Numerical Simulation as a Tool for the Study, Development, and Optimization of Rolling Processes: A Review
Abstract
:1. Introduction
Refs. | Year | Citations | Temperature | Rolling Process | Material | Numerical Method |
---|---|---|---|---|---|---|
[22] | 2022 | 15 | Hot rolling | Cross-wedge rolling | AISI 1045 | FEM |
[23] | 2022 | 14 | Hot rolling | Ring rolling | AA2219 | FEM |
[24] | 2022 | 13 | Hot rolling | Ring rolling | TC4 Ti alloy | FEM |
[25] | 2022 | 9 | Hot rolling | Ring rolling | IN718 | FEM |
[26] | 2022 | 9 | Hot rolling | Ring rolling | AA1050 | FEM |
[27] | 2022 | 9 | Hot rolling | Skew rolling | LZ50 steel | FEM |
[28] | 2022 | 8 | Hot rolling | Flat rolling | AZ80 Mg alloy | FEM |
[29] | 2022 | 7 | Hot rolling | Combined rolling-extrusion | Al-Zr-Hf alloy | FEM |
[30] | 2022 | 7 | Hot rolling | Flat rolling | AISI 1045 | FEM |
[31] | 2022 | 7 | Hot rolling | Flat rolling | AA2XXX; AA7XXX | FEM |
[32] | 2023 | 10 | Cold rolling | Corrugated roll bonding | T2 Cu/AA1060 clad plate | FEM |
[33] | 2023 | 9 | Hot rolling | Flat rolling | AA7A04 | FEM |
[34] | 2023 | 5 | Hot rolling | Ring rolling | Ti-6Al-4V alloy | FEM |
[35] | 2023 | 5 | Hot rolling | Flat rolling | Commercially pure Ti/ Q345 steel clad plate | FEM |
[36] | 2023 | 4 | Hot rolling | Shape rolling | SAE 52100 | FEM |
[37] | 2023 | 3 | Cold rolling | Equal-channel angular rolling | AA6061 | FEM |
[38] | 2023 | 3 | Cold rolling | Equal-channel angular rolling | Commercially pure Cu | FEM |
[39] | 2023 | 3 | Hot rolling | Flat rolling | AZ31 Mg alloy | FEM |
[40] | 2023 | 3 | Hot rolling | Flat rolling | Commercially pure Mo | FEM |
[41] | 2023 | 3 | Cold rolling | Flat rolling | Q235 steel | FEM |
[42] | 2024 | 6 | Hot rolling | Ring rolling | GH738 Ni-based superalloy | FEM |
[43] | 2024 | 4 | Warm and hot rolling | Asymmetrical rolling | Ti-6Al-4V alloy | FEM |
[44] | 2024 | 1 | Hot rolling | Ring rolling | 42CrMo4 steel | FEM |
[45] | 2024 | 1 | Hot rolling | Flat rolling | Commercially pure Al/ commercially pure Mg clad plate | FEM |
[46] | 2024 | 1 | Cold rolling | Hollow embossing rolling | AISI 316L | FEM |
[47] | 2024 | 1 | Hot rolling | Skew rolling | 100Cr6 steel | FEM |
[48] | 2024 | 1 | Hot rolling | Flat rolling | Q235 steel/SS 1Cr13 clad plate | FEM |
[49] | 2024 | 1 | Hot rolling | Shear rolling | Al-3Ca-2La-1Mn Al alloy | FEM |
[50] | 2024 | 0 | Hot rolling | Ring rolling | AA2219 | FEM |
[51] | 2024 | 0 | Hot rolling | Flat rolling | 701, 705 and 706 Al alloys | FEM |
2. Classification Based on Type of Rolling Process
2.1. Flat Rolling
Refs. | Material | Passes | Condition | Workpiece Temp. [°C] | Workpiece Size [mm] | Reduction [%] | ø Roll [mm] | Speed [mm·s−1] | Friction Coef. |
---|---|---|---|---|---|---|---|---|---|
[55] | 0.34%C steel | 6 | HR | N/S | N/S × N/S × 28 | N/S | 627.5 | 1300–9860 | 0.25–0.5 |
[56] | 0.34%C steel | 6 | HR | N/S | N/S × N/S × 28 | N/S | 627.5 | 1300–9860 | 0.25–0.5 |
[57] | AISI 304 | 4 | HR | 1257–1262 | N/S × N/S × 201 | 8.2–10.9 | 100; 1100 | 2430–2600 | N/S |
[58] | AISI 304 | 3 | CR | RT | N/S × 30 × 3 | N/S | 400 | N/S | 0.15 |
[59] | AA6063 | 1 | CR | RT | 100 × 10; 30 × 9 | 80 | 65 | 63 | N/S |
[60] | AA5083 | 1 | HR | 550 | 100 × 100 × 17 | 17.6 | 250 | 65.4 | 0.35 |
[61] | 38MnVS6 steel | 8 | HR | 1235 | 3480 × 400 × 320 | 5–13 | 925 | 2905.8 | 0.5 |
[62] | AA5182 | 3 | CR | RT | 60 × N/S × 1.2 | 30; 50 | 180 | 18.9–75.8 | 0.1; 0.4 |
[63] | N/S | N/S | CR | RT | N/S × 1850 × 1.25 | 20 | 600 | N/S | 0.1 |
[64] | AISI 304L | 1 | HR; WR | 600; 1000 | 140 × 40 × 4 | 25; 40 | 150 | 394.7 | 0.3; 0.8 |
[65] | AISI 304 | 1 | HR | 1460 | 50 × 40 × 20 | 40 | 160 | 300 | 1.0 |
[66] | U-10Mo | 15 | HR | 591–650 | 48.5 × 37.7 × 9.4 | 5–10 | 254 | 133 | 0.35 |
[68] | AISI 316L | 1 | HR | 1250 | 1000 × 340 × 280 | 14–28 | 980; 985 | 4951.6 | 0.7 |
[69] | AISI 304 | 1 | HR | 900–1100 | 78 × 10 × 10 | 50 | 320 | 50.5 | 0.7 |
[70] | Steel 1.451 | 5 | HR | N/S | N/S | N/S | N/S | N/S | N/S |
[20] | AISI 1015 | 14 | HR | 859–1250 | 3196 × N/S × 220 | N/S | 1095.1 | 2819.8 | 0.45–0.8 |
[28] | AZ80 Mg alloy | 1 | HR | 300; 400 | 200 × 120 × 13 | 40 | 320 | N/S | 0.39; 0.53 |
HR | |||||||||
[31] | AA2XXX; AA7XXX | 1 | HR | N/S | 4000 × 1500 × 500 | N/S | N/S | N/S | N/S |
[71] | AISI 436L | 7 | HR | 800–1200 | 140 × N/S × 90 | 24.2–40.0 | 450 | 3000 | 0.35 |
[33] | AA7A04 | 3 | HR | 330–480 | 30 × 20 × 10 | 20–60 | N/S | N/S | 0.5 |
[39] | AZ31 Mg alloy | 1 | HR | 300–500 | 150 × 40 × 5.6 | 35 | 200 | 174–367 | 0.3 |
[40] | CP Mo | 2 | HR | 1260–1350 | 100 × 50 × 13.2 | 5–30 | 400 | 520 | 0.3 |
[41] | Q235 | 3 | CR | RT | 2000 × 1200 × 3 | 30–36.7 | 440 | 420–700 | 0.06–0.08 |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[55] | FEM | N/S | La | 2D | St | Th-Me | DEFORM | Quad | N/S | N/S |
[56] | FEM | N/S | La | 2D | St | Th-Me | DEFORM | Quad | N/S | N/S |
[57] | FEM | N/S | La | N/S | Tr | Th-Me | N/S | N/S | N/S | N/S |
[58] | FEM | N/S | La | 3D | Tr | Me | LS-DYNA | Hexa | 43,520 | N/S |
[59] | FEM | N/S | La | 2D | Tr | Me | ABAQUS | Quad | 4000 | N/S |
[60] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE | N/S | N/S | N/S |
[61] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE | N/S | 83,973 | N/S |
[62] | FEM | Ex | La | N/S | N/S | N/S | ABAQUS | N/S | N/S | N/S |
[63] | FM-BEM | N/S | La | 3D | Tr | Me | N/S | N/S | N/S | N/S |
[64] | UBFES | N/S | N/S | 2D | St | Th-Me | N/S | Quad | N/S | N/S |
[65] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | Hexa | N/S | N/S |
