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Abstract: The study presents the results of the research into the effect of the dynamic properties
of inverter and diode power sources of welding arc power supply on the stability of melting and
transfer of electrode metal into the weld pool. The principal energy parameters of the power source
include the rates of rise and fall of short-circuit current, the ratio of arc burning current to short-circuit
current, and other related factors. It has been demonstrated that an increase in the rate of change
of these parameters within one welding mode microcycle alters the properties of heat and mass
transfer, increases the frequency of electrode metal droplet transfer, reduces the size of transferred
droplets in the weld pool and the duration of their stay on the electrode end under the influence
of the high temperature of the welding arc, and the duration of short circuits. The increase in the
mass fraction of alloying elements at their transition from the coated electrode to the weld metal is
demonstrated to depend on the rate of change of the main energy parameters of one welding mode
microcycle of the inverter power source in comparison with the diode rectifier. An enhancement in
the structural integrity and properties of permanent joints during welding has been observed when
using an inverter power source for the welding arc with high dynamic properties.

Keywords: welding arc power source; welding mode microcycle; manual arc welding; steel; structure;
properties of welded joints

1. Introduction

Inverter power sources for welding have become prevalent due to the expediency
with which the parameters of the welding mode can be controlled. These include the
rate of short-circuit current rise and fall and the ratio of values of arc burning current
and short-circuit current, among other parameters, which lead to the transfer of electrode
metal drop.

The authors of [1] propose technical solutions designed to enhance the welding pro-
cess by eliminating the short-circuiting of the arc gap. These solutions are based on the
development of special algorithms for controlling the operation of inverter welding current
sources. Paper [2] examines the primary trends in the development of equipment for fusion
arc welding and their impact on the stability of the welding process. The authors of [3]
establish the reduction of the unfavorable factor of inverter-based welding, both for the
qualitative and quantitative components of welding aerosol. Studies [4–13] present the re-
search results on the stability of the welding process in the system “power source—welding
arc”. Papers [14–18] contain analysis of how the modern elementary base of welding equip-
ment affects the efficiency of the welding process with a fusion electrode. This is equally
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applicable to the analysis of heat and mass transfer properties during manual arc welding
with a flux-coated electrode. This necessitates the complex theoretical and experimental
studies of welding processes, including the melting, transfer of the electrode’s metal, and
crystallization of weld metal from the melt during the formation of welded joints and
clad coatings.

The results of the conducted research will establish dependence between the properties
of heat and mass transfer of electrode metal droplets, the heat content of the weld pool, and
the structure of the weld, as well as the physical, mechanical, and operational properties of
the welded metal joints. This will enable the formulation of recommendations for improving
the operational properties of welded metal structures when using inverter rectifiers.

When welding metal structures, the production of which is difficult to mechanize,
automate, and robotize, manual metal arc welding with coated electrodes (MMAW) is
one of the leading manufacturing processes. This is explained by its flexibility, simplicity,
versatility, and lower costs of auxiliary operations and equipment, especially in unprepared
conditions [1,2].

The objective of this study is to evaluate the influence of the dynamic properties of
inverter and diode power sources on the stability of melting and transfer of electrode metal
into the weld pool, which are the main indicators of heat and mass transfer and affect the
structure and mechanical properties of the formed permanent joints.

The dynamic properties of power sources are understood as the change of the welding
mode’s main energy parameters over time. These changes occur in the process of melting
and transferring electrode metal into the weld pool within one welding microcycle [1–13].
The physical essence of the process of forming a permanent MMAW joint can be explained
by the scheme presented in Figure 1.
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The electrode melting process can be divided into three stages (Figure 1), which 
differ in temperature, geometric, hydrodynamic, and physicochemical properties [19–26].  

The initial stage is the beginning of electrode melting. At this stage, the arc length, 
resistance of the interelectrode gap, arc voltage, and energy losses for radiation into the 
environment are maximized. The liquid metal at the electrode end is heated by the arc, 
reaching a temperature of at least 6000 K [14,17] and is held at the electrode end by sur-

Figure 1. The essence of the MMAW process, reprinted from Ref. [3]: (a) is a block diagram of electrode
melting and seam metal formation; (b) is an image of the process of electrode-metal droplet transfer.
1: clad metal; 2: base metal; 3: slag; 4: electrode flux; 5: metal electrode rod; 6: gas atmosphere; 7: slag
phase of the molten electrode droplet; 8: metal phase of the molten electrode droplet.

The electrode melting process can be divided into three stages (Figure 1), which differ
in temperature, geometric, hydrodynamic, and physicochemical properties [19–26].

The initial stage is the beginning of electrode melting. At this stage, the arc length,
resistance of the interelectrode gap, arc voltage, and energy losses for radiation into the
environment are maximized. The liquid metal at the electrode end is heated by the arc,
reaching a temperature of at least 6000 K [14,17] and is held at the electrode end by surface
tension, which is greater than gravitational forces. However, surface tension gradually
decreases due to the increase in temperature of the metal and the appearance of a slag film
on it (the percentage of constituents can vary from 0 to 100%). During heating, there occur
processes such as the dissociation of electrode coating components, water evaporation, and
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interaction of charge materials in the solid state [19]. The melting of the electrode generates
the electrode metal droplets covered with a slag film (7 and 8 in Figure 1).

The second stage is the transfer of metal from the electrode to the weld pool. It can
occur by tearing off droplets from the electrode under the influence of the pinch effect or
by overflowing the droplet, resulting in a short circuit. The authors of [20,21] found that
the physicochemical reactions during welding almost completely end at the droplet stage
when there is intensive interaction of the droplets with the slag and gas.

The third stage involves the formation of the weld pool (Figure 1). One of the char-
acteristic features of the arc welding process is the brief changes in current magnitude at
all stages of the welding cycle. The amplitude of the welding current varies randomly,
both in the duration of transient processes and in the frequency of their manifestations.
Consequently, the dynamic properties of the welding power source, i.e., its ability to re-
spond quickly to such disturbances and provide stability of the welding current, are the
determining factors for the efficiency and quality of the welding process.

