement learning has special advantages in self-adaptation and
self-learning, and it has achieved great success in solving some complex problems. It has
been widely used in industries and academia [20–22].

Based on the reinforcement learning algorithm, this paper takes the time of plate
turning as the constraint condition and obtains the optimal setting strategy for the plate
turning speed by analyzing and summarizing the data of manual plate turning. The
relationship between the setting speed and feedback speed of a conical roller table is
simulated by establishing the roller table speed simulation model. The billet angle change
formula is derived by combining the billet size, the real-time rotation angle, the roller
table speed, and the conical roller size. Based on the above conditions, the simulation
environment of plate turning is established to simulate the actual plate turning process.
Then, based on the reinforcement learning theory, the reinforcement learning elements are
defined for the motion model of plate turning; the forms of state space and action space
are defined; the state is updated according to the state transition equation; and the reward
function is designed to construct the reinforcement learning model of the intelligent control
of plate turning [23]. The reinforcement learning intelligent decision algorithm is used to
train the decision model for plate turning. When state information such as billet length and
width and real-time angle is inputted, the most suitable speed turning angle of the billet is
determined, and the speed setting of the conical roller table is controlled to realize rapid
plate turning and improve the control accuracy.

3.1. Reasoning Model for Setting Optimal Plate Turning Speed

The size and real-time rotation angle of the billet are collected by industrial cameras
installed near the entry and exit rolling tables of the rolling mill. Combined with the control
instructions of the manual plate turning process and the change in the roller table speed,
the optimal plate turning data of operators are collected based on the data preprocessing
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algorithm. The optimal plate turning data are the optimal empirical strategy with the
shortest plate turning times and the highest plate turning efficiency.

The related variables and operation-specified change curves of operators in the process
of primary plate turning are shown in Figure 9. By analyzing and summarizing the
operator’s experience of plate turning, the optimal setting rules of the roller table speed
in the process of plate turning are as follows: setting odd and even conical roller table
speeds at the beginning of plate turning; setting the roller table speed to 0 at a suitable
billet rotation angle; making the billet decelerate by inertia; and finally, making the billet
rotate to a position near 90◦ when the roller table speed is 0◦. It is necessary to determine
the optimal turning point of roller table acceleration and roller table deceleration, that is, to
determine the rotation angle of the billet at the turning point of speed.

Figure 9. Curve chart of related variables in plate turning operation.

The plate turning system is a highly nonlinear and strongly coupled complex system.
The speed turning point is affected by the motor capacity of the conical roller table, the
thickness, width, and length of the rolled piece, and other factors, and the corresponding
billet rotation angle is extremely uncertain. This paper relies on production data and data
mining based on the reinforcement learning algorithm; establishes a digital reasoning
model based on big data, automatically reasoning the action setting in the process of plate
turning; and determines the optimal speed system under the condition of high-speed plate
turning by comparing with the actual billet measurement angle.

3.2. Model of Setting Speed and Feedback Speed of Conical Roller Table Motor

By analyzing the change in related variable curves in the plate turning process, it can
be known that the deceleration stage depends on inertia deceleration, and the slope of
the deceleration curve keeps near a certain constant value, so the first-order linear control
system can be used to describe the relationship between the set speed of the roller table
motor and the actual feedback speed in the plate turning process.

Firstly, according to the characteristics of the roller table deceleration process and
the system requirements, the transfer function model of the first-order control system
is defined, and the simulation experiment of the transfer function model is carried out
using multiple optimal plate turning data. Among them, the first-order control system is
composed of a first-order transfer function, which can be used to dynamically show the
relationship between input and output as a first-order linear differential equation, as shown
by the following Equation (10) [24]:

T
dy(t)

dt
+ k1y(t) = k2x(t) (10)

where T is the time constant; k1 and k2 are proportional gains; k2 is the input signal; y(t)
is the output signal; and dy(t)

dt is the derivative (rate of change) of the output variable y(t)
with respect to time t.
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The simulation experiment selects the same step signal as the actual plate turning
process and makes the simulation results close to the actual results by adjusting the two
key parameters: proportional gain and time constant, as shown in Figure 10, where x(t)
is the given value and y(t) is the feedback result. Finally, the specific parameters of the
first-order simulation system can be determined as follows: k1= 1.5; k2= 1.2; and T= 0.5.
The simulation results show that the system index can meet the control requirements of the
actual roller table deceleration process.

