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Abstract: The electric arc furnace (EAF) is considered the second most important process for the
production of crude steel and is usually used for the melting of scrap. With the current emphasis on
defossilization, its share in global steelmaking is likely to further increase. Due to the large production
quantities, minor improvements to the EAF process can still accumulate into a significant reduction
in overall energy and resource consumption. A major aspect in the efficient operation of the EAF
is achieving beneficial slag properties, as the slag influences the composition of the steel and can
reduce energy losses as well as the maintenance cost. In order to investigate the EAF operation, a
dynamic process model is applied. Within the model, the chemical reactions of the metal–slag system
are calculated based on the activities of the involved species. In this regard, multiple models for the
calculation of the chemical activities have been implemented. However, depending on the chosen
model, the computation of the slag activities can be computationally demanding. For this reason,
the application of a neural network for the calculation of the chemical activities within the slag is
investigated. The performance of the neural network is then compared to the results of the previously
applied models by using the commercial software FactSage as a reference. The validation shows that
the surrogate model achieves great accuracy while keeping the computation demand low.

Keywords: electric arc furnace; chemical activities; chemical equilibrium; regression; artificial neural
network; FactSage; process model

1. Introduction

The electric arc furnace (EAF) is the second most important process for the production
of crude steel [1]. Historically, it was primarily used for the melting of scrap metal. However,
with the ongoing decarbonization of the steel industry, other input materials such as
biogenic carbon carriers or direct reduced iron (DRI) are being used more frequently in the
EAF [2,3]. Meanwhile, the energy costs as well as the requirements on the composition of
the crude steel are increasing, posing an unprecedented challenge for the furnace operation.
Due to the extreme condition within the arc furnace, the measurements, however, are
highly complicated and cost-intensive. As a result, the available data are often limited
to ingoing and outgoing energy and material flows, with no direct information on the
occurring processes. In addition, there is often a significant delay between taking a sample
of the steel and the determination of the result. A common way to analyze and improve the
operation of metallurgical processes is, therefore, through the application of mathematical
models. In doing so, the costs and risks connected with subsequent plant trials can be
decreased. A comprehensive review of the available models of the EAF was published by
Hay et al. [4] as well as Carlsson et al. [5]. Carlsson focused on statistical models, while
Hay et al. discussed the purpose, modeling approach, and limitations of dynamic process
models. A comprehensive and well-documented process model of the EAF was developed
by Meier [6] based on the previous work by Logar et al. [7,8]. Within the model, the furnace
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is divided into several homogenous zones, including the liquid steel and slag, as well as
the gas phase. The arc furnace process is simulated by calculating the energy and mass
transfer between these zones. In this regard, the chemical reactions are a key aspect in
simulating the EAF process, as they determine the composition of the molten steel, slag,
and off-gas. Moreover, chemical reactions contribute a significant amount of energy to
the process [9]. A well-conditioned slag also improves the stability of the arc, reduces the
refractory corrosion, and reduces heat losses by building a slag coating on the furnace walls.
In later stages of the process, it is advantageous to promote a foaming slag by injecting
carbon and oxygen. The carbon reacts with the oxygen and oxides in the slag, forming
CO, which leads to the foaming of the slag. The foaming slag encapsulates the arc and
shields the furnace roof and walls from its thermal radiation, further reducing heat losses
and preventing damage [10]. For the presented reasons, an accurate modelling of the slag
phase as well as the reactions in the interphase between the melt and slag is detrimental for
a simulation of the EAF process.

The reaction rates are subject to the melt and slag composition, and the activity of
the species, as well as the reaction kinetics and the mass transfer within the adjacent
zones. Although the slag activity is only calculated for a limited number of species, the
computation takes up a significant fraction of the total runtime of the process model. The
overall computation time is still short enough to allow for the real-time monitoring of the
process. However, when running optimization tasks on multiple heats, the computation
time can increase drastically. A possible future application of the model is the optimization
of the operating chart in order to minimize energy and resource consumption as well as
climate gas emissions while maintaining a desirable composition of the melt and a safe
operation of the furnace. However, searching the high-dimensional solution space using
the process model in its default state is not possible in a reasonable time. In this regard, a
further reduction in the computation time is imperative. The main objective of this work is,
therefore, to implement a surrogate model for the calculation of the activity of the reacting
species by utilizing supervised machine learning. In this regard, neural networks allow
for the representation of complex relationships between the input and output data. A
shallow neural network is used, as it provides a sufficient approximation of the reference
model, yet retains an efficient architecture. This way, by applying the surrogate model, the
computation time of the EAF model can be significantly decreased. The described approach
of substituting particularly demanding sub-models is not limited to the domain of the
chemical activity calculation. It can also be applied to other model aspects or even different
processes. The necessary training data can be generated by means of measurement or by
the application of an accurate but computationally more demanding model.