Processes [27] occurring in the welding zone have a characteristic duration ranging
from 0.1 µs to 0.1 s (Figure 2). Therefore, the operational properties of the deposited metal
can be improved by increasing the transfer coefficient of alloying elements from covered
electrodes, minimizing losses of alloying elements into the slag and gas components, as
well as by thermally affecting the chemical composition of the electrode metal droplet.
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The works [2,4,6,12,21–23,27–32] argue that reducing the size of electrode droplets
leads to an increase in the total surface area of their contact with the environment and results
in deoxidation, alloying, oxidation, and gas dissolution. However, a reduction in the droplet
existence time (droplet size) results in an increase in the intensity of metallurgical processes.
Study [21] reports that the specific surface area of electrode droplets is approximately
5–22 times higher than the specific surface area of the welding pool. Moreover, the specific
rate of metal oxidation of electrode droplets is approximately 39 times higher than the
specific rate of metal oxidation of the welding pool. Research [22] established that chemical
reactions during welding almost entirely finish at the stage of droplet formation, during
which there is an intense interaction between droplets, slag, and gas.

The efficiency of transferring chemical elements from welding materials to the weld
metal is a relevant issue in welding production. Studies on the kinetics of melting and
transfer of electrode metal during arc welding have been conducted in the works by Erokhin
A. A. [22], Mazel A. G. [20], Pokhodny I. K. [23], Shatilo S. P. [19], Vaz C. T. [33,34], Rodríguez
Jorge V. [35], Chen J. H. [36], Brandi S. [37], Lancaster J. F. [38,39], and others [40,41], who
have shown that:

1. The majority of the metal, approximately 85% [2], is transferred in the form of droplets;
2. The size and shape of the droplets, as well as the frequency of their transfer, depend on

the thermophysical properties of the electrode metal, the composition of the coating,
the thickness of the coating, the diameter of the electrode, the welding regime, the
polarity, and the relationship of forces acting on the molten electrode metal at various
stages of melting and transfer.
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3. The stability of the welding process depends on the nature of metal transfer [1–13,20–23].

Metallurgical reactions during fusion welding are characterized by the
following [19–23]:

Physico-chemical processes that occur in the welding zone as a result of the interaction
between molten metal, welding fluxes, and gases;

• Higher rates of seam metal cooling and crystallization;
• Phase transformations of the base metal in the heat-affected zone.

These processes take place throughout the entire arc welding process, from the melting
of the electrode to the transition of the molten metal drop through the arc gap to the weld
pool. The metallurgical reactions in the electrode-drop-weld pool system differ from those
in steel-making furnaces, and the specific features that affect these reactions and their
outcome in MMAW are:

1. The small volume of the weld pool and the relatively large number of reactive phases
present within it;

2. High temperatures within the welding arc (up to 7000 ◦C) leading to overheating of
the molten material within the pool;

3. The movement of liquid metal, intense mixing of molten materials, and continuous
flow of metallurgical processes within the pool;

4. Rapid cooling and solidification rates of deposited metal.

It has been found in [42,43] that as arc power increases, the mass of deposited metal
and slag decreases and the amount of welding fumes increases, as confirmed by data
from [3,8,44–48].

2. Methodology

There has been comprehensive theoretical and experimental research into the issues.
The theoretical studies included: mathematical calculations of the size of transferred
electrode droplets, determination of the thermal content of electrode droplets, and heat
input into the product. The experimental studies consisted of laboratory experiments,
including oscillography of current in the welding circuit, measurement of arc voltage
between the electrode and the product, thermal imaging of the thermal fields during
welding, macroscopic and microscopic examination of welded joint sections, determination
of mechanical properties of welds, and investigation of the effect of the dynamic properties
of power sources using various methods of energy conversion (diode rectifiers and inverter
rectifiers) on the arc welding process and the properties of welded joints.

To conduct a comprehensive study, welded samples were obtained using different
types of equipment, including the Nebula 315 inverter rectifier (Nebula, Nanjing, China)
and the VD-306E diode rectifier.

To ensure the required level of study reliability, 3 samples were produced for each
test. The samples for the study were made of steels of different grades (steel 09G2S, the
main steel for pipelines; carbon steel 45; and 12Х18N10T steel used for items operating
in aggressive environments) to analyze the influence of dynamic properties of different
power sources on the structure and properties of welded joints.

1. A pipe of steel 09G2S (joint type C17) with dimensions of 159 × 6 mm was welded with
the following parameters: root pass was conducted with LB-52U (d = 2.6 mm) elec-
trode at a welding current of 50–60 A; filling was conducted with LB-52U (d = 3.2 mm)
electrode at a welding current of 80–90 A.

2. Welding of 10 mm-thick plates made of steel 45 (joint type C17) was carried out
using the following welding technique (Figure 3): the welding was performed in four
layers with electrodes. The root pass was conducted with UONI 13/55 electrodes
(d = 3 mm) at a welding current of 80–90 A. The filling was conducted with UONI
13/55 electrodes (d = 4 mm) at a welding current of 120–130 A. Before welding, the
parts were preheated to 300 ◦C and then slowly cooled with asbestos fiber insulation
until they were completely cooled.
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3. Welding of 3 mm-thick plates made of 12H18N10T steel (joint type C7) was carried
out with CL11 electrodes of 08H20N9G2B type (d = 3 mm) at a welding current of
70–80 A.

Mechanical tests of welded samples were carried out in accredited chemical and metal
science laboratories of Kuzbassstekhenergo research and information center.

3. Research Results

The studies have been conducted to investigate the effect of droplet transfer parameters
on the size of transferred electrode metal droplets in MMAW. In the course of investigating
electrode metal transfer, the following assumptions were incorporated into the mathemati-
cal model [1]: the arc column is stationary and coaxial with the electrode, and the molten
metal drop has the shape of a segment or a ball. Assuming that the end of the electrode
drop has the shape of a spherical segment with a base equal to the cross-section of the
electrode, its mass can be calculated using the formula [49]:

m =
πγ

3

[
2 · R3 + (2R2 + r2

0)
√

R2 − r2
0

]
· 10−3, (1)

where m is the mass of the droplet, γ is the density of the liquid metal (g/mm3), R is the
radius of curvature of the drop surface (mm), and r0 is the radius of the electrode rod (mm).

On the other hand, the mass of transient droplets during short circuits [2,50,51] can be
estimated using a third-order regression equation:

m = a · τ3
s/c, (2)

where τs/c is the residence time of the droplet at the end of the electrode, s; a is the coefficient
0.33 × 10−4 g/s3.

