Comparative Study of the Mechanical Properties and Fracture Mechanism of Ti-5111 Alloys with Three Typical Microstructures
Abstract
:1. Introduction
2. Experiment
3. Results
3.1. Mechanical Properties
3.2. Features of Three Typical Microstructures
3.3. Features of the Deformation Microstructure
4. Discussion
4.1. Effect of the Microstructure on the Mechanical Properties
4.2. Fracture Mechanism
5. Conclusions
- (1)
- The EM Ti-5111 alloy demonstrates moderate strength and plasticity, whereas the LM Ti-5111 alloy shows poor mechanical performance. Compared with the EM and LM alloys, the BM Ti-5111 alloy exhibits the most superior strength and plasticity. To achieve excellent mechanical properties in the Ti-5111 alloy, such as a fine balance of cold plasticity and strength, it should undergo a heat treatment process of 980 °C × 0.5 h/AC to obtain the BM Ti-5111 alloy.
- (2)
- The high strength of the BM alloy can be attributed to its small grain size and a large number of αs/β phase boundaries. The exceptional coordinated deformation between the lamellar αs and β phases plays a crucial role in the remarkable plasticity of BM alloys. In addition, the moderate strength of the EM alloy is influenced by the dispersed short needle-like α phase, which, although contributing to strength, hinders plasticity, resulting in suboptimal mechanical properties. The thicker lamellar α and β phases, the presence of the αGB phase and the parallel arrangement of the αs phase are the primary factors behind the inferior mechanical properties of the LM alloy.
- (3)
- The fracture mechanism of the EM alloy is a mixed fracture mechanism including ductile and cleavage. The fracture mechanism of the BM alloy is typical of ductile fractures. Different from the EM and BM Ti-5111 alloys, the fracture mechanism of the LM alloy is a typical cleavage fracture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhang, C. Effects of Interlayer on the Microstructure and Mechanical Properties of Resistance Spot Welded Titanium/Steel Joints: A Short Review. Metals 2024, 14, 429. [Google Scholar] [CrossRef]
- Yan, S.; Song, G.-L.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Horynova, M.; Dargusch, M.S.; Zhou, L. A State-of-the-Art Review on Passivation and Biofouling of Ti and Its Alloys in Marine Environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Song, K.; Guo, X.; Li, Y.; Li, S.; Zhou, F. Structural Characterization and Nanoscale Strain Field Analysis of α/β Interface Layer of a near α Titanium Alloy. Nanotechnol. Rev. 2021, 10, 1197–1207. [Google Scholar] [CrossRef]
- Nimer, S.; Wolk, J.; Zupan, M. Local Property Characterization of Friction Stir Welded Ti-5111: Transverse Orientation Measurements. Acta Mater. 2013, 61, 3050–3059. [Google Scholar] [CrossRef]
- Nimer, S.; Everett, R.K.; Zupan, M. Microtensile Characterization of Titanium 5111 Alloy Mechanical Properties and Comparison of Failure Mechanisms at Two Microstructural Length Scales. Mater. Des. 2019, 183, 108081. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, J.Q.; Zhang, B.B.; Xin, C.; Wu, Y.K.; Zhang, L. Simultaneously Improved Strength and Elongation at Cryogenic Temperature in Ti–5Al–1V–1Sn–1Zr-0.8Mo Alloy with a Bimodal Structure. Mater. Sci. Eng. A 2021, 824, 141792. [Google Scholar] [CrossRef]
- Robinson, A.C. Optimizing Strength and Fracture Toughness of a Cast Titanium Alloy through Heat Treatment and Microstructure Control. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2007. [Google Scholar]