2. Materials and Methods

In general, most relevant metallurgical reactions take place at the boundaries between
immiscible phases. In the context of the EAF, those are primarily the injection zones of
oxygen and carbon, as well as the interface between melt and slag [11]. Within these zones,
the overall reaction rates are governed by the transport of reactants and products towards
and from the interface, as well as the chemical reaction rates at the interface itself. However,
with temperatures above the melting point of steel, a local equilibrium is often assumed
for the interface, with the transport rates considered as the limiting factor [11]. Among
others, this approach is used within the process models by MacRosty [12] and Hay [6,13].
The latter is the primary object of consideration for this work. Hay incorporates separate
reactions zones for the sites of oxygen and carbon injection, as well as the metal–slag
interface. However, for the purpose of demonstration, the surrogate model is only applied
for the interaction zone between liquid metal and slag. Within the model, the reaction zone
contains the entire liquid slag phase and a limited amount of melt. Consequently, in terms
of mass transport, the reaction rates are only limited by the diffusion rates between the melt
and the metal–slag interface (

.
mSpecies i) in accordance to Equation (1), where the current

mass fractions of species i within the melt and interface are given by wmelt
i and winterface

i ,
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respectively, and kdi denoting empirical factors. The equilibrium composition within the
interaction zone is governed by Equation (2). As such, the equilibrium constant Keq,i can
be determined as a function of the standard Gibbs free energy change −∆G0, temperature
T, and the gas constant R, as well as the activity ai and the stoichiometric coefficient vi for
each species. The equilibrium concentration of the elements in the interface can then be
calculated using the equilibrium constants and activities. Ultimately, the reaction rates
within the model are implemented as a function of the difference between the current mass
fractions and the equilibrium concentration. The size of the time steps within the process
model is controlled globally for the entire system of differential equations by means of the
solver (BDF) in use [14]. A more detailed description can be found in the corresponding
work by Hay [13]:

.
mSpecies i = kdi ×

(
wmelt

i − winter f ace
i

)
(1)

Keq,i = e
−∆G0

RT = ∏ avi
i (2)

For calculation of the reaction rate as previously described, it is necessary to compute
the activity of the species within the liquid melt and slag. Computation of the melt activities
is comparably simple, as the melt is largely made of liquid iron with low concentration of
dissolved species. In this regard, Hay incorporated both the Wagner interaction parameter
formalism (WIPF) [15] and the unified interaction parameter formalism (UIP) [16]. The
slag can, however, vary over a wide range. It consists, in part, of metallic oxides (mainly
iron oxide) and silica from adhesives of the charged scrap. From a metallurgy point
of view, the main requirement on the slag is to promote dephosphorization as well as
desulphurization. Both metals are often present in the scrap and coal, yet are undesirable in
produced steel [17]. In order to facilitate oxidation of phosphor and sulphur, it is customary
to charge basic material such as chalk, lime, or dolomite alongside the scrap in order to
raise the activity of oxygen within the slag and lower the activity of oxygen within the
liquid melt [18,19]. For this reason, a large portion of the slag is made up of calcium and
magnesium oxide from the slag formers. In addition, magnesium oxide is also released
into the liquid slag from disintegration of the refractory material. Oversaturation of the
slag with CaO and MgO can ultimately lead to the formation of another phase, further
increasing the complexity of the system [20]. In addition to the aforementioned species, the
slag also contains various sulfides and fluorites to a lesser extent. That being said, due to
the high complexity and unavailability of interaction parameters for these species, the EAF
model focuses purely on oxides. In Table 1, an exemplary composition of the EAF slag from
a steel plant producing structural and engineering steels is listed. Below that, the upper
and lower limits (UL and LL) on the mass fractions of each species for the subsequent
creation of the data for training of the neural network are shown. The first scenario is
intended to match the composition of the slag at the time of tapping, while the second
scenario is provided for a more general description. For the calculation of the activities
within the slag, the regular solution (RS) model published by Ban-Ya [21] as well as the cell
model by Gaye et al. [22] are implemented. Within the RS model, cations are assumed to be
randomly distributed within an oxygen–anion matrix. In contrast, the cell model describes
the slag in terms of cells composed of a single central anion surrounded by cations [23].
Unfortunately, the interaction parameters published by Ban-Ya are missing information
for chromium oxide. These have been partially supplemented by the work of Xiao and
Holappa [24]. However, when compared to the results of the commercial software FactSage
6.4 (Version 6.4, GTT Technologies Herzogenrath, Germany) [25], the deviation of both
models necessitated the usage of further parameters for correction. Furthermore, while the
cell model yields better results than the regular solution model, the computation time is
significantly higher, accounting for up to 40% of the EAF model’s total runtime. For this
reason, estimation of the slag activities using a neural network is investigated. Within this
work, the calculation of the slag activity is treated as a pure regression task.
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Table 1. Exemplary composition and temperature with upper and lower bounds.