Formulas (1) and (2) and the Cardano formula [52] yield the radius of the surface
curvature of the electrode droplet, according to the formula [53]:

R = 3

√√√√√√√
−1
27 · ( −π·γ·r2

0
4·a·τ3

0 ·103 )
3 + (

−3a·τ3
s
с .
·103

8·π·γ +
π·γ·r2

0
24·a·τ3

s/c·103 )−

−
√

2
27 (

−π·γ·r3
0

4·a·τ3
s/c.·103 )

3 + (−3a·τ3
s.c.·103

8·π·γ +
π·γ·r2

0
24·a·τ3

s/c.·103 ) · 1
4 − 1

272 · (
−π·γ·r2

0
4·a·τ3

s/c.·103 )
6
+

+
π·γ·r2

0
12·a·τ3

s/c.·103 .

(3)

Or simplified variant:

R =
3

√
− 1

27
· с3 + (в− с

6
)−

√
2

27
· с3 +

1
4
(в− с

6
)− 1

729
· с6 − с

3
, (4)

where с =
−π·γ·r2

0
4a·τ3

s/c·103 ;

в =
−3a · τ3

s/c. · 103

8 · π · γ
;

τs/c is the residence time of the droplet at the end of the electrode, s;



Metals 2024, 14, 759 6 of 26

a is a coefficient of 0.33 × 10−4 g/s³;
π is a mathematical constant equal to the ratio of the circumference to the length of the
diameter, irrational number ≈ 3.14;
γ is the density of liquid metal, g/mm³;
R is the radius of surface curvature of the droplet, mm;
r0 is the radius of the electrode rod, mm.

Formula (4) demonstrates that the smaller the short circuit, the smaller the radius of
the drop of transferred electrode metal. This is consistent with the data from [53], where
the droplet diameter can be assessed according to the formula Dk = 0.2 τs/c.

The volume of a droplet shaped like a spherical segment with a base equal to the
cross-section of the electrode can be calculated using the formula from [52]:

V =

[
2R3 + (2R2 + r2

0)
√

R2 − r2
0

]
· 10−3, mm3. (5)

The area of the active surface of the interaction droplet can be found by the
formula [53]:

S = 2πR((R −
√

R2 − r2
0) + r0), mm2. (6)

The calculation of the energy that various power sources put into a drop of electrode
metal can be carried out using oscillograms of current and voltage in the arc gap [54].
According to the values of current and voltage at the key points, the research analyzed
the thermal effect of welding current on a drop of electrode metal during welding with
various types of power sources [55,56], and the Joule law was applied to calculate the heat
introduced into the drop, taking into account the energy passing into the drop [26]:

Q = 0.24 · I · U · t, J, (7)

where I is the strength of the welding current, A; U is the voltage, V; t is the welding time, s.
Using the oscillogram data, the calculation of the heat introduced can be carried out

using two methods [55]: grapho-analytic and analytical.
The grapho-analytic method uses discrete oscillogram values as initial data for calcu-

lation according to the following equation:

Q = 0.24 ·
m

∑
n=1

I · U · t, J, (8)

where n, m is the number of instantaneous of measured values on the oscillogram (Figure 4),
I is the welding current strength, A; U is the voltage, V; t is the welding time, s.

To solve the problem using this method, a variety of current and voltage values must
be used over time.

The analytical method takes into account errors in the experimental equipment and
the sawtooth curve that reflects the welding current during the formation and transfer of
the droplet to the weld pool. Changes in current and voltage can be accurately represented
as straight line segments synchronized in time. The energy spent on melting electrode
metal per unit of time can be calculated using the following equation:

Q(t) = 0.24
i=n

∑
i=0

∫ tn+1

tn
In(t) · Un(t) · t · dt, J. (9)

The methodology [55] was adapted to MMAW using the MatLab 2014 software pack-
age. It was used as an algorithm for calculating the heat content of a drop during welding
with various types of power supply [56]:
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u1 = [u1; u2; u3; u4; u5; u6; . . .];
i1 = [i1; i2; i3; i4; . . .];
[U1, I1] = meshgrid (u1, i1);
t1 = t1; t2; t3; t4; . . . ;
Qк = sum(trapz(0.2 . . . 0.3·U1·I1·t1)),

where u1, u2 . . . un are the instantaneous values of voltage, V; i1, i2, . . . in are currents, A;
and t1, t2, . . . tn are units of time, s.
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The heat input into an electrode metal droplet can be estimated by calculating the
temperature of the droplets overheating when they pass through an arc gap with short
circuits, according to the formula [51]:

∆Tk =
1
c
(

q1

a · τ2
s/c

− 1
K
), (10)

where ∆Tk is the excess of the average temperature of the liquid metal at the electrode
above the melting point, ◦C; c is the average heat capacity of the liquid metal, J/ g ◦C,
с = 0.84 J/ g ◦C; q1 is the thermal power of the arc at the end of the electrode, J/s; K is the
coefficient characterizing the mass of the metal, which can be melted with a single energy,
g/J, K = 1.5 × 10−3 g/J; τs/c. is the residence time of the droplet at the end of the electrode,
s; a is a coefficient 0.33 × 10−1 g/s3 [4].

Experimental studies were conducted to investigate the effect of the rate of change of
the main energy parameters of one welding mode microcycle of the selected power source
on the stability of the welding process (Table 1).



Metals 2024, 14, 759 8 of 26

Table 1. Parameters of surfacing modes for various brands of electrodes and power supplies.

Type of Power
Supply:
Rectifier

Brand of
Electrodes

Average Values of Mode Parameters
(Oscilloscope AKIP-4122/1 V

(AKIP, China))

Number of Short
Circuits during
Cladding Time

diode
LB-52U

Current: 83 + 2.7 A
Voltage: 20.8 + 0.6 V

Projected welding speed: 0.25 m/min

17

inverter 22

diode
UONI13/55

Current: 83 + 2.7 A
Voltage: 21.5 + 0.6 V

Projected welding speed: 0.29 m/min

17

inverter 22

diode
CL11

Current: 84 + 2.7 A
Voltage: 24.5 + 0.6 V

Projected welding speed: 0.27 m/min

12

inverter 24

The analysis of the obtained results (Table 1) shows an increase in the number of short
circuits of the arc gap at the same value of the welding mode parameters, which indicates
the advantages of the inverter rectifier over the diode rectifier. The advantage is expressed
in the reduction of the period between short circuits, which may indicate the transfer of
electrode metal in smaller droplets.