[66] | FEM | Ex | La | 3D | Tr | Th-Me | LS-DYNA | Hexa | 69,649 | 0.5 |
[68] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | Tetra | 50,000 | N/S |
[69] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | Hexa | 19,000 | N/S |
[70] | FEM | N/S | La | 3D | Tr | Th-Me | MSC Marc | N/S | N/S | N/S |
[20] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | N/S | 32,000 | N/S |
[28] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | N/S | 1,000,000 | N/S |
[31] | FEM | N/S | Eu | 3D | St | Th-Me | LAM3 | Hexa | N/S | N/S |
[71] | FEM | N/S | La | 2D | Tr | Th-Me | N/S | Quad | N/S | N/S |
[33] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | N/S | N/S | N/S |
[39] | FEM | N/S | La | 3D | Tr | Th-Me | ABAQUS | N/S | N/S | N/S |
[40] | FEM | N/S | La | 3D | Tr | Th-Me | MSC Marc | Hexa | 19,200 | N/S |
[41] | FEM | N/S | La | 3D | Tr | Me | ABAQUS | N/S | N/S | N/S |
2.2. Shape Rolling
Refs. | Material | Condition | Passes | Workpiece Temp. [°C] | Workpiece Size [mm] | ø Roll [mm] | Rev. [rpm] | Friction Coef. |
---|---|---|---|---|---|---|---|---|
[90] | AISI 304; GCrl5 steel | HR | 30 | N/S | 400 × 150 × 150 | N/S | N/S | N/S |
[15] | AISI 304 | HR | 30 | N/S | 1300 × 150 × 150 | N/S | N/S | N/S |
[18] | Q235 steel | HR | N/S | N/S | N/S | N/S | N/S | N/S |
[52] | Medium carbon steel | HR | 1 | 1000–1100 | 4000 × ø 235 | 606 | 5.75 | 0.5; 0.6 |
[1] | S275JR steel | HR | 3; 5 | 1200 | N/S × 360 × 280; N/S × 150 × 150 | N/S | 55–74 | 0.36–0.72 |
[13] | AISI E52100 | HR | 25 | 869–1200 | 3911 × 812 × 203 | 1104.9 | 60–65 | 0.3–0.4 |
[36] | SAE 52100 | HR | 1 | 1170–1260 | N/S × 100 × 100–N/S × 200 × 200 | 100–1000 | 20–65 | 0.3 |
[92] | N/S | CR | 3 | RT | 1200 × 236 × 4 | N/S | N/S | 0; 0.2 |
[93] | AA6062 | CR | 1 | RT | N/S × 40 × 10 | 200 | N/S | 0.6 |
[94] | N/S | CR | 1 | RT | N/S | N/S | N/S | N/S |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[90] | FEM | Im | La | 3D | Tr | Th-Me | MSC Marc | Hexa | N/S | N/S |
[15] | FEM | Im | La | 3D | Tr | Th-Me | MSC Marc | Hexa | 5850 | N/S |
[18] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | N/S | N/S | N/S |
[52] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | Hexa | N/S | N/S |
[1] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | N/S | 3.8–8 |
[13] | FEM | N/S | N/S | 3D | Tr | Th-Me | Simufact Forming | Hexa | 270,673 | 38 |
[36] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | Tetra | N/S | 20 |
[92] | FEM | N/S | La | 3D | Tr | Me | Metafor | Hexa | 4560 | 5 |
[93] | FEM | N/S | La | 3D | St | Me | DEFORM | N/S | 114,000 | N/S |
[94] | MLRBFCM | N/S | N/S | 2D | Tr | Th-Me | N/S | N/S | N/S | N/S |
2.3. Ring Rolling
Refs. | Material | Condition | Workpiece Temp. [°C] | Rev. [rpm] | ø Main Roll [mm] | Feed Rate [mm·s−1] | Friction Coef. | ø0 Workpiece [mm] | øf Workpiece [mm] |
---|---|---|---|---|---|---|---|---|---|
[23] | AA2219 | HR | 420 | 25.7 | 900 | N/S | 0.3 | 2683 | 5040 |
[24] | Ti-6Al-4V | HR | N/S | 14.3 | N/S | 0.8 | 0.8 | 555 | 976 |
[25] | IN718 | HR | 1000 | 15.2 | 1816 | 0.25–1.0 | 0.3 | 1141.8 | N/S |
[26] | AA1050 | HR | 450 | 208 | N/S | 0.5 | 0.3 | 120 | N/S |
[34] | Ti-6Al-4V | HR | 880 | 26 | N/S | 1; 2.5 | N/S | 150 | 170 |
[42] | SS GH738 | HR | 1100 | 57 | 400 | 1 | 0.3 | N/S | 856–866 |
[44] | 42CrMo4 steel | HR | 1200 | N/S | N/S | N/S | 0–0.5 | 300 | 367 |
[50] | AA2219 | HR | 450 | 6.65 | 950 | N/S | 0.3 | 1592 | 3300 |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[23] | FEM | Explicit | La | 3D | Tr | Th-Me | ABAQUS | N/S | N/S | N/S |
[24] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | 26,500 | 5 |
[25] | FEM | Ex | ALE | 3D | Tr | Th-Me | ABAQUS | Hexa | 50,000 | N/S |
[26] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | Tetra | 230,000 | 0.3–0.6 |
[34] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | Hexa | N/S | 1.85 |
[42] | FEM | N/S | La | 3D | Tr | Th-Me | ABAQUS | Hexa | N/S | N/S |
[44] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | Hexa | N/S | N/S |
[50] | FEM | Ex | La | 3D | Tr | Th-Me | ABAQUS | Hexa | 5460 | N/S |
2.4. Cross-Wedge Rolling
Refs. | Material | Condition | Workpiece Temp. [°C] | Rev. [rpm] | Forming Angle [°] | Spreading Angle [°] | Friction Coef. | ø0 Workpiece [mm] | øf Workpiece [mm] |
---|---|---|---|---|---|---|---|---|---|
[104] | AISI 5140 | HR | 1000 | 10 | 28 | 6 | 1.0 | 22 | 17 |
[105] | DIN C45 | CR; HR | RT; 1100 | N/S | 20; 45 | 6; 9 | 1.0 | 30 | 18 |
[101] | CP Pb | CR | RT | 9.5 | 20–40 | 12–18 | 1.0 | 30 | 17–24 |
[102] | 20MnCr5 steel | HR | 1050 | N/S | 22.5–45 | 5; 7 | 0.5; 1.0 | 22–60 | 14–40 |
[106] | 38MnVS6 steel | WR; HR | 850–1250 | N/S | 25; 30 | 5–9 | 0.8 | 42 | 30 |
[107] | 42CrMo steel | WR; HR | 650–1050 | 10 | 36 | 7.34 | 0.9 | 30 | N/S |
[108] | DIN C45 | WR; HR | 650–1000 | N/S | 30 | 10 | 0.7 | 29 | N/S |
[22] | DIN C45 | HR | 1150 | 7.5–16.8 | 15 | 10 | 0.8 | 33 | 22 |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[104] | FEM | Im | La | 3D | Tr | Th-Me | DEFORM | Tetra | N/S | N/S |
[105] | FEM | N/S | La | 3D | Tr | Th-Me | MSC SuperForm | Hexa | N/S | N/S |
[101] | FEM | N/S | La | 3D | Tr | Th-Me | MSC SuperForm | Hexa | N/S | N/S |
[102] | FEM | N/S | La | 3D | Tr | Th-Me | MARC/AutoForge | Hexa | N/S | N/S |
[106] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE | N/S | N/S | 2 |
[107] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | N/S | 100,000 | N/S |
[108] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | N/S | N/S |
[22] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | N/S | N/S | N/S |