Temperature FeO Cr2O3 Al2O3 MnO P2O5 SiO2 MgO CaO

Unit K wt.%

Slag * 35.6 2.5 6.1 6.4 0.3 11.9 9.6 25.8

Scenario 1: tapping
LL 1700 20 1 2.5 2.5 0 5 5 20

UL 2000 50 5 10 10 0 15 25 50

Scenario 2: process
LL 1700 0 0 0 0 0 0 0 0

UL 2000 100 100 100 100 0 100 100 100

* analyzed slag contained further species such as S, TiO2, and V2O5.

The necessary data for training of the model are generated by using the FactSage
Equilib module on a dataset generated corresponding to the aforementioned upper and
lower bounds. The temperature values are drawn from a uniform distribution. For the
composition, two separate scenarios are considered. For the first case the composition
range is aimed to match the composition of the slag at tapping. However, depending on
the melting rates of the input material, the slag composition varies throughout the process.
For this reason, in the second scenario, broader boundaries are chosen, ranging from 0
to 100 percent for each species. Phosphorus oxide is set to zero in both cases, as it is not
included in the version 6.4 of the FToxid or FTstel databases used for generation of the
training data [26]. In the first scenario, individual mole fractions are drawn from a uniform
distribution by applying the stated lower and upper bounds. The composition array is then
normalized by division with the overall sum. However, in the second scenario, this method
cannot be used. Since all species range from 0 to 100%, by normalizing, all mol fractions are
likely to be on a similar level. This way, creating a composition with only one or two major
components is virtually impossible, as it would require all other fractions to be very small.
To address this issue, the composition array is created in multiple steps. In the first step a
single value between 0 and 1 is drawn from a uniform distribution. Subsequently, other
(n−1) values are drawn that range from 0 to (1−x) where n denotes the number of species
and x denotes the result of the first sample. Using all values, as well as 0 and 1, an array is
created. Ultimately, the array is sorted, and the difference between each element and its
successor is calculated. The result is assigned to the species at random. This way, the sum
of all entries is equal to one, while a single species is likely to have a higher mole fraction
than the others. For each scenario, a total of 10,000 compositions is created, 40% of which is
used for training of the neural network. In Figure 1a, the generated slag composition of
the tapping scenario is shown in the form of a box plot. The slag consists mainly of FeO,
CaO, and MgO with lower percentages of the remaining species. Figure 1b also shows the
probability distribution of the molar fractions for the second scenario. As can be seen, when
drawing from a uniform distribution with subsequent normalization, almost no samples
exceed a mole fraction of 0.4. In contrast, when stepwise-creating the composition array,
mole fractions of up to 1 can be reached. By nature, this results in a higher overall number
of small mole fractions. The composition matrices from scenario 1 and 2 (with stepwise
creation) are used in conjunction when training the model to prevent overfitting of the
neural network to a specific situation.

For approximation of the chemical activity, a shallow feedforward neural network
was chosen. When applying neural nets, most computational effort is during training of
the model weights. Predicting the output using the trained model is as simple as matrix
multiplication and summation, as such computation of the prediction is not reliant on
third-party libraries and can be implemented very efficiently. The network is composed of
an input and output layer, as well as a single hidden layer with 80 neurons. The layout of
the neural network is depicted in Figure 2a.
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Figure 2. (a) Structure of the neural network; and (b) response of the activation functions.

As shown in Equation (3), at each node, the input from the previous layer denoted
by vj is first multiplied by a set of weights wij specific to the neuron i. Afterwards, the
corresponding vector is cumulated, and a bias bi is added. The result x is passed onto the
next layer by application of an activation function f(x). The output layer utilizes a linear
activation function (identity) with a constant value as given by Equation (4), while the
neurons within the hidden layer uses a rectified linear unit (ReLU) as stated in Equation (5).
Both functions are visualized in Figure 2b. In the recent past, the ReLU has become the
default choice for most feedforward networks [27]. While the advantages of the ReLU in
terms of the learning rate are neglectable for small networks, it has been chosen in order
to introduce a nonlinear transformation to the model. Stacking linear layers, the output
would otherwise still be equivalent to a linear combination of the input arguments [28].
The model input consists of the temperature and composition of the slag. In theory, the
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chemical activity is also dependent on pressure. However, the melt–slag interface is located
above the melt, with the pressure inside the EAF being reasonably close to atmospheric
pressure. For this reason, the pressure dependency of the activity can be neglected. The
output contains the activities of each species at the given temperature and composition.