Different patterns of current change in the welding circuit and arc voltage between
the electrode and the workpiece, shown in Figures 4 and 5, can be explained from the
point of view of higher-quality indicators of rectified voltage. The conversion frequency
of the inverter power source can reach up to 200 kHz, while that of the diode rectifier
can reach up to 300 Hz. This parameter affects the voltage ripple factor of the rectifier,
reaching 25% in inverters and 65% in diodes [2,3,55]. Given the above considerations, it
can be reasonably concluded that at a thermal time constant of 10−5–10−3 s in a shorter
interval of current failure, the interelectrode gap lacks the requisite time to cool down and
deionize significantly. Consequently, the use of electrodes with fewer ionizing elements in
the coating when welding from an inverter rectifier is more reasonable due to a more stable
process of arc burning.
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Works [2,54,57–62] established that the reduction of the size of the transferred droplets
of the molten electrode metal contributes to the defect-free welds and to the increase of
the impact strength of the seam metal at low temperatures. We analyzed and statistically
processed the oscillograms of current and voltage in the welding circuit (Figure 4) when
using power sources with different forms of energy conversion. The results obtained are
presented in Table 2 and Figure 5.
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Table 2. Results of static processing of electrode metal droplet transfer parameters.

Parameters
Type

of Power Supply:
Rectifier

Brand of Electrode

LB-52U UONI13/55 CL11

Short-circuit duration of the arc
interval τs/c, µs

Diode 6.7 6.5 12

Inverter 5.36 6 8.1

RMS deviation of short-circuit
duration, στs/c, ms

Diode 1.85 2.1 3.8

Inverter 1.34 1.9 2.3

Coefficient of short-circuit
duration variation, КVτs/c, %

Diode 27.6 32.3 28

Inverter 25 31.9 28.7

Cycle duration,
Ts/c, ms

Diode 179 190 249.7

Inverter 147 149 142.7

RMS deviation of cycle duration
σ Ts/c., ms

Diode 52 52 58.7

Inverter 15 27 29.3

Coefficient of cycle duration
variation KVTs/c., %

Diode 29 27.2 23

Inverter 10 27.48 20

The analysis of the results shown in Table 2 and Figure 5 showed a and (τs/c and Ts/c) an
increase in the number of short circuits (Table 1) when using an inverter rectifier; thus, there
is a finer drop transfer of electrode metal [5,7]. The obtained regularity can be explained by
the difference in oscillograms of welding processes (Figure 4); the experimental setup and
the technique of obtaining oscillograms are described in [63]. Power sources with different
forms of energy conversion were analyzed taking into account the amplitude values of drop
transfer mode parameters (Figure 6). The obtained results are presented in Tables 3 and 4.
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Figure 6. Scheme for determining the amplitude values of welding mode parameters: U1 is arc
voltage, U2 is arc voltage at the time of touching the drop in the weld pool, U3 is arc voltage during
the transition of the drop from the electrode surface to the weld pool and arc voltage after the
transition and at the beginning of the formation of a new drop. Imax is the maximum current during
the transition of the drop from the electrode surface to the weld pool (I); Imin is the minimum current
after the transition of the drop from the electrode surface to the weld pool.
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Table 3. Results of statistically processed current oscillograms in the welding circuit and voltage
between the electrode and the workpiece (Figures 4 and 5).

Parameters
Type of
Source:

Rectifier

Brand of Electrode

LB-52U UONI13/55 CL11

Imax, A
Diode 109.9 + 3.3 115.5 + 2.7 118.1 + 3.7

Inverter 100.2 + 0.8 104.2 + 0.6 102 + 1.6

Imin, A
Diode 61.3 + 3.4 63.1 + 2.1 65.9 + 4.8

Inverter 73.1 + 0.8 79.3 + 0.8 78 + 1.1

Id
Imx

→ 1 ,
Diode 0.75 0.73 0.71

Inverter 0.83 0.8 0.82

V of Imax rise, kA/s
Diode 7.3 + 2.6 8.1 + 0.8 8.3 + 0.3

Inverter 15.5 + 1.6 15.5 + 1.5 11.2 + 0.3

V of Imin fall, kA/s
Diode 10.3 + 2.2 12.3 + 2.2 11.2 + 0.8

Inverter 18 + 1.1 18 + 1.1 19 + 1.9

Table 4. Parameters of the arc voltage between the electrode and the workpiece (Figure 5).

Brand
of Electrode

Power Source

Diode Rectifier Inverter Rectifier

U1, V U2, V U3, V U4, V U1, V U2, V U3, V U4, V

LB-52U 16.9 ± 2.5 14.1 ± 0.9 1.1 ± 0.2 40.9 ± 5.8 18.4 ± 2.7 15.1 ± 1.1 0.7 ± 0.2 26.5 ± 5.7

UONI 13/55 20.4 ± 2 15.76 ± 2.4 0.7 ± 0.1 39.3 ± 5.1 19.9 ± 2.8 15.4 ± 1.4 0.7 ± 0.2 24.4 ± 2.3

CL11 23.4 ± 4.3 21.7 ± 2.4 3.5 ± 0.3 40.6 ± 4.9 23.7 ± 3.5 19.7 ± 1.4 3 ± 0.2 25.2 ± 2.5

The analysis of the results (Tables 2 and 3) confirms the change of mass transfer
properties, including the frequency and size of the transferred electrode metal droplets,
by reducing the arc burning duration, stabilizing the short-circuit current amplitude, and
increasing the short-circuit current rise and fall rates.

The analysis of the results shown in Table 4 showed an increase in the arc voltage jump
between the electrode and the workpiece after the short circuit (U4, Figure 6) up to 40%
when using a diode rectifier, which can be explained by the inductance of the conversion
system (accumulation of excess energy at the moment of the short circuit) realized in this
type of power supply.

Application of inverter power sources for manual arc welding with coated electrodes
with a higher rate of change of the main energy parameters within one mode microcycle
(on average doubled) in comparison with diode rectifiers provides increased stability of
the welding process and efficiency of heat and mass transfer, including:

– reduction of the volume of transferred droplets of molten electrode metal to the weld
pool by 24% on average, which increases the transfer of chemical elements from the
electrode to the weld metal;

– reduction of the average duration of arc burning in the intervals of electrode melting
and formation of electrode metal droplets by 36% on average, which contributes to
the reduction of overheating of the welded product.