- Kolli, R.P.; Herzing, A.A.; Ankem, S. Characterization of Yttrium-Rich Precipitates in a Titanium Alloy Weld. Mater. Charact. 2016, 122, 30–35. [Google Scholar] [CrossRef]
- Wang, Z.F.; Chollocoop, N.; Briant, C.L.; Kumar, K.S. Hydride Formation and Its Effects on Mechanical Properties of Ti-5111. Met. Mater. Trans. A 2001, 32, 1552–1556. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, J.; Zhang, B.; Xin, C.; Wu, Y.; Ye, M. Influence of Microstructure on the Fatigue Crack Growth Behavior of a Near-Alpha TWIP Ti Alloy. Mater. Charact. 2021, 178, 111208. [Google Scholar] [CrossRef]
- Guo, K. Effect of Annealing on Microstructure and Tensile Properties of Skew Hot Rolled Ti–6Al–3Nb–2Zr–1Mo Alloy Tube. Mater. Sci. 2019, 766, 138346. [Google Scholar] [CrossRef]
- Su, J.; Jiang, F.; Tan, C.; Weng, F.; Ng, F.L.; Goh, M.H.; Xie, H.; Liu, J.; Chew, Y.; Teng, J. Additive Manufacturing of Fine-Grained High-Strength Titanium Alloy via Multi-Eutectoid Elements Alloying. Compos. Part B Eng. 2023, 249, 110399. [Google Scholar] [CrossRef]
- Cao, Y.; Li, N.; Luo, Y.; Tang, H.; Xie, Q.; Fu, A. A Novel Ultra-High Strength Titanium Alloy via Hierarchical α/A′ Precipitation Strengthening. Mater. Sci. Eng. A 2022, 840, 142878. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.; Wang, J.; Zhao, X.; Ma, C. Mechanical Properties and Deformation Mechanisms of Ti-15 Nb-5Zr-4Sn-1Fe Alloy with Varying α Phase Fraction. J. Alloys Compd. 2022, 898, 162816. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, W.; Wang, J.; Ren, L.; Zhao, X.; Ma, C. A Novel Strategy for Developing α + β Dual-Phase Titanium Alloys with Low Young’s Modulus and High Yield Strength. J. Mater. Sci. Technol. 2021, 76, 122–128. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Yan, Z.; Xin, R.; Wei, S.; Wang, X.; Liu, Q. Ex-Situ Study on Mechanical Properties and Deformation Mechanism of Three Typical Microstructures in TA19 Titanium Alloy. Mater. Charact. 2020, 167, 110521. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Li, C.; Luo, J.; Lu, Z.; Pang, H.; Li, M. Establishment and Application of Grain Morphology Distribution Model for Quantitative Analysis of Titanium Alloys with Typical Microstructures. Mater. Des. 2022, 221, 110945. [Google Scholar] [CrossRef]
- Torabinejad, V.; Zarei-Hanzaki, A.; Sabet, M.; Abedi, H.R. The Effect of Low Temperature Annealing on the Mechanical Behavior of Cold Rolled Dual-Phase Twinning-Induced Plasticity Steel. Mater. Des. 2011, 32, 2345–2349. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Zhou, F.; Song, K.; Li, S. Study on Microstructure Evolution of Ti–6Al–3Nb–2Zr–1Mo Alloy with Bimodal Structure during Hot Compression in the near β Region. J. Mater. Res. Technol. 2021, 15, 1747–1758. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, K.V.; Huang, A.; Wu, X.; Davies, C.H.J. Fatigue Crack Initiation in as Forged Ti–6Al–4V Bars with Macrozones Present. Int. J. Fatigue 2015, 80, 288–297. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Zhao, Q.; Zhao, Y.; Li, R.; Zeng, W. In-Situ Observations of the Tensile Deformation and Fracture Behavior of a Fine-Grained Titanium Alloy Sheet. J. Alloys Compd. 2018, 740, 660–668. [Google Scholar] [CrossRef]
- Nigro, C.F.; Bjerkén, C.; Mellbin, Y. Phase-Field Modelling: Effect of an Interface Crack on Precipitation Kinetics in a Multi-Phase Microstructure. Int. J. Fract. 2021, 227, 219–241. [Google Scholar] [CrossRef]