2.5. Skew Rolling
Refs. | Material | Condition | Workpiece Temp. [°C] | Rev. [rpm] | Feed Angle [°] | Friction Coef. | ø Billet [mm] | ø Balls [mm] |
---|---|---|---|---|---|---|---|---|
[115] | 100Cr6 steel | HR | 1150 | 60 | 3 | 1.0 | 33 | 33 |
[114] | 100Cr6 steel | HR | 1100 | 60 | 3 | 1.0 | 33 | 33 |
[113] | 100Cr6 steel | HR | 1150 | 60 | 6 | 1.0 | 30 | 30 |
[116] | 100Cr6 steel | CR | RT | 60 | 2 | 0.2 | 7.1 | 7.4 |
[111] | 100Cr6 steel | WR | 750 | 110 | 2.5 | 0.7 | 30 | 30 |
[117] | 100Cr6 steel | WR | 750 | 15 | 8 | 0.8 | 43 | 44.4 |
[47] | 100Cr6 steel | HR | 1050 | 60 | N/S | 0.8 | 25 | 26 |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[115] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | N/S | N/S | N/S |
[114] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | N/S | N/S |
[113] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | N/S | N/S |
[116] | FEM | Im | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | 1920 | N/S |
[111] | FEM | N/S | La | 3D | Tr | Th-Me | DEFORM | Tetra | 100,000 | N/S |
[117] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | Tetra | N/S | 1.25 |
[47] | FEM | N/S | La | 3D | Tr | Th-Me | Simufact Forming | Hexa | 30,012 | N/S |
2.6. Tube Piercing
Refs. | Material | Condition | Ring Temp. [°C] | Rev. [rpm] | Speed [mm·s−1] | Roll Friction Coef. | Plug Friction Coef. | Feed Angle [°] | ømax Plug [mm] | ø0 Ring [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[122] | 100Cr6 steel | HR | 1180 | 60 | N/S | 0.95 | 0.10 | 8 | 34 | 60 |
[121] | N/S | CR | 0–20 | N/S | 5–30 | N/S | N/S | 6–12 | 27–37 | 45 |
[123] | SS Cr13 | HR | 1250 | 111 | N/S | 0.10–0.60 | 0.0–0.15 | 12 | N/S | 202 |
[124] | SS Cr13 | HR | 1250 | 111 | N/S | 0.10–0.60 | 0.06–0.15 | 12 | N/S | 202 |
[125] | SS Cr13 | HR | 1250 | 111 | N/S | 0.10–0.60 | 0.1–0.3 | 10 | N/S | 202 |
Refs. | Method | Solution | Definition | Discretization | Regime | Analysis | Software | Element | Mesh Size | Element Size [mm] |
---|---|---|---|---|---|---|---|---|---|---|
[122] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | N/S | N/S | N/S |
[121] | FEM | N/S | ALE | 3D | Tr | Th-Me | LS-DYNA | Tetra | 54,612 | 2.0 |
[123] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | Tetra | N/S | 1.5 |
[124] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | Tetra | N/S | 1.5 |
[125] | FEM | N/S | La | 3D | Tr | Th-Me | FORGE NxT | Tetra | N/S | N/S |
3. Outlook
4. Summary and Conclusions
- FEM is used in almost all cases as a predictive tool due to its accuracy and its ability to deal with the complexity of the problems proposed. To apply FEM, most authors choose to use proprietary programs that integrate pre- and post-processing tools, as well as solvers, in a single environment. Some of the most used options include ABAQUS, DEFORM, FORGE, LS-DYNA, MSC Marc and Simufact Forming.
- Steels are the most studied alloys in the consulted papers. Additionally, articles have been found focused on the study of aluminum alloys, titanium alloys, and superalloys, among other materials.
- Numerical simulation of rolling processes proves to be flexible and adaptable to the requirements of the study, as well as to the limitations of the available resources. Thus, it is possible to find studies using 2D or 3D models; mechanical, thermal, or thermomechanical models, which can be coupled with microstructural models; transient or stationary studies; small or large workpieces; one-pass or multi-pass simulations; models focused only on the workpiece and those that also contemplate the evolution of the rolls. Increasing the complexity of the model leads to an increase in computing time, which may result in some simulations being unfeasible, especially when using low-performance computers.
- In almost all the studies discussed in this review, validation of the simulated models has been performed. In most cases, similar results to experimental values have been obtained. However, some cases have been found in which deviations from the experimental results have been observed. The authors attribute these discrepancies to an incorrect modeling of the material or of the rolling parameters.
- Numerical simulations of rolling processes offer the possibility of predicting rolling loads, strain, strain rate, stress, and temperature distributions, among other results. In the case of using a microstructural model, it is also possible to predict the evolution of the grain size and the phases present in the alloy. Thus, the understanding of the phenomena occurring during rolling can be improved.
- Most of the publications consulted in the literature focused on the numerical simulation of hot and cold rolling. Only a few articles discussed the simulation of warm rolling due to their limited application. Regarding the types of rolling, many studies were found focused on the simulation of flat and shape rolling, while the number of articles on other types of rolling was more limited.
- Different strategies are used to reduce model complexity and computational times. For this purpose, small specimens and a limited number of passes are the most common strategies used. These simplifications provide limited knowledge of the rolling process. In cases requiring a broader and deeper knowledge of the studied topic, it would be necessary to perform simulations as similar as possible to the real case.
- Despite the growing number of publications on the numerical simulation of rolling processes, shortcomings have been identified that can be covered by future work.