This study examined the impact of the rate of change in the primary energy parameters
of one microcycle within the welding mode of the power source on the parameters of
the transferred electrode droplets. Taking into account the parameters of the transfer of
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electrode metal droplets (Table 2), we calculated the geometric dimensions of the transferred
electrode metal droplets (Table 5, Figure 7).

Table 5. Average statistical calculated data of mass and radius of carried electrode metal droplets.

Type of Power
Supply:
Rectifier

Brand
of

Electrode
τs/c, 10–3 s

Droplet
Weight,

mg

Droplet
Radius, mm

Droplet
Volume, mm3

Diode
LB-52U

6.7 ± 1.85 0.099 ± 0.002 1.39 ± 0.026 6.89 ± 1.9

Inverter 5.36 ± 1.34 0.052 ± 0.015 1.05 ± 0.01 4.36 ± 1.38

Diode
UONI13/55

6.5 ± 2.1 0.091 ± 0.004 1.3 ± 0.03 6.5 ± 1.99

Inverter 6 ± 1.9 0.071 ± 0.002 1.23 ± 0.02 5.66 ± 1.8

Diode
CL11

12 ± 3.8 0.57 ± 0.04 2.5 ± 0.05 15.48 ± 4.9

Inverter 8.1 ± 2.3 0.175 ± 0.05 1.8 ± 0.04 10.28 ± 2.9
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The analysis of the data in Table 5 and Figure 7 revealed that the use of the inverter
rectifier allows for a reduction in the volume of the transferred drop of electrode metal up
to 37%, which provides a more stable transfer of fine drops.

Experimental studies with high-speed motion pictures were carried out to confirm the
adequacy of the obtained results of the theoretical calculation presented in Table 5. The
high-speed movie images were processed by the simulation and visualization method [63]
(Figure 8), which confirmed the obtained calculation data presented in Table 2.

We have studied the changes in the heat content of the transferred electrode droplets
and the pattern of temperature field distribution on the surface of the welded product as a
function of the rate of change of the main energy parameters within one welding mode
microcycle of the power source. Existing changes in the heat content of electrode metal
droplets when using power sources with different dynamic properties have an impact on
the distribution of thermal fields in the welded product.

Using the parameters of electrode metal droplet transfer (Table 2) and the previously
developed software [64], we were able to estimate the overheating temperature of electrode
droplets at MMAW (Table 6).

The analytical calculations [55,56] show that at welding with an inverter rectifier, the
average energy spent on melting electrode metal for 1 s is Qk = 1.13 × 107 J
(Qk = 0.13 × 107 J per drop), and at welding with a diode rectifier, Qk = 1.25 × 107 J
(Qk = 0.156 × 107 J per drop).
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Table 6. Overheating temperature of electrode metal droplets.

Type of
power Supply:

Rectifier
Brand of Electrodes τs/c., 10–3 s ∆Тs/c Average, ◦C

Diode
LB-52U

6.7 ± 1.85 694

Inverter 5.36 ± 1.34 1496

Diode
UONI13/55

6.5 ± 2.1 888

Inverter 6 ± 1.9 1061

Diode
CL11

12 ± 3.8 30

Inverter 8.1 ± 2.3 130

The different heat content of electrode metal droplets (Table 6) and the time a droplet
remains on the electrode surface (Table 2) cause a change in the size of the transferred
droplets. Droplets of different sizes have various active surfaces interacting with the slag
and the atmosphere and, accordingly, the effectiveness of the metallurgical reactions [21].

The research methodology [55,65–69] was chosen to obtain a real picture of the tem-
perature field distribution, taking into account the dynamic properties of power sources,
melting kinetics, and the transfer of electrode metal. In the course of the study, the manual
arc cladding of a roll with coated electrodes of the LB 52U brand was carried out on a
100 × 150 mm plate with a thickness of 6 mm made of 09G2S steel. The power source
used was an inverter rectifier and a diode rectifier. The fields were imaged with a FLIR
ThermaCAM P65HS (FLIR Systems, Täby, Sweden) thermal imager at a frequency of
1 frame per second and a temperature sensitivity of 0.05 ◦C [66–68]. The imaging was
performed (Figure 9) during the welding time of one pass at a speed of 5 fps. The ade-
quacy of the obtained results of temperature fields was checked with the help of a C-500
infrared pyrometer.
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Figure 9. Example of recording temperature fields in the working window of ThermaCAM Researcher
(FLIR Systems, Täby, Sweden) program.

The obtained thermograms (Figure 10) give a clear picture of the changes in the tem-
perature fields of the welded product. However, it is difficult to determine the coordinates
of the points corresponding to a particular isotherm from the obtained images. This is due
to the fact that the thermal imaging of the welding process was performed at an angle to
the welding axis and at an angle to the plane of the welded plates.
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LB-52U, diameter 3.2 mm), mode parameters Iw = 100 + 3A, Uw = 22 + 0.6 V, Vw = 13. . .14 cm/min:
(a). inverter rectifier; (b). diode rectifier.

In order to obtain a frontal image of the temperature fields suitable for further study,
the obtained data were processed using the ThermaCAM Researcher application and the
MATLAB program package [66].

The differences in the patterns of thermal field distribution on the plate surface during
cladding by power sources with different dynamic properties (Figure 10) confirm the pres-
ence of changes in the heat content of the weld pool melt during the cladding process [69].
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Due to the decrease in the residence time of the molten metal droplets at the electrode end
and the corresponding increase in the frequency of their transfer (Figures 6 and 8), in the
case of cladding from the inverter rectifier, there is a noticeable increase in the length of the
temperature field isotherms and a significant decrease in their width, which confirms the
increase in the crystallization rate of the weld pool in this case. This, in turn, is associated
with a decrease in the heat content of the electrode metal droplets (Table 6).

The obtained results agree with the data obtained in [2,28,62,67,68], where it is proven
that the smaller the size of the transferred droplets and the higher the frequency of their
transfer, the lower the heat content of the weld pool. Therefore, the temperature field
in the case of inverter rectifier application is narrower (by about 25%), which should be
accompanied by a higher rate of melt crystallization and, consequently, less influence on
the thermo-deformation changes in the zone of permanent joint. The latter circumstance
will be crucial for the reduction of residual stresses and will significantly limit the growth
of structural components in the zone of the permanent joint.

We have carried out studies on the influence of the rate of change of the main en-
ergy parameters of one welding mode microcycle of the power source and the chemical
composition of the welded electrode metal (Tables 7–10).