Figure 10. Schematic diagram of simulation of the first-order linear control system.

The transfer function model is adjusted by several model parameters determined
based on the simulation results of simulation experiments, and the set speed and feedback
speed model of the tapered roller table motor are obtained, which can accurately simulate
the relationship between the set speed and feedback speed of the motor in the deceleration
stage of the roller table in the plate turning process.

3.3. Theoretical Model of Billet Rotation Speed

In the process of plate turning, the motor drives the tapered roller to rotate. Because
of the linear friction between the tapered roller and the billet, and the fact that the linear
friction is distributed differently in the longitudinal direction, it will exert horizontal
rotating torque on the billet. A rotational moment brings horizontal rotational acceleration,
which causes the billet to rotate. Based on the physical changes in the actual process of plate
turning, a mathematical equation is constructed to determine the relationship between the
angular velocity of the billet and other factors and then accurately predict the change in the
billet rotation angle. The dimensions of the billet and the conical roller table are shown in
Figures 11 and 12.

Figure 11. Dimension drawing of the conical roller table.

When the billet rotation angle is α, the projection of the billet diagonal in the axial
direction of the roller table is as follows:

L1 = L sin α + W cos α (11)

where L1 is the projection of the billet diagonal in the axial direction of the roller table, L is
the billet length, W is the billet width, and α is the real-time rotation angle.



Metals 2024, 14, 709 12 of 22

Figure 12. Schematic diagram of the billet and the roller table dimensions.

During the rotating process of the rotary roller table, the contact position between the
billet and conical roller table changes constantly, and the diameter of the contact roller table
changes accordingly. The calculation formula for the roller table diameter at the contact
position between the billet and the conical roller table is as follows:

tan β =
d2 − d1

2LR
(12)

d = d1 + tan β(LR + L1) (13)

where d is the roller table diameter at the contact position between the billet and the conical
roller table, d1 is the small end roller diameter, d2 is the large end roller diameter, LR is the
roller table length, and β is the taper of the conical roller.

The horizontal linear velocity VP at the contact position between the billet and the
conical roller table is calculated by Equation (14):

VP =
d
d2

VR (14)

where VP is the horizontal linear velocity at the contact position between the billet and the
conical roller table, and VR is the linear velocity at the lap position between the conical
roller table and the billet.

Thus, the angular velocity of the billet at the rotation angle α is as follows:

ω =
VP
r

=

[
2 +

(d2 − d1)(LR − L1)

LRd1

]
VR
L1

(15)

where ω is the angular velocity of the billet at the rotation angle α, r = L1
2 .

Based on the above calculation process, the angular velocity of the billet can be
calculated according to the billet size, the roller table linear velocity, and the rotation angle
information, and then the angle change in the whole plate turning process can be predicted.

3.4. Building Simulation Environment of Automatic Plate Turning Based on Gym

In order to simulate the rotating process of the billet on the conical roller table, a set of
simulation environments for automatic plate turning were built using the Gym framework
of OpenAI, which can meet the experimental scene training of the speed and billet angle
changes in the conical roller table in a real environment and can display the graphical
interface. Using a virtual simulation experiment can save manpower and material resources
for scene building in real scenes, and it also avoids actual losses caused by trial and error in
a real environment, thus saving resources to a great extent.
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(1) State space:

The state space describes the environment to the agent, and the state space needs to
provide enough information to make the agent take appropriate actions. In the simulation
environment of this paper, the length, width, and real-time rotation angle of the billet are
obtained as state information, as shown in Table 1. According to the actual plate turning
situation and the stability of the control system, the maximum and minimum values are set
for the state information [25].

Table 1. State design.

State Minimum Value Maximum Value

Current angle 0◦ 180◦

Billet length 1000 mm 3000 mm
Billet width 1000 mm 3000 mm

In order to obtain the optimal operation output under any billet size, the initial angle
is set to 0 after each environment reset, and a random billet size is generated according
to the length-width ratio of 0.5~2.0, which can meet the rapid plate turning operation of
billets with different specifications.

(2) Action space:

In this paper, the action space of the conical roller table is decomposed into two stages:
acceleration and deceleration, to control the conical roller table continuously. In order to
maintain consistency with the action behavior of the conical roller table in the real world as
much as possible, 1 is used to denote the acceleration process of the roller table, and 0 is
used to denote the inertia deceleration process of the roller table, as shown in Table 2.

Table 2. Action design.