Author Contributions
Funding
Conflicts of Interest
References
- Kurt, G.; Yasar, N. Comparison of Experimental, Analytical and Simulation Results for Hot Rolling of S275JR Quality Steel. J. Mater. Res. Technol. 2020, 9, 5204–5215. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, P.; Liu, S.; Tayyebi, M.; Tayebi, M. Microstructural Evolution, Shielding Effectiveness, and the Ballistic Response of Mg/Al7075/B4C/Pb Composite Produced by Combination of Coating and Severe Plastic Deformation (SPD) Processes. J. Manuf. Process 2022, 84, 977–985. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Luo, K.; Kong, C.; Yu, H. Deformation Mechanism and Mechanical Properties of a CoCrFeNi High-Entropy Alloy via Room-Temperature Rolling, Cryorolling, and Asymmetric Cryorolling. J. Alloys Compd. 2023, 960, 170883. [Google Scholar] [CrossRef]
- Sajadi, S.A.; Toroghinejad, M.R.; Rezaeian, A.; Ebrahimi, G.R. Dynamic Recrystallization Behavior of the Equiatomic FeCoCrNi High-Entropy Alloy during High Temperature Deformation. J. Mater. Res. Technol. 2022, 20, 1093–1109. [Google Scholar] [CrossRef]
- Liu, Z.; Xiong, Z.; Chen, K.; Cheng, X. Large-Size High-Strength and High-Ductility AlCoCrFeNi2. 1 Eutectic High-Entropy Alloy Produced by Hot-Rolling and Subsequent Aging. Mater. Lett. 2022, 315, 131933. [Google Scholar] [CrossRef]
- Jo, S.Y.; Hong, S.; Han, H.N.; Lee, M.G. Modeling and Simulation of Steel Rolling with Microstructure Evolution: An Overview. Steel Res. Int. 2023, 94, 2200260. [Google Scholar] [CrossRef]
- Lee, K.; Han, J.; Park, J.; Kim, B.; Ko, D. Prediction and Control of Front-End Curvature in Hot Finish Rolling Process. Adv. Mech. Eng. 2015, 7, 1687814015615043. [Google Scholar] [CrossRef]
- Reddy, S.R.; Sunkari, U.; Lozinko, A.; Saha, R.; Guo, S.; Bhattacharjee, P.P. Microstructural Design by Severe Warm-Rolling for Tuning Mechanical Properties of AlCoCrFeNi2. 1 Eutectic High Entropy Alloy. Intermetallics 2019, 114, 106601. [Google Scholar] [CrossRef]
- Wu, W.; Guo, L.; Guo, B.; Liu, Y.; Song, M. Altered Microstructural Evolution and Mechanical Properties of CoCrFeNiMo0. 15 High-Entropy Alloy by Cryogenic Rolling. Mater. Sci. Eng. A 2019, 759, 574–582. [Google Scholar] [CrossRef]
- Ikumapayi, O.M.; Akinlabi, E.T.; Onu, P.; Abolusoro, O.P. Rolling Operation in Metal Forming: Process and Principles—A Brief Study. Mater. Today Proc. 2020, 26, 1644–1649. [Google Scholar] [CrossRef]
- Ray, S. Principles and Applications of Metal Rolling; Cambridge University Press: Delhi, India, 2016; ISBN 978-1-107-07609-9. [Google Scholar]
- Koo, B.S. Longitudinal Bending Behaviors of Hot-Rolled H-Beams by Quenching and Self-Tempering. Eng. Fail. Anal. 2022, 133, 106009. [Google Scholar] [CrossRef]
- Pérez-Alvarado, A.; Arreola-Villa, S.A.; Calderón-Ramos, I.; Servín Castañeda, R.; Mendoza de la Rosa, L.A.; Chattopadhyay, K.; Morales, R. Numerical Simulation of the Hot Rolling Process of Steel Beams. Materials 2021, 14, 7038. [Google Scholar] [CrossRef] [PubMed]
- Serajzadeh, S. Hot Rolling and Direct Cooling. In Comprehensive Materials Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Elsevier: Amsterdam, Netherlands, 2014; Volume 3, pp. 377–396. [Google Scholar]
- Yuan, S.; Zhang, L.; Liao, S.; Li, M.; Qi, M.; Zhen, Y.; Guo, S. Materials Static and Dynamic Finite Element Analysis of 304 Stainless Steel Rod and Wire Hot Continuous Rolling Process. J. Univ. Sci. Technol. Beijing 2008, 15, 324–329. [Google Scholar] [CrossRef]
- Shahani, A.R.; Nodamaie, S.A.; Salehinia, I. Parametric Study of Hot Rolling Process by the Finite Element Method. Sci. Iran. 2009, 16, 130–139. [Google Scholar]
- Rout, M.; Pal, S.K.; Singh, S.B. Finite Element Simulation of a Cross Rolling Process. J. Manuf. Process 2016, 24, 283–292. [Google Scholar] [CrossRef]
- Li, K.; Wang, P.; Liu, G.; Yuan, P.; Zhang, Q. Development of Simulation System for Large H-Beam Hot Rolling Based on ABAQUS. Int. J. Adv. Manuf. Technol. 2016, 85, 1649–1663. [Google Scholar] [CrossRef]
- Koo, B.S.; Lee, C.W.; Lim, Y.H. A Study on Nb-V Microalloyed Steel for 460 MPa Grade H-Section Columns. J. Constr. Steel Res. 2020, 170, 106112. [Google Scholar] [CrossRef]
- Kumar, A.; Rath, S.; Kumar, M. Simulation of Plate Rolling Process Using Finite Element Method. Mater. Today Proc. 2020, 42, 650–659. [Google Scholar] [CrossRef]
- Wang, F.; Ning, L.; Zhu, Q.; Lin, J.; Dean, T.A. An Investigation of Descaling Spray on Microstructural Evolution in Hot Rolling. Int. J. Adv. Manuf. Technol. 2008, 38, 38–47. [Google Scholar] [CrossRef]
- Bulzak, T.; Pater, Z.; Tomczak, J.; Wójcik, Ł.; Murillo-Marrodán, A. Internal Crack Formation in Cross Wedge Rolling: Fundamentals and Rolling Methods. J. Mater. Process Technol. 2022, 307, 117681. [Google Scholar] [CrossRef]
- Li, X.; Guo, L.; Wang, F. On a Plastic Instability Criterion for Ultra-Large Radial-Axial Ring Rolling Process with Four Guide Rolls. Chin. J. Aeronaut. 2022, 35, 391–406. [Google Scholar] [CrossRef]
- Lv, N.; Liu, D.; Hu, Y.; Yang, Y.; Wang, J. Multi-Objective Optimization of Parametric Design for Profile Ring Rolling Process Based on Residual Stress Control. Int. J. Adv. Manuf. Technol. 2022, 119, 6613–6631. [Google Scholar] [CrossRef]
- Liang, L.; Guo, L.; Yang, J.; Zhang, H. Formation Mechanism and Control Method of Multiple Geometric Defects in Conical-Section Profiled Ring Rolling. J. Mater. Process Technol. 2022, 306, 117628. [Google Scholar] [CrossRef]
- Tian, D.; Han, X.; Hua, L.; Hu, X. An Innovative Constraining Ring Rolling Process for Manufacturing Conical Rings with Thin Sterna and High Ribs. Chin. J. Aeronaut. 2022, 35, 324–339. [Google Scholar] [CrossRef]