A technique for obtaining clad samples was developed [70] to evaluate the effect of the
dynamic properties of power sources and different methods of energy conversion on the
transition of chemical elements from the coated electrodes to the weld seam and slag crust.
The technique permits the chemical composition of the electrode metal to be determined by
cladding a roll on a copper plate, with the insertion of a metal electrode rod of the same
brand, cleaned from the flux, into the groove of the plate. The inserted electrode rod is the
substrate for the cladding. This ensures the homogeneity of the electrode-clad metal and
reduces the time spent obtaining the samples to be studied.

The analysis of the thermodynamic properties of alloying elements included in the
chemical composition of the electrode metal rod (Table 7) determined that the elements
Mn and Si are most sensitive to changes in the heat content of electrode metal droplets.
The thermophysical properties of these elements (Table 8) are associated with their rate of
burning out: the lower the burning temperature, the faster the burning out process.

Table 7. Empirically obtained chemical composition of the electrode rod.

Brand of
Electrode

Elements Content, wt. %

C Si Mn S P Cr Ni

CL11 0.05–0.09 less than 0.70 1.50–2.00 less than
0.018

less than
0.025 18.50–20.50 9.00–10.50

LB-52U 0.11 0.2 0.41 0.010 0.021 0.04 0.02

UONI13/55 0.07 0.4 0.38 0.020 0.020 0.02 0.03

Table 8. Thermodynamic properties of simple substances (under normal conditions) are included in
the chemical composition of the metal electrode rod [71].

Name
Substance

Mn Si Cr Ni C
Graphite

Melting point, K 1517 1688 2130 1726 3820

Boiling point, K 2235 2623 2945 3005 5100

Heat of vaporization, kJ/mol 221 383 342 378.6 -

Density, g/cm3 7.21 2.33 7.19 8.9 2.25
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Table 9. Chemical composition of the welded electrode metal (main chemical elements for the study).

Electrode, Type of
Power Supply: Rectifier Si, % Mn, % Cr, % Ni, %

CL11, diode 0.29 ± 0.02 2.44 ± 0.08 11.43 ± 0.19 8.10 ± 0.16
CL11, inverter 0.39 ± 0.02 2.48 ± 0.08 11.85 ± 0.19 8.59 ± 0.16
LB 52U, diode 0.17 ± 0.02 0.72 ± 0.03 0.05 ± 0.01 0.05 ± 0.08

LB 52U, inverter 0.33 ± 0.02 1.00 ± 0.05 0.08 ± 0.01 0.06 ± 0.08
UONI 13/55, diode 0.25 ± 0.02 0.94 ± 0.05 0.05 ± 0.01 0.06 ± 0.08

UONI 13/55, inverter 0.33 ± 0.02 1.10 ± 0.05 0.10 ± 0.01 0.06 ± 0.08

Table 10. Chemical composition of slug.

Electrodes Type of Power
Supply: Rectifier CaО, % SiO2, % TiO2, % NbO, % MnO, % Fe2O3, % Cr2O3, % Al203, %

CL11
diode 62.33 12.48 7.27 6.31 3.53 3.52 3.29 1.27

inverter 60.64 12.14 6.31 5.67 3.48 8.26 2.74 0.76

LB-52U
diode 38.66 25.37 9.57 0.05 7.48 15.09 0.17 3.61

inverter 36.27 24.18 8.74 0.10 7.21 19.69 0.15 3.66

UONI 13/55
diode 50.95 24.18 3.95 0.02 5.80 7.53 - 7.57

inverter 47.44 23.65 3.84 0.02 4.93 12.96 - 7.16

The results of the analysis of the obtained data of the chemical composition of the
welded metal and slag (Tables 9 and 10), when using the inverter rectifier in comparison
with the diode rectifier, show that.

1. Increase in the mass percentage of alloying elements in the weld metal:

• Si from 0.29% to 0.39% using CL11, from 0.17% to 0.33% using LB-52U, and from
0.25% to 0.33% using UONI13/55;

• Mn from 2.44% to 2.48% using CL11, from 0.72% to 1.00% using LB-52U, and
from 0.94% to 1.1% using UONI13/55;

• Cr from 11.43% to 11.85% using CL11, from 0.05% to 0.08% using LB-52U, and
from 0.05% to 0.1% using UONI13/55.

2. Decrease in the percentage of oxides 5% (SiO2, MnO) in the slag phase.

The obtained results can be explained by the decrease in the size of the transferred
molten metal droplets and their lower heat content when the welding arc is supplied by
the inverter rectifier, which has high rates of change in the main energy parameters of one
welding mode microcycle.

The analysis of the chemical composition of the weld metal has shown (Tables 11–14)
that the type of power source affects the chemical composition of the weld, which is also
confirmed by the authors of [72–79]. The dynamic properties of the inverter rectifier provide
a higher rate of welding current rise, which in turn limits the short-circuit current [2,3] and
provides a fine drop transfer of electrode metal (Table 5).

Table 11. Chemical composition of metal for welds on Ø159×6 pipe (09G2S steel) with
LB-52U electrodes.

Power
Source:

Rectifier

Elements Content, wt. %

C Si Mn S P Cr Ni Cu

diode 0.10 ± 0.012 0.52 ± 0.03 1.03 ± 0.05 0.010 ± 0.002 0.014 ± 0.003 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.008

inverter 0.09 ± 0.005 0.60 ± 0.03 1.23 ± 0.05 0.010 ± 0.002 0.014 ± 0.003 0.03 ± 0.01 0.06 ± 0.01 0.03 ± 0.008
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Table 12. Chemical composition of metal for welds made on steel 45 with UONI13/55 electrodes.

Type of Power
Supply: Rectifier

Elements Content, wt. %

C Si Mn P Cr Ni Cu

diode 0.11 ± 0.012 0.30 ± 0.02 0.92 ± 0.05 0.019 ± 0.003 0.06 ± 0.01 0.05 ± 0.01 0.09 ± 0.012

inverter 0.12 ± 0.012 0.31 ± 0.02 1.00 ± 0.05 0.02 ± 0.003 0.06 ± 0.01 0.06 ± 0.01 0.10 ± 0.012

Table 13. Chemical composition of metal in welds made of 12H18N10T steel with CL11 electrodes.

