Optimizing Rolling Strategies for API 5L X80 Steel Heavy Plates Produced by Thermomechanical Processing in a Reversible Single-Stand Mill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rolling Parameters and Conditions
2.3. Microstructural Characterization—OM and SEM
2.4. Microstructural Characterization—SEM-EBSD
2.5. Mechanical Tests
3. Results and Discussion
3.1. Rolling Results
3.2. Microstructural Characterization Results—OM and SEM
3.3. Mn Segregation Results
3.4. M-A Island Characterization Results
3.5. Microstructural Characterization Results—SEM-EBSD
3.6. Mechanical Properties Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saboia, R.H. (General Director) ANP—Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis; Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro, Brazil. 2021; ISSN 1983-5884. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/arquivos-anuario-estatistico-2021/anuario-2021.pdf (accessed on 23 May 2024).
- Saboia, R.H. (General Director) ANP—Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis; Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro, Brazil. 2022; ISSN 1983-5884. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/arquivos-anuario-estatistico-2022/anuario-2022.pdf (accessed on 23 May 2024).
- Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Jagadeesh, A. Prediction of oil and gas pipeline failures through machine learning approaches: A systematic review. Energy Rep. 2023, 10, 1313–1338. [Google Scholar] [CrossRef]
- Liao, Q.; Liang, Y.; Tu, R.; Huang, L.; Zheng, J.; Wang, G.; Zhang, H. Innovations of carbon-neutral petroleum pipeline: A review. Energy Rep. 2022, 8, 13114–13128. [Google Scholar] [CrossRef]
- Zhou, D.; Jia, X.; Ma, S.; Shao, T.; Huang, D.; Hao, J.; Li, T. Dynamic simulation of natural gas pipeline network based on interpretable machine learning model. Energy 2022, 253, 124068. [Google Scholar] [CrossRef]
- Ravago, M.V.; Fabella, R.V.; Jandoc, K.R.; Frias, R.G.; Magadia, J.K.P. Gauging the market potential for natural gas among Philippine manufacturing firms. Energy 2021, 237, 121563. [Google Scholar] [CrossRef]
- Laureys, A.; Depraetere, R.; Cauwels, M.; Depover, T.; Hertelé, S.; Verbeken, K. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation. J. Nat. Gas Sci. Eng. 2022, 101, 104534. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Ding, W. Study on the continuous cooling transformation behavior of heavy thickness X80 pipeline steel. IOP Conf. Ser. Mater. Sci. Eng 2019, 631, 022014. [Google Scholar] [CrossRef]
- Guo, K.; Pan, T.; Zhang, N.; Meng, L.; Luo, X.; Chai, F. Effect of microstructural evolution on the mechanical properties of Ni-Cr-Mo ultra-heavy steel plate. Materials 2023, 16, 1607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ye, Q.; Tian, Y.; Fu, T.; Wang, Z. Superior Through-Thickness Homogeneity of Microstructure and Mechanical Properties of Ultraheavy Steel Plate by Advanced Casting and Quenching Technologies. Steel Res. Int 2021, 92, 2000698. [Google Scholar] [CrossRef]
- Julio, C.; Li, W.; Ke, J.; Xu, Y.; Pang, H.; Jin, X. Study of the impact properties and microstructure evolution in a high-strength low-alloy heavy steel. Mater. Sci. Eng. A 2021, 819, 141404. [Google Scholar] [CrossRef]
- Gorni, A.A.; Silveira, J.H.D.; Reis, J.S.S. Um Panorama do Desenvolvimento Recente de Chapas Grossas e suas Aplicações. Corte Conform. Met. 2006, 2, 78–93. [Google Scholar]
- Martins, C.A.; Faria, G.L.; Mayo, U.; Isasti, N.; Uranga, P.; Rodriguez-Ibabe, J.M.; Souza, A.L.; Cohn, J.A.C.; Rebellato, M.A.; Gorni, A.A. Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a steckel mill. Metals 2023, 13, 405. [Google Scholar] [CrossRef]