- Wang, J.; Shu, X.; Zhang, S.; Li, S.; Pater, Z.; Xia, Y.; Bartnicki, J. Research on Microstructure Evolution of the Three-Roll Skew Rolling Hollow Axle. Int. J. Adv. Manuf. Technol. 2022, 118, 837–847. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Ning, F.; Liao, Q.; Le, Q.; Zhou, X.; Yu, F. The Hot Rolling Deformation Performance of As-Cast AZ80 Magnesium Alloy after Ultrasonic Processing. J. Mater. Res. Technol. 2022, 17, 1707–1715. [Google Scholar] [CrossRef]
- Voroshilov, D.S.; Motkov, M.M.; Sidelnikov, S.B.; Sokolov, R.E.; Durnopyanov, A.V.; Konstantinov, I.L.; Bespalov, V.M.; Bermeshev, T.V.; Gudkov, I.S.; Voroshilova, M.V.; et al. Obtaining Al–Zr-Hf Wire Using Electromagnetic Casting, Combined Rolling-Extrusion, and Drawing. Int. J. Lightweight Mater. Manuf. 2022, 5, 352–368. [Google Scholar] [CrossRef]
- Szeliga, D.; Czyżewska, N.; Klimczak, K.; Kusiak, J.; Kuziak, R.; Morkisz, P.; Oprocha, P.; Pietrzyk, M.; Poloczek, Ł.; Przybyłowicz, P. Stochastic Model Describing Evolution of Microstructural Parameters during Hot Rolling of Steel Plates and Strips. Arch. Civ. Mech. Eng. 2022, 22, 139. [Google Scholar] [CrossRef]
- Gravier, P.; Mas, F.; Barthelemy, A.; Boller, E.; Salvo, L.; Lhuissier, P. Pore Closure in Thick Aluminum Plate: From Industrial Hot Rolling to Individual Pore Observation. J. Mater. Process Technol. 2022, 303, 117509. [Google Scholar] [CrossRef]
- Xiangyu, G.; Wenquan, N.; Wenle, P.; Zhiquan, H.; Tao, W.; Lifeng, M. Deformation Behavior and Bonding Properties of Cu/Al Laminated Composite Plate by Corrugated Cold Roll Bonding. J. Mater. Res. Technol. 2023, 22, 3207–3217. [Google Scholar] [CrossRef]
- Sun, P.; Yang, H.; Huang, R.; Zhang, Y.; Zheng, S.; Li, M.; Koppala, S. The Effect of Rolling Temperature on the Microstructure and Properties of Multi Pass Rolled 7A04 Aluminum Alloy. J. Mater. Res. Technol. 2023, 25, 3200–3211. [Google Scholar] [CrossRef]
- Nayak, S.; Singh, A.K.; Prasad, M.J.N.V.; Narasimhan, K. Development of Microstructural Heterogeneities and Dynamic Restoration Activity during Ring Rolling of Ti-6Al-4V Alloy and Its Tensile Response. J. Alloys Compd. 2023, 963, 171241. [Google Scholar] [CrossRef]
- Sun, L.; Ding, J.; Zhang, J.; Li, H.; Wang, G. Numerical Simulation and Deformation Behavior of a Ti/Steel Clad Plate during the Rolling Process. Metals 2023, 13, 218. [Google Scholar] [CrossRef]
- Singh, G.; Singh, P.K. Improving the Energy Efficiency and Process Scrap in Grooved Hot Rolling of SAE 52100 Steel Billets. CIRP J. Manuf. Sci. Technol. 2023, 41, 55–68. [Google Scholar] [CrossRef]
- Mashhuriazar, A.; Ebrahimzadeh Pilehrood, A.; Moghanni, H.; Baghdadi, A.H.; Omidvar, H. Finite Element Analysis and Optimization of Equal-Channel Angular Rolling Process by Using Taguchi Methodology. J. Mater. Eng. Perform. 2023, 32, 176–184. [Google Scholar] [CrossRef]
- Reis, L.M.; Carvalho, A.P.; Lee, I.; Wu, Y.H.; Han, J.K.; Santala, M.K.; Kawasaki, M.; Figueiredo, R.B. Cold Angular Rolling Process as a Continuous Severe Plastic Deformation Technique. J. Mater. Sci. 2023, 58, 4621–4636. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Wang, C.; Zhao, Y.; Qi, W.; Yun, X. Prediction of Dynamically Recrystallized Microstructure of AZ31 Magnesium Alloys in Hot Rolling Using an Expanded Dislocation Density Model. J. Mater. Eng. Perform. 2023, 32, 2607–2615. [Google Scholar] [CrossRef]
- Han, J.; Cheng, Q.; Hu, P.; Xing, H.; Li, S.; Ge, S.; Hua, X.; Hu, B.; Zhang, W.; Wang, K. Finite Element Analysis of Large Plastic Deformation Process of Pure Molybdenum Plate during Hot Rolling. Metals 2023, 13, 101. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Z.; Li, X.; Zhang, D.; Yan, T. Numerical Simulation and Suppression Method of Inclined Wave Defects in Strip Cold Rolling. Ironmak. Steelmak. 2023, 50, 84–93. [Google Scholar] [CrossRef]
- Deng, J.; Wu, R.; Sun, Z.; Qian, D.; Zhang, Y. A Prediction Model of Ultimate Forming Dimension for Profile Ring with Outer Groove in Ring Rolling Process. Int. J. Adv. Manuf. Technol. 2024, 130, 491–510. [Google Scholar] [CrossRef]
- Sahoo, P.S.; Mahapatra, M.M.; Vundavilli, P.R.; Pandey, C. Effects of Working Temperature on Microstructure and Hardness of Ti-6Al-4V Alloy Subjected to Asymmetrical Rolling. J. Mater. Eng. Perform. 2024, 33, 1218–1228. [Google Scholar] [CrossRef]
- Gröper, M.; Stergianou, S.; Bailly, D.; Hirt, G. Development of a Measurement Method for Tracking the Position of Hot Steel Rings on an Industrial Radial-Axial Ring Rolling Mill. Prod. Eng. 2024, 18, 581–591. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Liang, J.L.; Chen, Y.F.; Shi, J.H.; Ma, L.F. The Curvature Modeling for the Double Layered Clad Plate by Asymmetric Rolling with Different Diameters. Int. J. Adv. Manuf. Technol. 2024, 131, 3793–3809. [Google Scholar] [CrossRef]
- Reuther, F.; Dix, M.; Kräusel, V.; Psyk, V.; Porstmann, S. Model Validation of Hollow Embossing Rolling for Bipolar Plate Forming. Int. J. Mater. Form. 2024, 17, 17. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B.; Feng, P.; Li, W.; Zhang, H.; Zhou, J. Numerical and Experimental Investigation of Helical Rolling Process for Producing Steel Balls with Large Diameter. Arch. Civ. Mech. Eng. 2024, 24, 5. [Google Scholar] [CrossRef]
- Jiang, L.-Y.; Chen, Y.-F.; Liang, J.-L.; Li, Z.-L.; Wang, T.; Ma, L.-F. Modeling of Layer Thickness and Strain for the Two-Layered Metal Clad Plate Rolling with the Different Roll Diameters. J. Mater. Res. Technol. 2024, 28, 3849–3864. [Google Scholar] [CrossRef]
- Gamin, Y.V.; Galkin, S.P.; Koshmin, A.N.; Mahmoud Alhaj Ali, A.; Nguyen, X.D.; ELDeeb, I.S. High-Reduction Radial Shear Rolling of Aluminum Alloy Bars Using Custom-Calibrated Rolls. Int. J. Mater. Form. 2024, 17, 5. [Google Scholar] [CrossRef]
- Ge, S.; Wu, Y.; Long, Z.; Zhao, Z. Position/Force Control Method for Profiled Ring Rolling Process of Large Aluminum Alloy Ring. CIRP J. Manuf. Sci. Technol. 2024, 51, 342–356. [Google Scholar] [CrossRef]