Power
Source:

Rectifier

Elements Content, wt. %

C Si Mn S P Cr Ni Nb

diode 0.12 ± 0.012 0.80 ± 0.03 1.04 ± 0.05 0.008 ± 0.002 0.018 ± 0.003 18.08 ± 0.2 9.23 ± 0.16 0.70 ± 0.08

inverter 0.12 ± 0.012 0.82 ± 0.03 1.23 ± 0.05 0.008 ± 0.002 0.018 ± 0.003 18.45 ± 0.2 10.01 ± 0.16 0.70 ± 0.08

Table 14. Chemical composition of the welded samples base metal.

Steel
Elements Content, wt. %

C Si Mn S P Cr Ni Cu

45 0.42–0.5 0.17–0.37 0.5–0.8 <0.035 <0.03 <0.25 <0.30 <0.30

09G2S <0.12 0.5–0.8 13–1.7 <0.035 <0.03 <0.25 <0.30 <0.30

12H18N10T <0.12 <0.8 <2 <0.035 <0.02 17–19 9–11 <0.30

Macro and microstructural studies of welded specimens were carried out by optical
metallography on cross sections according to the scheme shown in Figure 11. An Olympus
GX-71 optical microscope (Olympus, Tokyo, Japan) was used. The manufacture of sections
employed mechanical grinding, mechanical polishing on diamond paste ACM 10/7 NVL,
and chemical etching in a four-percent alcohol solution of nitric acid.
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Macro-sections processed according to the scheme shown in Figure 11 are presented
in Figure 12, and the measured values are in Table 15.
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Figure 12. Scheme of macro-sections processing in Compass-3D v21 software: (a) is steel 09G2S, (b) is
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Table 15. Experimental data of macro-sections processing.

Steel

Type
of Joint

According
to GOST

Type of
Power

Supply:
Rectifier

Area of
Welded
Metal,
mm2

Width of
Welded

Metal, mm

HAZ Area,
mm2

HAZ
Width,

mm

45
C17

thickness
10 mm

Diode 133 ± 5.1 4.06 ± 0.04 95.5 ± 2.9 5.17 ± 0.04

Inverter 129 ± 2.6 4 ± 0.04 80.6 ± 2.8 3.34 ± 0.03

09G2S
C17

thickness
6 mm

Diode 23.6 ± 0.4 3.33 ± 2.6 51.8 ± 0.53 2.08 ± 0.06

Inverter 21.4 ± 0.3 2.89 ± 0.94 42.6 ± 0.28 1.58 ± 0.04

12H18N10T
C7

thickness
3 mm

Diode 43.8 ± 0.3 3.73 ± 0.07 10.3 ± 0.7 1.48 ± 0.05

Inverter 40.1 ± 0.6 3.28 ± 0.05 6 ± 0.47 1.01 ± 0.05

The data analysis (Table 15) revealed the reduction of the HAZ area by 15% and the
average width of the HAZ by 36% when using the inverter rectifier in comparison with the
diode rectifier. Fractures in welded structures most often occur in the HAZ [79–83], with
the extent and properties depending on the welding thermal cycle parameters.

Microstructural studies were carried out on welded joints made of steel 09G2S with elec-
trodes LB-52U (Figures 13 and 14); steel 45 with electrodes UONI 13/55 (Figures 15 and 16);
steel 12H18N10T with electrodes CL11 (Figures 17 and 18) to obtain a complete picture of the
effect of the change rate of the main energy parameters of one welding mode microcycle of
the power source on the operational properties of welded joints.

The clad metal at welding of steel 09G2C by electrodes LB-52U (Figures 13a and 14)
with the use of a diode rectifier has an uneven structure of columnar dendrites, which is
characteristic of the cast state. The ferritic plates are 1 mm long and 20 µm wide. The space
between the plates is occupied by smaller dendrites. At higher magnification, the ferritic
plates are found to consist of polyhedral grains of about 14.5 ± 0.28 µm in size. Other
phases and structural components, except for ferrite, are not detected, which corresponds
to the composition of the LB 52U electrode rod.

The structure of the weld metal in the weld made with the inverter rectifier (Figure 13b)
is much more homogeneous. The columnar character is less pronounced. The length of
ferrite plates does not exceed 50 µm and the thickness reaches 20 µm. The average size of
the ferrite grains forming the dendrites is 12 ± 0.64 µm.

The transition from the clad metal to the HAZ and then to the base metal structure is
smooth without abrupt changes for both the diode rectifier (Figure 13c) and the inverter
rectifier (Figure 13d). In both cases, the heat-affected zone is represented by polyhedral
ferrite grains.
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Angle, deg. 
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Data analysis (Table 16) showed an increase in impact toughness for welds made 
with the inverter rectifier compared to those made with the diode rectifier at different 
temperatures. This can be explained by the different microstructures in the welds, re-

Figure 18. Average grain size in different zones of the weld as a function of the dynamic properties of
the power source.

In the heat affected zone of the welded joint obtained using the diode rectifier
(Figure 13c), the ferrite grain size is slightly higher and reaches 10.3 ± 0.32 µm. The
structure contains pearlite in the amount corresponding to the base metal (09G2S steel).
The total width of the HAZ reaches 2 mm, with the inverter rectifier (Figure 13d), and the
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average grain size is 8.5 µm. Pearlite inclusions are virtually absent. The width of the HAZ
is small and does not exceed 1 mm.

The base metal exhibits a ferrite–pearlite structure (Figure 13e,f). The volume fraction
of pearlite is estimated to be 10–12%, which correlates with the chemical composition of
09G2C steel. Ferrite grains are polyhedral with well-defined, clean boundaries.

The structure of the weld metal at welding steel 45 with UONI 13/55 electrodes using
inverter source (Figures 15a and 16) is purely ferritic and homogeneous. The average size
of ferritic grains is slightly smaller and is ≈9.2 ± 0.54 µm. A small amount of the fine
fraction is present.

The welded metal at welding with a diode rectifier is presented in Figure 15b. Ferritic
grains are polyhedral and practically equiaxed. The average size of the ferritic grains is
≈12 ± 0.69 µm At high magnification, the gaps between these large grains can be seen,
there are conglomerates of very small (less than one micrometer) ferrite grains. Other
phases and structural components besides ferrite are not detected, which corresponds to
the composition of the UONI13/55 electrode rod (0.07% C).