- Pourazizi, R.; Mohtadi-Bonab, M.A.; Davani, R.K.Z. Effect of thermo-mechanical controlled process on microstructural texture and hydrogen embrittlement resistance of API 5L X70 pipeline steels in sour environments. Int. J. Press. Vessel. Pip. 2021, 194, 104491. [Google Scholar] [CrossRef]
- Faria, G.L.; Porcaro, R.R.; Godefroid, L.B.; Cândido, L.C.; Faria, R.J. Development of heavy plates API 5L Grade X80—Thermomechanical control processing. Tecnol. Metal. Mater. Mineração 2024, 21, e3038. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, W.; Tang, Z.; Siyasiya, C.W.; Zhang, J. Thermomechanical control of microstructure and precipitation in vanadium microalloyed steel: Influence of finish rolling and coiling temperatures. Steel Res. Int. 2024, 95, 2300478. [Google Scholar] [CrossRef]
- Soeiro Junior, J.C.; Rocha, D.B.; Brandi, S.D. Uma breve revisão histórica do desenvolvimento da soldagem dos aços API para tubulações. Soldag. Inspeção 2013, 18, 176–195. [Google Scholar] [CrossRef]
- Kim, K. Effect of Microalloying and Hot Rolling Parameters on Toughness and Yield Strength of API X80 Grade Steel Strips. In Proceedings of the Symposium on Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels, Taipei, Taiwan, 7–8 November 2014; pp. 135–153. [Google Scholar]
- Machado, F.R.S.; Ferreira, J.C.; Rodrigues, M.V.G.; Lima, M.N.S.; Loureiro, R.C.P.; Siciliano, F.; Silva, E.S.; Reis, G.S.; Sousa, R.C.; Aranas, C.; et al. Dynamic ferrite formation and evolution above Ae3 temperature during plate rolling simulation of an API X80 steel. Metals 2022, 12, 1239. [Google Scholar] [CrossRef]
- Omale, J.I.; Ohaeri, E.G.; Mostafijur, K.M.; Szpunar, J.A.; Arafin, M. Through-Thickness Inhomogeneity of Texture, Microstructure, and Mechanical Properties After Rough and Finish Rolling Treatments in Hot-Rolled API 5L X70 Pipeline Steel. J. Mater. Eng. Perform. 2020, 29, 8130–8144. [Google Scholar] [CrossRef]
- Xu, L.; Qiao, G.; Gong, X.; Gu, Y.; Xu, K.; Xiao, F. Effect of through-thickness microstructure inhomogeneity on mechanical properties and strain hardening behavior in heavy-wall X70 pipeline steels. J. Mater. Res. Technol. 2023, 25, 4216–4230. [Google Scholar] [CrossRef]
- Zurutuza, I.; Isasti, N.; Detemple, E.; Schwinn, V.; Mohrbacher, H.; Uranga, P. Effect of Nb and Mo additions in the microstructure/tensile property relationship in high strength quenched and quenched and tempered boron steels. Metals 2021, 11, 29. [Google Scholar] [CrossRef]
- Wu, Q.; He, S.; Hu, P.; Liu, Y.; Zhonghua, Z.; Fan, C.; Fan, R.; Zhong, N. Effect of finish rolling temperature on microstructure and mechanical properties of X80 pipeline steel by online quenching. Mater. Sci. Eng. A 2023, 862, 144496. [Google Scholar] [CrossRef]
- Lino, J.J.P. Laminação Controlada de um Aço Microligado ao Nióbio Visando a Obtenção do Grau API X60 em Laminador Steckel. Master’s Thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2017. [Google Scholar]
- Isasti, N.; Jorge-Badiola, D.; Taheri, M.L.; Uranga, P. Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part I: Yield Strength. Met. Mater. Trans. A 2014, 45, 4960–4971. [Google Scholar] [CrossRef]
- Cui, S.; Gu, G.; Shi, C.; Xiao, G.; Lu, Y. Variations in microstructure and mechanical properties along thickness direction in a heavy high strength low alloy steel plate. J. Mater. Res. Technol. 2023, 26, 9190–9202. [Google Scholar] [CrossRef]
- Roccisano, A.; Nafisi, S.; Stalheim, D.; Ghomashchi, R. Effect of TMCP rolling schedules on the microstructure and performance of X70 steel. Mater. Charact. 2021, 178, 111207. [Google Scholar] [CrossRef]