- Xu, W.; Xia, C.; Ni, C. Numerical Simulation and Experimental Verification of Hot Roll Bonding of 7000 Series Aluminum Alloy Laminated Materials. Metals 2024, 14, 551. [Google Scholar] [CrossRef]
- Wang, X.; Chandrashekhara, K.; Rummel, S.A.; Lekakh, S.; Van Aken, D.C.; O’Malley, R.J. Modeling of Mass Flow Behavior of Hot Rolled Low Alloy Steel Based on Combined Johnson-Cook and Zerilli-Armstrong Model. J. Mater. Sci. 2017, 52, 2800–2815. [Google Scholar] [CrossRef]
- Shahani, A.R.; Setayeshi, S.; Nodamaie, S.A.; Asadi, M.A.; Rezaie, S. Prediction of Influence Parameters on the Hot Rolling Process Using Finite Element Method and Neural Network. J. Mater. Process Technol. 2009, 209, 1920–1935. [Google Scholar] [CrossRef]
- Iankov, R. Finite Element Simulation of Profile Rolling of Wire. J. Mater. Process Technol. 2003, 142, 355–361. [Google Scholar] [CrossRef]
- Phaniraj, M.P.; Behera, B.B.; Lahiri, A.K. Thermo-Mechanical Modeling of Two Phase Rolling and Microstructure Evolution in the Hot Strip Mill: Part I. Prediction of Rolling Loads and Finish Rolling Temperature. J. Mater. Process Technol. 2005, 170, 323–335. [Google Scholar] [CrossRef]
- Phaniraj, M.P.; Behera, B.B.; Lahiri, A.K. Thermo-Mechanical Modeling of Two Phase Rolling and Microstructure Evolution in the Hot Strip Mill. Part-II. Microstructure Evolution. J. Mater. Process Technol. 2006, 178, 388–394. [Google Scholar] [CrossRef]
- Sun, C.-G.; Lee, J.-S.; Lee, J.-H.; Hwang, S.-M. Mechanism of Edge Seam Defects of Stainless Steel Generated during Hot Plate Rolling. ISIJ Int. 2006, 46, 93–99. [Google Scholar] [CrossRef]
- Yu, H.L.; Liu, X.H.; Bi, H.Y.; Chen, L.Q. Deformation Behavior of Inclusions in Stainless Steel Strips during Multi-Pass Cold Rolling. J. Mater. Process Technol. 2009, 209, 455–461. [Google Scholar] [CrossRef]
- Robert-Núñez, T.; Vázquez-Gómez, O.; López-Martínez, E. Simulación y Experimentación de Laminación Plana de Placas de Aluminio 6063. Rev. Científica NEXO 2011, 24, 50–60. [Google Scholar] [CrossRef]
- Sherstnev, P.; Melzer, C.; Sommitsch, C. Prediction of Precipitation Kinetics during Homogenisation and Microstructure Evolution during and after Hot Rolling of AA5083. Int. J. Mech. Sci. 2012, 54, 12–19. [Google Scholar] [CrossRef]
- Nalawade, R.S.; Puranik, A.J.; Balachandran, G.; Mahadik, K.N.; Balasubramanian, V. Simulation of Hot Rolling Deformation at Intermediate Passes and Its Industrial Validity. Int. J. Mech. Sci. 2013, 77, 8–16. [Google Scholar] [CrossRef]
- Tamimi, S.; Correia, J.P.; Lopes, A.B.; Ahzi, S.; Barlat, F.; Gracio, J.J. Asymmetric Rolling of Thin AA-5182 Sheets: Modelling and Experiments. Mater. Sci. Eng. A 2014, 603, 150–159. [Google Scholar] [CrossRef]
- Yu, C.; Liu, D.; Zheng, Y.; Shen, G. 3-D Rolling Processing Analysis by Fast Multipole Boundary Element Method. Eng. Anal. Bound. Elem. 2016, 70, 72–79. [Google Scholar] [CrossRef]
- Pourabdollah, P.; Serajzadeh, S. An Upper-Bound Finite Element Solution for Rolling of Stainless Steel 304L under Warm and Hot Deformation Conditions. Multidiscip. Model. Mater. Struct. 2016, 12, 514–533. [Google Scholar] [CrossRef]
- Nomoto, S.; Oba, M.; Mori, K.; Yamanaka, A. Microstructure-Based Multiscale Analysis of Hot Rolling of Duplex Stainless Steel Using Various Simulation Software. Integr. Mater. Manuf. Innov. 2017, 6, 69–82. [Google Scholar] [CrossRef]
- Soulami, A.; Burkes, D.E.; Joshi, V.V.; Lavender, C.A.; Paxton, D. Finite-Element Model to Predict Roll-Separation Force and Defects during Rolling of U-10Mo Alloys. J. Nucl. Mater. 2017, 494, 182–191. [Google Scholar] [CrossRef]
- Pourabdollah, P.; Serajzadeh, S. A Study on Deformation Behavior of 304L Stainless Steel during and after Plate Rolling at Elevated Temperatures. J. Mater. Eng. Perform. 2017, 26, 885–893. [Google Scholar] [CrossRef]
- Faini, F.; Attanasio, A.; Ceretti, E. Experimental and FE Analysis of Void Closure in Hot Rolling of Stainless Steel. J. Mater. Process Technol. 2018, 259, 235–242. [Google Scholar] [CrossRef]
- Rout, M.; Singh, S.B.; Pal, S.K. Microstructure and Texture Evolution in Austenitic Stainless Steel during Low Strain Rate Deformation at Elevated Temperature. Int. J. Mater. Form. 2020, 13, 605–621. [Google Scholar] [CrossRef]
- Mancini, S.; Langellotto, L.; Di Nunzio, P.E.; Zitelli, C.; Di Schino, A. Defect Reduction and Quality Optimization by Modeling Plastic Deformation and Metallurgical Evolution in Ferritic Stainless Steels. Metals 2020, 10, 186. [Google Scholar] [CrossRef]
- Zhou, L.H.; Bi, H.Y.; Sui, F.L.; Du, W.; Fang, X.S. Influence of Finish Rolling Temperature on Microstructure and Properties of Hot-Rolled SUS436L Stainless Steel. J. Mater. Eng. Perform. 2023, 32, 8441–8451. [Google Scholar] [CrossRef]
- Rout, M.; Pal, S.K.; Singh, S.B. Prediction of Edge Profile of Plate during Hot Cross Rolling. J. Manuf. Process 2018, 31, 301–309. [Google Scholar] [CrossRef]
- Imai, T.; Utsunomiya, H.; Matsumoto, R. Finite Element Analysis of Plastic Instability Phenomenon in Cold Rolling of Clad Sheets. Procedia Eng. 2017, 184, 306–312. [Google Scholar] [CrossRef]
- Yan, M.; Sun, J.N.; Huang, H.G.; Chen, L.; Dong, K.; Chen, Z.Y. Effect of Hot Rolling and Cooling Process on Microstructure and Properties of 2205/Q235 Clad Plate. J. Iron Steel Res. Int. 2018, 25, 1113–1122. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Bian, L.; Huang, Q. Microstructural Evolution and Mechanical Behavior of Mg/Al Laminated Composite Sheet by Novel Corrugated Rolling and Flat Rolling. Mater. Sci. Eng. A 2019, 765, 138318. [Google Scholar] [CrossRef]