x =
n

∑
j=1

(
wijvj

)
+ bi (3)

flinear(x) = a ∗ x (4)

fReLU(x) =
x + |x|

2
(5)

Both the weights and biases of each neuron can be seen as parameters of the neural
network. Starting from their initial values, during training, the parameters are adjusted
such that the output of the network best matches the reference values. To achieve this, a
backpropagation algorithm is applied. Starting from the output layer, the effect of each
individual weight on the result is calculated by partial derivation of the obtained overall
error. The weights can then be adjusted accordingly before the next iteration [29]. This
process is repeated until the output is within a specified tolerance or the maximum number
of iterations is reached. In the upcoming section, the results of the surrogate model are
compared to the previously used models. In this regard, the results are evaluated based
on several metrics. A major aspect is the accuracy of the model prediction. As such,
the deviation between the chemical activity calculated by each model and the reference
values obtained with FactSage is assessed using the mean absolute error (MAE) as stated
in Equation (6). Additionally, the adjusted coefficient of determination (R2) given in
Equation (7) is calculated from the ratio of the residual (RSS) and total sum of squares
(TSS). The coefficient is a popular measure for the quality of a fit and is often presented as
the percentage of variance of the result which is explained by the linear relationship with
the explanatory variables [30]. Finally, the 95% percentile is provided, representing the
threshold within which 95% of the results fall. Likewise, 5% of the results have a deviation
greater than the threshold. This metric can be interpreted as a worst-case analysis. Due
to the dynamic nature of the EAF process, small deviations from the actual result can
cancel each other out, while large deviations will significantly affect the overall result of
the simulation.

MAE =
1
n∑| fi − yi| (6)

R2 = 1 − RSS
TSS

= 1 − ∑( fi − yi)
2

∑(yi − y)2 (7)

On the other hand, the computation speed of the models is relevant, as the purpose of
the surrogate model is not only to closely reproduce the reference value, but to do so in
significantly less time than the previous models. In order to eliminate random fluctuations,
the execution time is averaged for all samples within the validation set. The calculations
are performed in serial, as this resembles the later usage in the EAF model. Furthermore,
the computation time of the surrogate model is multiplied by a factor of 8/7 as it is missing
the activity of phosphorus oxide. However, it can be argued that the complexity of the
neural network remains largely unchanged, as the additional output only affects the size of
matrices used for calculation but not the overall structure of the model.

3. Results

In Figure 3, the results of the surrogate model are displayed for MgO, FeO, MnO, and
Cr2O3. In addition, the activities calculated using the previous models are shown. The solid
line represents a perfect fit between the model results and the reference values obtained
with FactSage. Values that exceed an activity of 1 are displayed at the corresponding
boundary. The performance of the investigated models is also summarized in Table 2 using
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the previously outlined metrics. As can be seen from both Figure 3 and Table 2, the trained
neural network is able to estimate the slag activity more reliably than the RS, as well as the
cell model. With the only exception of Cr2O3 at activities close to 1, the surrogate model
reproduces the FactSage results over the entire range of compositions. This corresponds
to an average deviation of 0.016 at maximum and a 95% quantile threshold of 0.065. The
coefficient of determination (R2) ranges from 0.97 to 0.99, showing an exceptional quality
of the fit. In contrast, large deviations can be observed for the previous models. This is
especially the case for the RS model. The poor representation can be partly attributed to
the missing interaction parameters for Cr3+ with Fe2+, Mn2+, and P5+. This is confirmed
by the substantial deviation for both the mean deviation and 95% percentile of Cr2O3.
Nonetheless, the results of the RS also show deviations for the remaining species.
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Table 2. Overview of the performance of the applied models.