Action Meaning

1 Acceleration stage curve with step length of 20 ms
0 Deceleration stage curve with step length of 20 ms

(3) Transition of environmental state:

After the environment receives the action setting of the conical roller table transmitted
by the agent, it outputs the feedback speed of the roller table according to the set speed and
feedback speed model of the conical roller table motor; inputs the feedback speed of the
roller table and the billet state into the billet speed model; and outputs the real-time angular
speed, the product of the angular speed, and the preset time interval plus the initial angle
of the billet as the current angle of the billet, where the default time interval is dt = 20 ms.
In the training process, the plate turning simulation environment continuously detects the
feedback speed of the roller table and ends the iterative training when the feedback speed
of the roller table is detected to be zero.

(4) Design of the reward function:

The deep reinforcement learning neural network model needs to guide training ac-
cording to the reward value, and the design of the reward function needs to be consistent
with the task goal. The stronger the proportional relationship between the reward function
and goal state, the faster the agent learns to deal with the task.

In the simulation environment, the closer the real-time angle of the billet is after
one-time plate turning to the target value, that is, an angle of 90◦ rotation, the better the
performance of the action sequence, and the less the plate turning steps are expected to
ensure the shortest control time, so negative rewards and guiding rewards are set to make
the agent finish the exploration as soon as possible. Therefore, the reward function in this
article is designed according to the following steps:
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Take the current angle as A, the target angle as T, T = 90◦, and action ∈ {0, 1}.
The reward function can be defined as follows:

Raction =


1, action = 1 and 0 < A < T/3
−1, action = 0 and 0 < A < T/3
1, action = 0 and 2

3 T < A < T
−1, action = 1 and 2

3 T < A < T

(16)

Rdone =

{
(reward_max − reward_min) ∗ (1 − abs(T − A)/T) + reward_min)
−10, A > T

(17)

Rtotal = Raction + Rdone (18)

Rdone is a sparse bonus. When a sparse bonus is triggered, the billet will end this round
of training [26]. reward_min and reward_max are the minimum and maximum values of
the reward value, respectively. The score, according to the difference between the target
angle and the current angle, is combined with the reward range. If the billet exceeds the
target angle during rotation, it will receive a negative reward of −10.

Raction is a guiding reward, and its purpose is to speed up the convergence of the
algorithm. According to the actual experience of setting the speed of plate turning, it is in
the stage of roller table acceleration within 0◦~30◦, and in the stage of deceleration, it is
within 60◦~90◦. If you select the corresponding action, you will receive a positive reward
of 1, and if you make a mistake, you will receive a negative reward of −1.

All awards in the current round add up to the total award Rtotal .

3.5. Reinforcement Learning Algorithm Training

The DeepMind team put forward the DQN (Deep Q-Network) [27] algorithm in
2013. Based on the Q-Learning algorithm, it introduced an experience replay mechanism
and a target network structure, and it achieved amazing performance in an Atari game
environment, which kicked off the large-scale research of deep reinforcement learning.

DQN randomly samples N tuples {(si, ai, ri, si+1)}i=1,...,N from the replay buffer as a
small batch of training data, takes the loss function of Formula (19) as the optimization
objective of the current network, and uses the gradient descent method to solve its weight.

L =
1
N ∑ N

i=1[(r + γ max
a′

Q(si+1, ai+1, θ)− Q(s, a, θ))2] (19)

However, both the current Q value and the target Q value in Formula (19) use the
same parameters and are updated synchronously, which makes the model training unstable
and difficult to converge. In order to solve this situation, the DQN algorithm uses the old
network parameters to evaluate the state Q value of the next time step and updates the
parameters every certain time step, as shown in Figure 13. The current network Q(s, a, θ) is
used to evaluate the value function of the current state and action, and the target network
Q(si+1, ai+1, θ′) is used to calculate the temporal difference. In this way, it provides a
relatively clear reference target for the current Q network to be fitted and adjusts the
optimization target to the Formula (20).

L =
1
N ∑ N

i=1[(r + γ max
ai+1

Q(si+1, ai+1, θ′)− Q(s, a, θ))2] (20)

In the construction of the algorithm network, reinforcement learning needs to use the
trained model immediately after training, so it needs faster training and inference speed.
In order to achieve this goal, we chose a shallow network structure; that is, a three-layer
network. Generally, a slightly redundant network capacity is selected to keep good fitting,
and the data of 2 to the N power is selected as much as possible, which can be completely
put into the GPU for calculations, so 128 neurons were selected in this paper. ReLU has
linear characteristics, a fast calculation speed, and is helpful for solving the problem of
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gradient disappearance, so the ReLU function was used as the activation function in this
paper. Because PPO and SAC algorithms also need to meet similar requirements, these
three hyperparameters were set in the same way as DQN. The hyperparameters of the
DQN algorithm are shown in Table 3.