- Jin, H.R.; Wei, R.; Wang, Y.H.; Yi, Y.L.; Jia, C.Z.; Zhao, D.X. Vacuum Hot Rolling Preparation of a Stainless Steel Clad Plate and Its Numerical Simulation. Strength. Mater. 2022, 54, 144–153. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Wang, Z.; Liu, Y.; Wang, T.; Huang, Q.; Wang, T. Deformation Mechanism and Microstructure Evolution in Stainless Steel Clad Plate of Longitudinal Corrugated Hot Rolling. J. Mater. Process Technol. 2023, 316, 117957. [Google Scholar] [CrossRef]
- Sun, C.G.; Kim, J.W.; Hwang, S.M. Investigation of the Thermo-Mechanical Behavior of Type 304 Stainless Slab in Hot Charge Rolling Condition by the Finite Element Method. ISIJ Int. 2003, 43, 1773–1780. [Google Scholar] [CrossRef]
- Han, H.N.; Lee, J.K.; Kim, H.J.; Jin, Y.-S. A Model for Deformation, Temperature and Phase Transformation Behavior of Steels on Run-out Table in Hot Strip Mill. J. Mater. Process Technol. 2002, 128, 216–225. [Google Scholar] [CrossRef]
- Sun, W.-Q.; Yong, S.-Y.; Yuan, T.-H.; Yang, T.-S.; He, A.-R.; Liu, C.; Guo, R.-C. Effect of Post Rolling Stress on Phase Transformation Behavior of Microalloyed Dual Phase Steel. J. Iron Steel Res. Int. 2024, 31, 688–699. [Google Scholar] [CrossRef]
- Hao, L.; Jiang, Z.; Wei, D.; Gong, D.; Cheng, X.; Zhao, J.; Luo, S.; Jiang, L. Experimental and Numerical Study on the Effect of ZDDP Films on Sticking during Hot Rolling of Ferritic Stainless Steel Strip. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2016, 47, 5195–5202. [Google Scholar] [CrossRef]
- Cavaliere, M.A.; Goldschmit, M.B.; Dvorkin, E.N. Finite Element Analysis of Steel Rolling Processes. Comput. Struct. 2001, 79, 2075–2089. [Google Scholar] [CrossRef]
- Zhou, S.X. An Integrated Model for Hot Rolling of Steel Strips. J. Mater. Process Technol. 2003, 134, 338–351. [Google Scholar] [CrossRef]
- Li, C.S.; Yu, H.L.; Deng, G.Y.; Liu, X.H.; Wang, G. dong Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll during Hot Strip Rolling. J. Iron Steel Res. Int. 2007, 14, 18–21. [Google Scholar] [CrossRef]
- Phan, H.T.; Tieu, A.K.; Zhu, H.; Kosasih, B.; Zhu, Q.; Grima, A.; Ta, T.D. A Study of Abrasive Wear on High Speed Steel Surface in Hot Rolling by Discrete Element Method. Tribol. Int. 2017, 110, 66–76. [Google Scholar] [CrossRef]
- Kong, N.; Cao, J.; Wang, Y.; Tieu, A.K.; Yang, L.; Hou, A.; Wang, Z. Development of Smart Contact Backup Rolls in Ultra-Wide Stainless Strip Rolling Process. Mater. Manuf. Process. 2014, 29, 129–133. [Google Scholar] [CrossRef]
- Linghu, K.; Jiang, Z.; Zhao, J.; Li, F.; Wei, D.; Xu, J.; Zhang, X.; Zhao, X. 3D FEM Analysis of Strip Shape during Multi-Pass Rolling in a 6-High CVC Cold Rolling Mill. Int. J. Adv. Manuf. Technol. 2014, 74, 1733–1745. [Google Scholar] [CrossRef]
- Hsiang, S.-H.; Lin, S.-L. Application of 3D FEM-Slab Method to Shape Rolling. Int. J. Mech. Sci. 2001, 43, 1155–1177. [Google Scholar] [CrossRef]
- Lee, S.M.; Shint, W.; Shivpuri, R. Investigation of Two Square-to-Round Multipass Rolling Sequences by the Slab-Finite Element Method. Int. J. Math. Tools Manufact. 1992, 32, 315–327. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, L.; Liao, S.; Qi, M.; Zhen, Y.; Guo, S. 3D FE Analysis of Thermal Behavior of Billet in Rod and Wire Hot Continuous Rolling Process. J. Iron Steel Res. Int. 2007, 14, 29–32. [Google Scholar] [CrossRef]
- Lindgren, M. Cold Roll Forming of a U-Channel Made of High Strength Steel. J. Mater. Process Technol. 2007, 186, 77–81. [Google Scholar] [CrossRef]
- Bui, Q.V.; Ponthot, J.P. Numerical Simulation of Cold Roll-Forming Processes. J. Mater. Process Technol. 2008, 202, 275–282. [Google Scholar] [CrossRef]
- Chen, D.C. An Investigation into the Shape Rolling of Sectioned Sheets with Internal Voids Using the Finite Element Method. Procedia Eng. 2014, 79, 173–178. [Google Scholar] [CrossRef]
- Hanoglu, U.; Šarler, B. Rolling Simulation System for Non-Symmetric Groove Types. Procedia Manuf. 2018, 15, 121–128. [Google Scholar] [CrossRef]
- Hanoglu, U.; Šarler, B. Multi-Pass Hot-Rolling Simulation Using a Meshless Method. Comput. Struct. 2018, 194, 1–14. [Google Scholar] [CrossRef]
- Song, J.L.; Dowson, A.L.; Jacobs, M.H.; Brooks, J.; Beden, I. Coupled Thermo-Mechanical Finite-Element Modelling of Hot Ring Rolling Process. J. Mater. Process Technol. 2002, 121, 332–340. [Google Scholar] [CrossRef]
- Wang, Z.W.; Fan, J.P.; Hu, D.P.; Tang, C.Y.; Tsui, C.P. Complete Modeling and Parameter Optimization for Virtual Ring Rolling. Int. J. Mech. Sci. 2010, 52, 1325–1333. [Google Scholar] [CrossRef]
- Guo, L.; Yang, H.; Zhan, M. Research on Plastic Deformation Behaviour in Cold Ring Rolling by FEM Numerical Simulation. Model. Simul. Mat. Sci. Eng. 2005, 13, 1029–1046. [Google Scholar] [CrossRef]
- Berti, G.A.; Quagliato, L.; Monti, M. Set-up of Radial-Axial Ring-Rolling Process: Process Worksheet and Ring Geometry Expansion Prediction. Int. J. Mech. Sci. 2015, 99, 58–71. [Google Scholar] [CrossRef]
- Anjami, N.; Basti, A. Investigation of Rolls Size Effects on Hot Ring Rolling Process by Coupled Thermo-Mechanical 3D-FEA. J. Mater. Process Technol. 2010, 210, 1364–1377. [Google Scholar] [CrossRef]
- Bartnicki, J.; Pater, Z. Numerical Simulation of Three-Rolls Cross-Wedge Rolling of Hollowed Shaft. J. Mater. Process Technol. 2005, 164, 1154–1159. [Google Scholar] [CrossRef]
- Pater, Z. Finite Element Analysis of Cross Wedge Rolling. J. Mater. Process Technol. 2006, 173, 201–208. [Google Scholar] [CrossRef]
- Dong, Y.; Lovell, M.; Tagavi, K. Analysis of Interfacial Slip in Cross-Wedge Rolling: An Experimentally Verified Finite-Element Model. J. Mater. Process Technol. 1998, 80, 273–281. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Du, F.; Zheng, Y. Hot Deformation of Austenite and Prediction of Microstructure Evolution of Cross-Wedge Rolling. Mater. Sci. Eng. A 2004, 379, 133–140. [Google Scholar] [CrossRef]