Model Execution Time for
1000 Samples Species MAE R2 95% Percentile

RS 0.037 s

SiO2 0.0279 0.71 0.1483

Cr2O3 0.8059 −10.1 0.9995

Al2O3 0.0089 0.95 0.0563

FeO 0.1523 −0.09 0.3543

MnO 0.0651 −0.11 0.2815

MgO 0.0846 −0.05 0.2424

CaO 0.0380 −0.09 0.1097

Cell 9.848 s

SiO2 0.0289 0.65 0.1558

Cr2O3 0.1483 0.15 0.5462

Al2O3 0.0142 0.53 0.0480

FeO 0.1582 −0.18 0.3823

MnO 0.0376 0.81 0.1210

MgO 0.0145 0.97 0.0425

CaO 0.0058 0.97 0.0191

ANN 0.115 s

SiO2 0.0086 0.97 0.0379

Cr2O3 0.0163 0.98 0.0655

Al2O3 0.0046 0.99 0.0201

FeO 0.0112 0.99 0.0354

MnO 0.0071 0.99 0.0232

MgO 0.0068 0.99 0.0222

CaO 0.0041 0.99 0.0137

The RS model performs best for Al2O3 and SiO2, with R2 scores of 0.95 and 0.71,
respectively. Overall, the cell model performs better than the RS model with an R2 of up to
0.97 for both MgO and CaO. However, the cell model also faces difficulties in determining
the activity of FeO and Cr2O3. For both species, the activity deviates from the reference
by 0.15 on average. In addition, the computational demand of the cell model is roughly
300 times larger when compared to that of the RS model. When running the EAF process
model for a heat of 60 min, the ODE solver takes approximately 35,000 calculation steps
depending on the smoothness of the furnace operation. By applying the cell model without
further simplification, this results in an additional simulation time of over 340 s on the
system used for the testing of the model.

In contrast, the neural network takes only about 0.1 s for 1000 iterations (4 s for the
entire heat) and is, thus, on a similar scale as the RS model while providing significantly
improved results. This comparison neglects the influence of the calculated slag activity on
the simulation. In theory, an improved calculation of chemical activities could lead to a
more continuous progression of chemical reactions within the model, further reducing the
number of evaluation steps required by the solver. However, this is highly dependent on the
general operation of the furnace and could not be reliably observed for the process model
under investigation. Furthermore, within the process model, additional simplification and
optimization is performed, reducing the overall numerical effort.

4. Discussion

Within this work, a shallow feedforward network is applied in order to approximate
the chemical activity of the species within a metallurgical slag. The network is used
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as a surrogate within a comprehensive dynamic process model of the EAF in order to
reduce the overall computational demand while maintaining a reasonable accuracy. For the
training of the model, a large number of chemical compositions was created to reflect the
different stages of the EAF process. The reference activities were then calculated using the
commercial software FactSage. Afterwards, the dataset was split into separate datasets for
the training and validation of the model. The accuracy of the neural network was compared
to the results of the previously applied regular solution and cell model. During validation,
it became evident that the neural network outperforms the previous models in terms of the
prediction accuracy. At the same time, the computational complexity remained close to that
of the regular solution model. This way, by implementing the surrogate model, the runtime
of the process model can be minimized when performing, for example, optimization tasks.
However, since the modelling approach is not based on physical principles, the neural
network should not be used outside the range of the training data. Otherwise, the results
may produce unexpectedly large deviations from the actual chemical activities. In such
cases, it is advisable to retrain the model or integrate the original FactSage model. While it
is possible to directly integrate FactSage’s calculation into the EAF process model, this is
also associated with an increased overhead and a higher overall runtime.

Within the context of this work, FactSage was used both for the creation of the data
used for the training of the surrogate model, as well as for reference when evaluating
the results of the investigated models. Therefore, the applied neural network may not
necessarily be better suited for calculating the chemical activities. The evaluation of the
results only confirms that the model is able to better match the results provided by FactSage.
Furthermore, Version 6.4 of the FTstel and FToxid databases are missing data on phosphorus
oxide. As noted before, the phosphorus content of the steel is, however, a major concern for
ensuring the targeted properties of the produced steel. In summary, the surrogate model
is highly dependent on the availability of the underlying reference model and its ability
to produce the desired output. That being said, the presented approach can be applied
in various contexts and is not limited to the calculation of chemical activities. The benefit
of employing a surrogate model in terms of computational effort is, however, dependent
on the complexity of the original problem as well as the implementation of the applied
methods.

On a side note, the considered EAF process model was implemented using the Python
programming language for the reason of its open-source nature and accessibility. As an
interpreter language, Python is, however, inherently slower than compiler languages such
as C or Fortran [31,32]. Utilizing third-party libraries such as numba, the Python function
can be compiled ahead of time [33]. The output of the trained neural network is calculated
using basic operations such as matrix multiplication and summation. Therefore, it is not
reliant on third-party libraries and can be easily implemented to work in conjunction with
numba. This way, the calculation of the slag activity and, by extension, the entire EAF
model can by pre-compiled, resulting in a further decrease in runtime.
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