Figure 13. DQN algorithm framework.

Table 3. DQN algorithm hyperparameter settings.

Hyperparameter Value

Q network learning rate 2 × 10−3

Discount factor 0.98
Replay buffer size 10,000

Batch size 64
Target network update parameters 10
Number of neural network layers 3

Number of hidden neurons per layer 128
Activation function ReLU
Exploration factor 0.01

The PPO (proximal policy optimization) [28] near-end policy optimization algorithm
is a reinforcement learning benchmark algorithm based on the Actor-Critic framework
proposed by OpenAI in 2017. It not only has good performance, but is also easier to
implement than the previous TRPO (trust region policy optimization) [29].

The PPO algorithm uses iterative learning of the original data to ensure that the loss
of function value in the iterative process is minimized to prevent the gradient value from
updating too fast. It uses the proportion of the old and new strategies to control the update
range of the new strategy to obtain a more optimized strategy and increase the robustness
of the algorithm. The ratio rt is recorded as follows:

rt(θ) =
πθ(at|st)

πθold(at|st)
(21)

In the learning process, the replay buffer stores the training value data of the state,
action, and reward obtained when executing the current strategy of the Actor network.
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These training data are used to calculate the loss function needed to update the network
weights. The PPO algorithm loss function is shown in Formula (22).

LCLIP(θ) = Et[min(rt(θ)At, clip(rt(θ), 1 − ε, 1 + ε)At)] (22)

where θ represents the policy parameter; rt(θ) represents the ratio of the occurrence probability
of the old and new strategies, which is used to constrain the old and new strategies so that they
will not differ too much; At is the advantage function at time t, which is used to express the
advantage of the updated strategy compared with the old strategy; ε is the super parameter
controlling the cutting interval, which represents the maximum difference between the old and
new strategies, and usually takes the values of 0.1 and 0.2; Et denotes empirical expectations;
clip(rt(θ), 1− ε, 1+ ε) is a clipping function that restricts the strategy ratio rt(θ) in the range
of [1− ε, 1+ ε], and outputs 1 − ε if rt(θ) < 1 − ε; if rt(θ) > 1 + ε, 1 + ε is output.

Among many reinforcement learning algorithms, PPO has the advantages of strong
adaptability and stable training. The objective function proposed by PPO can be iteratively
updated with a small number of samples in multi-round training, which solves the prob-
lems of the step size being difficult to determine and the update difference being too large
in the strategy gradient algorithm.

The specific framework of the PPO algorithm is shown in Figure 14.

Figure 14. PPO algorithm framework.

On the construction of algorithm network, the hyperparameters of the PPO algorithm
are shown in Table 4.

Table 4. PPO algorithm hyperparameter settings.

Hyperparameter Value

Actor network learning rate 1 × 10−4

Critic network learning rate 5 × 10−3

Discount factor 0.95
Number of neural network layers 3

Number of hidden neurons per layer 128
Activation function ReLU

GAE parameters 0.95
Estimate the clipping coefficient of advantage function 0.2

The SAC (Soft Actor Critic) [30] algorithm introduces entropy into the objective func-
tion to reward exploration so as to achieve a balance between exploration and utilization.
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At the same time, a parallel architecture can be established based on off-policy, which
accelerates the learning speed. The increase in entropy improves the exploration ability
of agents in the algorithm. The randomness of the strategy can prevent the strategy from
converging prematurely to the local optimal value, and it has considerable performance.
The specific framework is shown in Figure 15.

Figure 15. SAC algorithm framework.