- Conde, F.F.; Pina, F.J.; Giarola, J.M.; Pereira, G.S.; Francisco, J.C.; Avila, J.A.; Bose, W.W. Microstructure and mechanical properties of Nb-API X70 low carbon steel. Metallogr. Microstruct. Anal. 2021, 10, 430–440. [Google Scholar] [CrossRef]
- Qiao, G.Y.; Chen, X.W.; Zhang, Z.E.; Han, X.L.; Wang, X.; Liao, B.; Xiao, F.R. Mechanical properties of high-Nb X80 steel weld pipes for the second west-to-east gas transmission pipeline project. Adv. Mater. Sci. Eng. 2017, 2017, 7409873. [Google Scholar] [CrossRef]
- Gorni, A.A. Aspectos metalúrgicos da solubilização de microligantes durante o reaquecimento de placas de aço. In Proceedings of the 65° Congresso ABM, Rio de Janeiro, Brazil, 26–30 July 2010. [Google Scholar]
- Irvine, K.J.; Pickering, F.B.; Gladman, T. Grain-Refined C-Mn STEELS. J. Iron Steel Inst. 1967, 205, 161–182. [Google Scholar]
- Nodberg, H.; Arronson, B. Solubility of Niobium Carbide in Austenite. J. Iron Steel Inst. 1968, 206, 1263–1266. [Google Scholar]
- Hudd, R.C.; Jones, A.; Kale, M.N. A Method for Calculating the Solubility and Composition of Carbonitride Precipitates in Steel with Particular Reference to Niobium Carbonitride. J. Iron Steel Inst 1971, 209, 121–125. [Google Scholar]
- Kong, X.; Lan, L. Optimization of mechanical properties of low carbon bainitic steel using TMCP and accelerated cooling. Procedia Eng. 2014, 81, 114–119. [Google Scholar] [CrossRef]
- Uranga, P.; Rodriguez-Ibabe, J.M.; Stalheim, D.G.; Barbosa, R.A.N.M.; Rebellato, M.A. Application of Practical Modeling of Microalloyed Steels for Improved Metallurgy, Productivity and Cost Reduction in Hot Strip Mill Applications. In Proceedings of the Aistech—Iron and Steel Technology Conference, Pittsburgh, PA, USA, 16–19 May 2016. [Google Scholar]
- Rosado, D.B.; De Waele, W.; Vanderschueren, D.; Hertelé., S. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels. Int. J. Sustain. Constr. Des. 2013, 4, 1–10. [Google Scholar] [CrossRef]
- ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM Designation E112; Standard Test Methods for Determining Average Grain Size. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM E1245-03; Standard Practice for Determining the Inclusion or Second Phase Constituent Content of Metals by Automatic Image Analysis. ASTM International: West Conshohocken, PA, USA,, 2016.
- ASTM E562-19; Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM E1382-97; Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis. ASTM International: West Conshohocken, PA, USA, 2015.
- Pickering, F.B.; Gladman, T. Metallurgical Developments in Carbon Steels; Special Report No. 81; Iron and Steel Inst.: London, UK, 1963. [Google Scholar]
- Iza-Mendia, A.; Gutiérrez, I. Generalization of the existing relations between microstructure and yield stress from ferrite-perlite to high strength steels. Mater. Sci. Eng. A 2013, 561, 40–51. [Google Scholar] [CrossRef]
- Kubin, L.P.; Mortensen, A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues. Scr. Mater 2003, 48, 119–125. [Google Scholar] [CrossRef]
- Zurutuza, I.; Isasti, N.; Detemple, E.; Schwinn, V.; Mohrbacher, H.; Uranga, P. Effect of Quenching Strategy and Nb-Mo Additions on Phase Transformations and Quenchability of High-Strength Boron Steels. J. Miner. Met. Mater. Soc. (TMS) 2021, 73, 3158–3168. [Google Scholar] [CrossRef]
- ASTM Designation A370; Standard Test Methods and Definitions for Mechanical Testing of Steel Products. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM Designation E92; Standard Test Methods for Knoop and Vickers Hardness of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- API—American Petroleum Institute-Specification for Line Pipe, 46th ed.; API Publishing Services: Washington, DC, USA, 2018.