- Dubey, S.; Soboyejo, A.B.O.; Soboyejo, W.O. An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V. Acta Mater. 1997, 45, 2777–2787. [Google Scholar] [CrossRef]
- Peralta, P.; Villarreal, T.; Atodaria, I.; Chattopadhyay, A. Mechanical Length Scales and Their Link to Fatigue Crack Growth Kinetics in Beta-Annealed Ti–6Al–4V. Scr. Mater. 2012, 66, 13–16. [Google Scholar] [CrossRef]
- Tan, C.; Li, X.; Sun, Q.; Xiao, L.; Zhao, Y.; Sun, J. Effect of α-Phase Morphology on Low-Cycle Fatigue Behavior of TC21 Alloy. Int. J. Fatigue 2015, 75, 1–9. [Google Scholar] [CrossRef]
- Qin, D.; Lu, Y.; Liu, Q.; Zheng, L.; Zhou, L. Transgranular Shearing Introduced Brittlement of Ti–5Al–5V–5Mo–3Cr Alloy with Full Lamellar Structure at Room Temperature. Mater. Sci. Eng. A 2013, 572, 19–24. [Google Scholar] [CrossRef]
- Seshacharyulu, T.; Medeiros, S.C.; Morgan, J.T.; Malas, J.C.; Frazier, W.G.; Prasad, Y.V.R.K. Hot Deformation and Microstructural Damage Mechanisms in Extra-Low Interstitial (ELI) Grade Ti–6Al–4V. Mater. Sci. Eng. A 2000, 279, 289–299. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Wu, J.; Li, H.; Zhang, Y.; Zhao, Y.; Zhou, L. Formation and Annihilation of Deformation Twinning in Hexagonal Ti with Lamellar Microstructure. J. Alloys Compd. 2022, 925, 166670. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, Q.; Wang, H.; Huang, S.; Qiu, J.; Feng, X.; Lei, J.; Yang, R. Deformation Twinning in Fatigue Crack Tip Plastic Zone of Ti-6Al-4V Alloy with Widmanstatten Microstructure. Mater. Charact. 2017, 132, 338–347. [Google Scholar] [CrossRef]
- Ma, X.Z.; Xiang, Z.L.; Ma, M.Z.; Cui, Y.P.; Ren, W.M.; Wang, Z.T.; Huang, J.C.; Chen, Z.Y. Investigation of Microstructures, Textures, Mechanical Properties and Fracture Behaviors of a Newly Developed near α Titanium Alloy. Mater. Sci. Eng. A 2020, 775, 138996. [Google Scholar] [CrossRef]
- Ma, X.Z.; Xiang, Z.L.; Ma, M.Z.; Tan, C.; Yang, Z.A.; Shen, G.L.; Chen, Z.Y.; Shu, Q. Effect of Trace Boron Addition on Microstructures, Textures, Mechanical Properties and Fracture Behaviors of near α Titanium Alloy. Mater. Sci. Eng. A 2020, 772, 138749. [Google Scholar] [CrossRef]
- Gao, P.F.; Qin, G.; Wang, X.X.; Li, Y.X.; Zhan, M.; Li, G.J.; Li, J.S. Dependence of Mechanical Properties on the Microstructural Parameters of TA15 Titanium Alloy with Tri-Modal Microstructure. Mater. Sci. Eng. A 2019, 739, 203–213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lu, L.; Zhang, Y.; Zhou, F.; Song, K. Comparative Study of the Mechanical Properties and Fracture Mechanism of Ti-5111 Alloys with Three Typical Microstructures. Metals 2024, 14, 722. https://doi.org/10.3390/met14060722
Liu H, Lu L, Zhang Y, Zhou F, Song K. Comparative Study of the Mechanical Properties and Fracture Mechanism of Ti-5111 Alloys with Three Typical Microstructures. Metals. 2024; 14(6):722. https://doi.org/10.3390/met14060722
Chicago/Turabian StyleLiu, Haitao, Longlong Lu, Yanmin Zhang, Fei Zhou, and Kexing Song. 2024. "Comparative Study of the Mechanical Properties and Fracture Mechanism of Ti-5111 Alloys with Three Typical Microstructures" Metals 14, no. 6: 722. https://doi.org/10.3390/met14060722
APA StyleLiu, H., Lu, L., Zhang, Y., Zhou, F., & Song, K. (2024). Comparative Study of the Mechanical Properties and Fracture Mechanism of Ti-5111 Alloys with Three Typical Microstructures. Metals, 14(6), 722. https://doi.org/10.3390/met14060722