The SAC samples n tuples from the empirical buffer, and for each tuple {(si, ai, ri, si+1)}i=1,...,N,
it calculates yi with the target network:

yi = ri + γ min j=1,2Qθj ′(si+1, ai+1)− α log πθ(ai+1|si+1 ) (23)

where ai+1 ∼ πθ(·|si+1 ).
Update both Critic networks as follows: For j = 1, 2, minimize the loss function:

L =
1
N ∑ N

i=1

(
yi − Qθj(si, ai)

)2
(24)

Sample action ãi using the re-parameterization technique, and then update the current
Actor network using gradient ascending:

Lπ(θ) =
1
N

N

∑
i=1

(
α log πθ(ãi|si )− min

j=1,2
Qθj(si, ãi)

)
(25)

And automatically update the entropy regularity coefficient α:

L(α) = Est∼R,at∼π(·|st)[−α log π(at|st )− αH0] (26)

In the construction of the algorithm network, the hyperparameters of the SAC algo-
rithm are shown in Table 5.

In each plate turning task, the conical roller table will drive the billet to rotate in a
random action selection mode according to the action space. After 1000 rounds of training,
the average value of the reward function is output every 10 rounds in the training process.
After the model converges, the network parameters of the current best training results are
saved, and the reward value change graph in the training process is obtained, as shown in
Figure 16. The abscissa is the number of rounds, and the ordinate is the reward value of
the algorithm.
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Table 5. SAC algorithm hyperparameter settings.

Hyperparameter Value

Actor network learning rate 1 × 10−3

Critic network learning rate 1 × 10−2

entropy regularity coefficient learning rate 1 × 10−2

Discount factor 0.98
Replay buffer size 100,000

Number of neural network layers 3
Number of hidden neurons per layer 128

Activation function ReLU
Entropy regularization coefficient 0.01

Figure 16. Training process of reinforcement learning algorithm.

It can be seen from the figure that the training results of the three algorithms in the first
100 rounds do not increase significantly, and the reward value will fluctuate up and down
during the training process. This is because the samples used by the neural network in
the training process are all from the experience data obtained when the conical roller table
randomly executes the rotating task during the exploration process, while the number of
successful experience samples is small at the initial stage of training. When the successful
experience samples accumulate to a certain extent, the action variance gradually decreases,
and there is an obvious leap in the 100th to 300th training rounds, and the cumulative
return rises steadily.

The SAC algorithm reached its first peak in the 390th training round, and the reward
value reached 175 in the 400th training round. The model basically learned the optimal
control strategy for steel transfer, the model converged in the following rounds, and the
reward value remained stable. Then, after a short decline, the reward value stabilized at
183 after the 680th training round.

The PPO algorithm reached its first peak in the 510th training round. Because of
the importance of sampling in the PPO reinforcement learning model, the reinforcement
learning model converges well, the reward function curve grows steadily without excessive
fluctuation, and it stabilizes at about 158 after the first peak.

The DQN algorithm reached its first peak in the 370th training round, and the reward
value tended to be 128. After the first peak, although the reward value increased obviously,
it fluctuated greatly; even some rounds were lower than the reward value of the first
400 rounds, and the convergence was poor.
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Therefore, as can be seen from Figure 16, the SAC algorithm in this paper is obviously
superior to the DQN and PPO algorithms in the task of automatic steel transfer because
of its faster convergence speed, smaller fluctuation of rewards, and larger reward value
after convergence.

3.6. Online Strategy Optimization

In this paper, the action strategy output by the SAC algorithm is taken as the initial
strategy, and the strategy will continue to be automatically optimized in the subsequent
plate turning action. After starting the plate turning, the state of the billet is input into
the Actor network, and its output action is applied to the speed control of the roller table.
When each plate turning process is finished, each plate turning sequence is added into
the experience buffer D, and the Critic network is trained first using the plate turning gap
time, and then the Actor network is trained using Critic network to obtain the extraction
of the latest dataset of plate turning strategy. Through online datasets and continuous
training, the plate turning strategy output by the Actor network can adapt to the production
environment continuously, obtain higher control efficiency and better control accuracy, and
be widely used in the plate turning control process of plates.

4. Application of Automatic Plate Turning System

As shown in Figure 17, the automatic plate turning system has been successfully
applied in a 4100 mm plate production line that uses a double-stand, four-high reversible
rolling mill. For the control range, where the rotation angle is 85◦~95◦, the original operator
needs frequent manual intervention, and the success rate of one-time plate turning is low.
After the automatic plate turning is put into operation, the one-time rotation rate is ≥98.5%.

Figure 17. Processing results of the image adaptive enhancement algorithm: (a) the billet is in place
and stopped; (b) start plate turning; (c) the plate turning in place; and (d) side guide clamping.