- Cizek, P.; Wynne, B.; Davies, C.; Muddle, B.; Hodgson, P. Effect of Composition and Austenite Deformation on the Transformation Characteristics of Low-Carbon and Ultralow-Carbon Microalloyed Steels. Met. Mater. Trans. A 2002, 33, 1331–1349. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Liu, Y.; Li, C.; Li, H.; Guo, O. Acicular ferrite formation during isothermal holding in HSLA steel. J. Mater. Sci. 2016, 51, 3555–3563. [Google Scholar] [CrossRef]
- Adel, A.A. Modelamento da Transformação de Fases de Aços de Alta Resistência Microligados ao Nb durante Resfriamento após Laminação em Tiras a Quente. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2007. [Google Scholar]
- Guo, H.; Zhou, P.; Zhao, A.; Zhi, C.; Ding, R.; Wang, J. Effects of Mn and Cr contents on microstructures and mechanical properties of low temperature bainitic steel. J. Iron Steel Res. Int. 2017, 24, 290–295. [Google Scholar] [CrossRef]
- Takekazu, A.; Kimihiro, N.; Koji, Y.; Nobuhisa, S. Development of High Performance UOE Pipe for Linepipe. JFE Tech. Rep. 2013, 18, 23–35. [Google Scholar]
- Laitinen, R. Improvement of weld HAZ toughness at low heat input by controlling the distribution of M-A constituents. Ph.D. Thesis, Oulu University, Oulu, Finland, 2006. [Google Scholar]
- Hrivnak, I.; Matsuda, F.; Ikeuchi, K. Investigation of M-A constituent in high strength steel welds. Trans. JWRI 1992, 21, 149–171. [Google Scholar]
- Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J.M.; Uranga, P. Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb-Mo and Ti-Mo microalloyed steels. Metals 2017, 7, 65. [Google Scholar] [CrossRef]
- Zhao, H.; Wynne, B.P. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater. Charact. 2017, 123, 128–136. [Google Scholar] [CrossRef]
- Chang, L.C.; Bhadeshia, H.K.D.H. Metallographic observations of bainite transformation mechanism. Mater. Sci. Technol. 1995, 11, 106–108. [Google Scholar] [CrossRef]
- Edmonds, D.V. Designing with microalloyed and interstitial-free steels. In Handbook of Mechanical Alloy Design; George, E.T., Lin, X., Kiyoshi, F., Eds.; Marcel Dekker Inc: New York, NY, USA, 2004; pp. 321–353. [Google Scholar]
- DeArdo, A.J. Niobium in modern steels. Int. Mater. Rev. 2003, 48, 371–402. [Google Scholar] [CrossRef]
- DeArdo, A.J. The Metallurgy of High Strength Linepipe Steels. In Proceedings of the Symposium on the Pipelines for the 21st Century, Calgary, Canada, 21–24 August 2005. [Google Scholar]
- Hu, H.; Xu, G.; Wang, L.; Xue, Z.; Zhang, Y.; Liu, G. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater. Des. 2015, 84, 95–99. [Google Scholar] [CrossRef]
- Mohrbacher, H. Synergies of niobium and boron microalloying in molybdenum based bainitic and martensitic steels. In Fundamentals of Applications of Mo and Nb Alloying in High Performance Steels—Volume 1—Proceedings of the First International Symposium on Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels, Taipei, Taiwan, 7–8 November 2011; Hardy, M., Ed.; CBMM: Amsterdam, The Netherlands; IMOA: London, UK; TMS: Frederick, MD, USA, 2014; ISBN 978-0-615-67631-9. [Google Scholar]