- Bartnicki, J.; Pater, Z. The Aspects of Stability in Cross-Wedge Rolling Processes of Hollowed Shafts. J. Mater. Process Technol. 2004, 155, 1867–1873. [Google Scholar] [CrossRef]
- Kache, H.; Stonis, M.; Behrens, B.A. Development of a Warm Cross Wedge Rolling Process Using FEA and Downsized Experimental Trials. Prod. Eng. 2012, 6, 339–348. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.; Zhou, J.; Ji, H.; Mu, Y.; Li, J. Comparative Study of Warm and Hot Cross-Wedge Rolling:Numerical Simulation and Experimental Trial. Int. J. Adv. Manuf. Technol. 2017, 92, 3541–3551. [Google Scholar] [CrossRef]
- Bulzak, T.; Pater, Z.; Tomczak, J.; Majerski, K. Hot and Warm Cross-Wedge Rolling of Ball Pins—Comparative Analysis. J. Manuf. Process 2020, 50, 90–101. [Google Scholar] [CrossRef]
- Tomczak, J.; Pater, Z.; Bartnicki, J. Skrew Rolling of Balls in Multiple Helical Impressions. Arch. Metall. Mater. 2013, 58, 1071–1076. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, B.; Zheng, Z. Research and Industrialization of Near-Net Rolling Technology Used in Shaft Parts. Front. Mech. Eng. 2018, 13, 17–24. [Google Scholar] [CrossRef]
- Huo, Y.; He, T.; Wang, B.; Zheng, Z.; Xue, Y. Numerical Prediction and Experimental Validation of the Microstructure of Bearing Steel Ball Formation in Warm Skew Rolling. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2020, 51, 1254–1263. [Google Scholar] [CrossRef]
- Huang, G.X.; Sun, B.S.; Peng, W.F.; Shu, X.D.; Lu, W. Research on Stable Forming of Titanium Alloy Bar Using Three-Roll Skew Rolling. Adv. Mat. Res. 2015, 1095, 837–841. [Google Scholar] [CrossRef]
- Pater, Z. A Thermomechanical Analysis of the Multi-Wedge Helical Rolling (MWHR) Process for Producing Balls. Metalurgija 2016, 55, 233–236. [Google Scholar]
- Pater, Z. Numerical Analysis of Helical Rolling Processes for Producing Steel Balls. Int. J. Mater. Prod. Technol. 2016, 53, 137–153. [Google Scholar] [CrossRef]
- Pater, Z.; Tomczak, J.; Bartnicki, J.; Lovell, M.R.; Menezes, P.L. Experimental and Numerical Analysis of Helical-Wedge Rolling Process for Producing Steel Balls. Int. J. Mach. Tools Manuf. 2013, 67, 1–7. [Google Scholar] [CrossRef]
- Cao, Q.; Hua, L.; Qian, D. Finite Element Analysis of Deformation Characteristics in Cold Helical Rolling of Bearing Steel-Balls. J. Cent. South. Univ. 2015, 22, 1175–1183. [Google Scholar] [CrossRef]
- Bulzak, T.; Majerski, K.; Tomczak, J.; Pater, Z.; Wójcik, Ł. Warm Skew Rolling of Bearing Steel Balls Using Multiple Impression Tools. CIRP J. Manuf. Sci. Technol. 2022, 38, 288–298. [Google Scholar] [CrossRef]
- Skripalenko, M.M.; Karpov, B.V.; Rogachev, S.O.; Kaputkina, L.M.; Romantsev, B.A.; Skripalenko, M.N.; Huy, T.B.; Fadeev, V.A.; Danilin, A.V.; Gladkov, Y.A. Simulation of the Kinematic Condition of Radial Shear Rolling and Estimation of Its Influence on a Titanium Billet Microstructure. Materials 2022, 15, 7980. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Shu, X.; Shi, J.; Wang, Y.; Pater, Z.; Wang, J. Forming Quality Research on the Variable-Diameter Section of the Hollow Axle in Three-Roll Skew Rolling. Materials 2022, 15, 5614. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Kuai, Y.; Li, T.; Zhou, Y.; Shuang, Y. Enhanced Mechanical Properties of Magnesium Alloy Seamless Tube by Three-Roll Rotary Piercing with Severe Plastic Deformation. Mater. Lett. 2022, 313, 131655. [Google Scholar] [CrossRef]
- Topa, A.; Cerik, B.C.; Kim, D.K. A Useful Manufacturing Guide for Rotary Piercing Seamless Pipe by ALE Method. J. Mar. Sci. Eng. 2020, 8, 756. [Google Scholar] [CrossRef]
- Pater, Z.; Łukasz, W.; Walczuk, P. Comparative Analysis of Tube Piercing Processes in the Two-Roll and Three-Roll Mills. Adv. Sci. Technol. Res. J. 2019, 13, 37–45. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Garcia, E.; Murillo-Marrodán, A. Effects of Skew Rolling Piercing Process Friction Coefficient on Tube Twisting, Strain Rate and Forming Velocity. J. Mater. Res. Technol. 2023, 25, 7254–7272. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Garcia, E.; Murillo-Marrodán, A. Effects of Tool–Workpiece Interfaces Friction Coefficient on Power and Energy Consumption during the Piercing Phase of Seamless Tube Production. J. Mater. Res. Technol. 2022, 19, 3172–3188. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Gil, E.G.; Murillo-Marrodan, A. Analysis of Super Cr13 Stainless-Steel Internal Fracture Growth Effects during Skew Mill Piercing Process. Results Eng. 2024, 21, 101682. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, H.; Zhang, X. Rotation Mechanics and Numerical Simulation of Hot Rolling Process under Asymmetric Rolls. Int. J. Mech. Sci. 2019, 151, 785–796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojeda-López, A.; Botana-Galvín, M.; González-Rovira, L.; Botana, F.J. Numerical Simulation as a Tool for the Study, Development, and Optimization of Rolling Processes: A Review. Metals 2024, 14, 737. https://doi.org/10.3390/met14070737
Ojeda-López A, Botana-Galvín M, González-Rovira L, Botana FJ. Numerical Simulation as a Tool for the Study, Development, and Optimization of Rolling Processes: A Review. Metals. 2024; 14(7):737. https://doi.org/10.3390/met14070737
Chicago/Turabian StyleOjeda-López, Adrián, Marta Botana-Galvín, Leandro González-Rovira, and Francisco Javier Botana. 2024. "Numerical Simulation as a Tool for the Study, Development, and Optimization of Rolling Processes: A Review" Metals 14, no. 7: 737. https://doi.org/10.3390/met14070737
APA StyleOjeda-López, A., Botana-Galvín, M., González-Rovira, L., & Botana, F. J. (2024). Numerical Simulation as a Tool for the Study, Development, and Optimization of Rolling Processes: A Review. Metals, 14(7), 737. https://doi.org/10.3390/met14070737