The transition from the clad metal to the HAZ and then to the base metal structure is
smooth without abrupt changes for both the diode rectifier (Figure 16d) and the inverter
rectifier (Figure 15c). In both cases, HAZ is a polycrystalline aggregate of ferrite grains and
pearlite colonies. The pearlite content increases smoothly with the distance from the clad
metal to the base metal, reaching ≈50% by volume.

When a diode source is used (Figure 15d), the average size of the ferrite grains is
4.4 ± 0.67 µm. The same average sizes are also found in the pearlite colonies. The width of
the HAZ reaches 8 mm.

In the HAZ of the welded joint obtained using an inverter rectifier (Figure 15c), the
ferrite grain size is almost the same, 4 ± 0.32 µm. The total width of the HAZ is significantly
smaller (≤6 mm). This indicates less heat input and overheating of the welded product.

The structure of the base metal is ferritic-pearlitic (Figure 15e,f). The volume fraction
of pearlite is 55%, which corresponds to the chemical composition of steel 45. The ferrite
grains are polyhedral with well-defined boundaries. Their average size is the same in both
cases, ≈12.5 ± 0.39 µm.

The structure of the clad metal at welding of steel 12H18N10T with electrodes CL11
using power sources with different dynamic properties is shown in Figure 17a,b. With the
use of a diode rectifier in the clad metal, the structure is inhomogeneous, dendrites are
of different lengths, well developed, and the width is ≈2 µm. In interdendritic intervals,
the metal has a grain structure characteristic of chromium-nickel austenite with a mean
size ≈ 20 ± 3.36 µm (Figures 17a and 18). In the case of the inverter rectifier, the clad
metal is more homogeneous in structure. The dendrites are on average less elongated, their
width is less than 2 µm. The interdendritic space has a larger area. The grain structure
is more pronounced, and the average grain size is one and a half times smaller, being
≈12 ± 0.57 µm (Figures 17b and 18).

The HAZ in both cases has a polyhedral grain structure characteristic of chromium-
nickel austenite (Figure 17c,d). The average grain size is significantly larger than in the clad
metal, especially in the diode source sample, where it reaches 54 ± 3.38 µm (Figure 17c).
Some grains contain twins In the HAZ of the inverter rectifier weld, the average grain size
is smaller by ≈30 ± 6.28 µm, and the degree of grain twinning is higher (Figure 18d). The
HAZ merges smoothly into the base metal without sharp boundaries. The smallest width
of the HAZ, 75 µm, was recorded in the joint made by the inverter power supply, and the
largest width of 3000 µm was recorded in the joint made by the diode rectifier.

The base metal structure is similar in both samples (Figure 17e,f). The differences in
the average size of 20 ± 6.2 µm and 17 ± 3.87 µm are within the statistical error.

The use of an inverter rectifier in MMAW instead of a diode rectifier allows for
a welded joint with a more homogeneous and fine-grained structure of welded metal.
Differences in the microstructure of the welded joint can be explained by the lower heat
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content of the molten electrode metal drop when welding with an inverter rectifier. The
reduction of HAZ is provided

We have studied the change in mechanical properties of welded joints made with
the use of power sources with different dynamic properties. The results are presented in
Tables 16–18.

Table 16. Mechanical properties of welded joints made of Ø159×6 pipe (steel 09G2S) with LB
52U electrodes.

Type of Power
Supply: Rectifier

Range of Rupture
Strength σB, MPa

Outward, Inward and
Rib Bending Angle, deg.

KCU Impact Strength, J/cm2

(Notch in the Center of the Seam)

+20 ◦C 0 ◦C −20 ◦C −40 ◦C

diode 542 + 1 more than 120 197 + 12 219 + 9 226 + 5 182 + 21

inverter 550 + 5 more than 120 219.6 + 3 234.6 + 3 237 + 3 186.8 + 11

Table 17. Mechanical Properties of Welded Joints of 45 Steel Using UONI 13/55 Electrodes.

Power Source
Range of

Rupture Strength
σB, MPa

KCU Impact Strength, J/cm2

(Notch in the Center of the Seam)

+20 ◦C −40 ◦C

КCU σKCU KV.КCU КCU σKCU KV.КCU

diode rectifier 648 96.5 22.15 22 12.58 2.5 19

inverter rectifier 650 121 13.86 11 58.3 8.35 14

Table 18. Mechanical properties of welded joints made of 12H18N10T steel with CL11 electrodes.

Power Source: Rectifier Range of Rupture Strength
σB, MPa Flow Stress σT, MPa

diode 589 ± 1 224 ± 26

inverter 593 ± 1 236 ± 36

Data analysis (Table 16) showed an increase in impact toughness for welds made
with the inverter rectifier compared to those made with the diode rectifier at different
temperatures. This can be explained by the different microstructures in the welds, reduction
of ferrite plate length up to 50% in the weld metal, change of HAZ ferrite grain size by
17.5%, and reduction of HAZ length by 25%.

The changes in impact strength shown in Table 17 can be explained by finer droplet
transfer when inverter rectifiers are used, as confirmed by [50,84].

The analysis of the data in Table 18 showed insignificant changes in the mechanical
properties of the welded joint when welding from different types of power sources. How-
ever, the reduction of the HAZ by 50%, which will have a positive effect on the corrosion
resistance of the joint, is in favor of the operational reliability of the welded joints obtained
with the inverter rectifier [79].

4. Conclusions

1. The use of inverter power sources for manual arc welding with coated electrodes
provides increased stability of the welding process as well as heat and mass transfer
efficiency in comparison with diode rectifiers:

• reduction of the volume of droplets transferred to the weld pool by 24% on
average, which increases the efficiency of chemical elements transfer from the
electrode to the weld metal;
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• reduction of the average duration of arc burning in the intervals of electrode
melting and formation of electrode metal droplets by 36% on average, which
contributes to the reduction of overheating of the welded product;

2. It has been demonstrated that an increase in the rate of change of the main energy
parameters of one microcycle of the welding mode (on average doubled) when using
an inverter rectifier in comparison with diode rectifiers provides:

• reduction of the heat content of electrode metal droplets (on average by 15%)
contributes to a reduction of the width of temperature fields on the surface of the
welded product by 25%, the area of HAZ by 15%, and the width of HAZ by 36%.

• improved structure of the welded joint by reducing the grain size of the clad
metal by 30% on average and the HAZ by 35% on average, as well as the welded
joint due to the increased impact toughness by 15%.
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