During the field test of the automatic plate turning control system, the reasoning time
for the plate turning strategy is less than 20 ms, and the closed-loop control time, including
image processing, data communication, and setting plate turning commands, is less than
50 ms, which meets the real-time control requirements for automatic plate turning in the
production process. The intelligent control method based on the whole process of plate
turning reduces the time consumption of plate turning passes to the greatest extent and
makes the plate turning process more stable and smooth.

Figure 18 displays the comparative data of manual plate turning and automatic plate
turning tests during a period of the production process. In the process of plate turning,
the turning time is closely related to the length/width ratio of the billet. In order to better
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analyze and evaluate the efficiency of plate turning, we classified and counted the billets
with different length/width ratios by taking the manual and automatic plate turning times
as indexes. Figure 18a takes the start of plate turning to the completion of plate turning
as the time statistical range, and Figure 18b takes the billet throwing out signal before
plate turning to the billet biting in signal after plate turning as the time statistical range.
Compared with manual plate turning, the average plate turning time of each billet during
automatic plate turning is obviously reduced, and the fastest time can be shortened by
more than 1 s. The average rolling rhythm of a billet is about 150 s, and the average time
saved by automatic plate turning is 0.7 s, so the rolling efficiency can be improved by 0.46%.
The overall efficiency can be improved by 0.23% when the contribution of overall efficiency
improvement is calculated at 50%. Taking the annual output of a steel mill of 1 million
tons as an example, the efficiency is improved and the production is increased by about
2300 tons, which greatly improves the economic benefits.

Figure 18. Comparison of plate turning time: (a) effective time of plate turning; (b) biting in and
throwing out billet time.

5. Conclusions and Prospect
5.1. Conclusions

To solve the problem of plate turning in the plate rolling production line still needing
manual control by operators, an automatic plate turning control system was designed and
developed in this paper. The improved image processing algorithm can realize the billet
angle measurement function in a complex production environment. The digital model
and optimization algorithm for automatic plate turning based on reinforcement learning
were established, and the automatic optimization of plate turning speed and precision was
completed. The main conclusions of this paper are as follows:

(1) The image defogging algorithm, improved image adaptive enhancement algorithm,
external rectangle fitting algorithm based on Tukey weight, and angle smoothing
algorithm were proposed in order to resolve the problem of billet angle detection in
complex production environments. The fusion processing of the above algorithms can
adapt to changes in influencing factors such as water vapor interference and partial
occlusion in the rolling process, automatically eliminate water vapor interference and
abnormal angle situations, and provide real-time and stable angle detection values
for the automatic plate turning control system.

(2) Using the big data of manual plate turning operations, the optimal roller table speed
setting rules were obtained. The set speed and feedback speed models of the conical
roller table motor and the theoretical model of billet speed were constructed to simu-
late the plate turning process. Based on reinforcement learning theory, the elements of
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reinforcement learning were defined for the motion model of plate turning. The forms
of state space and action space were defined; the state was updated according to the
state transition equation; and the reward function was designed. The reinforcement
learning model for intelligent control of plate turning was constructed.

(3) Three reinforcement learning algorithms, DQN, PPO, and SAC, were used to train
the model in the simulation environment of automatic plate turning. The simula-
tion results showed that the SAC algorithm has a faster convergence speed, fewer
fluctuations of rewards, and reward value after convergence, and it has better online
optimization performance than the DQN and PPO algorithms in automatic plate
turning tasks.

(4) In the testing process of the automatic plate turning system, the closed-loop control
time, including image processing, data communication, and plate turning command
setting, was less than 50 ms, and the plate turning angle detection error was less than
±2◦. For the control range of 85◦~95◦, the rate of one-time plate turning was more
than 98.5%, and the average plate turning time of each billet was greatly shortened
compared with manual plate turning, and the fastest time could be shortened by more
than 1 s.

5.2. Prospect

In the process of plate turning, due to the warping of the billet, the buckling head, and
the contact part of the roller table, the slip between the billet and the roller table occasionally
occurs, and the plate turning area becomes limited, which may cause the billet to deviate
from the center of the roller table and exceed the limit, which affects the rate of plate turning
in a place at one time. In the future, it is necessary to continue to collect more manual plate
turning operation instructions under abnormal conditions. By optimizing and improving
the offline reinforcement learning algorithm, the ability to identify abnormal characteristics
of plate turning quickly and accurately is enhanced, and the self-organization and self-
optimization abilities of the data-driven model are used to find the optimal plate turning
strategy, so as to further improve the efficiency of the automatic plate turning system.
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