Batches | C | Mn | Si | Cr + Mo + Ni | Nb + Ti | Others | ECIIW | ECPcm |
---|---|---|---|---|---|---|---|---|
1 | 0.06 | 1.81 | 0.33 | 0.51 | 0.049 | 0.0595 | 0.46 | 0.19 |
2 | 0.06 | 1.84 | 0.25 | 0.53 | 0.050 | 0.0564 | 0.47 | 0.19 |
3 | 0.05 | 1.83 | 0.24 | 0.60 | 0.045 | 0.0632 | 0.47 | 0.18 |
Reheating Temperature (°C) | >1100 |
Sketch Thickness (mm) | 70–90 |
Temperature of the First Finishing Pass (°C) | 930–870 |
Temperature of the Last Finishing Pass (°C) | 850–790 |
Accelerated Cooling Rate (°C/s) | 10–20 |
Parameters | Strategy A | Strategy B | ||
---|---|---|---|---|
Plate 1 | Plate 2 | Plate 3 | Plate 4 | |
Reheating Temperature (°C) | Ts + 43 | Ts + 40 | Ts + 47 | Ts + 46 |
Roughing Passes | 7 | 7 | 7 | 7 |
Finishing Passes | 6 | 6 | 8 | 8 |
Accumulated Deformation in Roughing (%) | 62.2 | 62.1 | 57.6 | 62.2 |
Accumulated Deformation in Finishing (%) | 74.2 | 74.2 | 77 | 74.2 |
Temperature of the First Finishing Pass (°C) | Tnr − 80 | Tnr − 80 | Tnr − 78 | Tnr − 81 |
Temperature of the Last Finishing Pass (°C) | Ar3 + 99 | Ar3 + 96 | Ar3 + 68 | Ar3 + 65 |
Accelerated Cooling Rate (°C/s) | 13 | 13 | 15 | 13 |
Plates | Average Size (μm)—4° Disorientation Criterion | Average Size (μm)—15° Disorientation Criterion |
---|---|---|
2 | 2.4 | 3.0 |
3 | 2.3 | 2.9 |
Rolling Strategy | Plate | Charpy Impact Energy (J) | YS—0.5% (MPa) | TS (MPa) | Elongation (%) | YS/TS | Hardness (HV) |
---|---|---|---|---|---|---|---|
B | 3 | 301 | 664 | 708 | 42 | 0.94 | 235 |
4 | 494 | 623 | 688 | 43 | 0.91 | 202 | |
A | 2 | 478 | 578 | 671 | 42 | 0.86 | 228 |
1 | 490 | 583 | 712 | 43 | 0.82 | 217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Abreu, L.G.; de Faria, G.L.; de Faria, R.J.; Matsubara, D.B.; Porcaro, R.R. Optimizing Rolling Strategies for API 5L X80 Steel Heavy Plates Produced by Thermomechanical Processing in a Reversible Single-Stand Mill. Metals 2024, 14, 746. https://doi.org/10.3390/met14070746
de Oliveira Abreu LG, de Faria GL, de Faria RJ, Matsubara DB, Porcaro RR. Optimizing Rolling Strategies for API 5L X80 Steel Heavy Plates Produced by Thermomechanical Processing in a Reversible Single-Stand Mill. Metals. 2024; 14(7):746. https://doi.org/10.3390/met14070746
Chicago/Turabian Stylede Oliveira Abreu, Luiz Gustavo, Geraldo Lúcio de Faria, Ricardo José de Faria, Daniel Bojikian Matsubara, and Rodrigo Rangel Porcaro. 2024. "Optimizing Rolling Strategies for API 5L X80 Steel Heavy Plates Produced by Thermomechanical Processing in a Reversible Single-Stand Mill" Metals 14, no. 7: 746. https://doi.org/10.3390/met14070746
APA Stylede Oliveira Abreu, L. G., de Faria, G. L., de Faria, R. J., Matsubara, D. B., & Porcaro, R. R. (2024). Optimizing Rolling Strategies for API 5L X80 Steel Heavy Plates Produced by Thermomechanical Processing in a Reversible Single-Stand Mill. Metals, 14(7), 746. https://doi.org/10.3390/met14070746