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Abstract: Unbonded flexible risers have been widely used in the field of offshore engineering in
recent years due to their excellent performance in extreme dynamic marine environments, structural
compliance, low installation cost, and low quality. And, the internal pressure capacity of unbonded
flexible risers is an important indicator of the mechanical performance of unbonded flexible risers.
Based on a 2.5-inch, 8-layer typical unbonded flexible riser model, this paper examines the burst
failure of the pressure armor layer. Firstly, the balance equation of each separate cylindrical layer
and helical layer is derived by functional principle, and then the overall theoretical modeling of
an unbonded flexible riser under axisymmetric loads is established by additionally considering the
geometric relation between adjacent layers. Secondly, fully considering the complex cross-sectional
geometric characteristics and the interlayer’s contact with the unbonded flexible riser, a simplified
numerical 7-layer model is established by Abaqus, and the material with elastic-plastic properties is
conferred. Finally, the validity of the proposed theoretical and numerical methods is verified through
the axisymmetric behavior of the test data. Then the burst failure of the pressure armor layer is
analyzed based on the material. At an internal pressure of 42 MPa, the pressure armor layer reached
its yield stress of 300 MPa, with the entire cross-section yielding between 42 MPa and 42.5 MPa.
Additionally, the effect of the friction coefficient is examined.

Keywords: unbonded flexible riser; internal pressure; bursting; pressure armor layer

1. Introduction

Unbonded flexible risers (see Figure 1) have become key equipment for deep-sea oil
and gas resource development by virtue of their novel structural form, superior mechanical
properties, and flexible arrangement of internal layer structure. Unbonded flexible risers
consist of a composite of a helical steel metal armor layer with high stiffness and a polymer
sealing layer with low stiffness. Each of the internal, separate layers has its own special
function. As for the steel helical layers, the innermost carcass layer is a steel self-locking
structure with an S-type geometric section, which is set to prevent the collapse of an
unbonded flexible riser; the form of a pressure armor layer is similar to that of a carcass
layer, which mainly provides the radial stiffness of an unbonded flexible riser; the tensile
armor layer contains several helical tendons with a regular rectangular geometric section
and typically has double or four layers that are relative winded, which is used for providing
axial stiffness, bearing the role of axial tension and torque. Sometimes, also according to
the riser by CO2 and other media corrosion [1] and other actual conditions, some special
functional layers can be flexibly designed according to the needs of the actual situation, such
as the H2S gas corrosion-resistant layer, thermal insulation layer, and anti-birdcage tape [2].
Also, a composite armor layer is developed for ultra-deep-sea oil and gas development [3,4].
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tape [2]. Also, a composite armor layer is developed for ultra-deep-sea oil and gas devel-
opment [3,4]. 

The pressure armor layer [5,6] typically has different cross-sectional forms (see Fig-
ure 2), among which the Z-type is the most applied. The pressure armor layer is one of 
the important layers in an unbonded flexible riser, which mainly bears the internal pres-
sures of the unbonded flexible riser. Unbonded flexible risers are subject to oversized in-
ternal pressure during operation, especially at the seabed where subsea oil and gas extrac-
tion locations are located. When the internal pressure inside the riser exceeds the internal 
pressure-bearing capacity of the riser, burst failure will occur, resulting in huge economic 
losses and environmental pollution [7–9]. Therefore, the prediction of bursting failure 
characteristics of pressure armor layers is of great significance. 

Carcass layer
Pressure armor layer

Tensile armor layer

 
Figure 1. Sketch of a typical unbonded flexible riser. 
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Figure 2. Profiles of the pressure armor layer (a) Z type; (b) C type; (c) T type–1; (d) T type–2; (e) K 
type; (f) X type. These subfigures represent different profiles of the pressure armor layer. 

Analytical and numerical analysis of the cross-sectional properties of unbonded flex-
ible risers is the common research method since test measurement is not only expensive 
and time-consuming, but also some special test equipment is sometimes needed and harsh 
conditions of the test are conducted. Compared with other mechanical cross-sectional 
properties of unbonded flexible risers [10,11], the burst failure characteristics of the pres-
sure armor layer are relatively rare since the geometric properties of unbonded flexible 

Figure 1. Sketch of a typical unbonded flexible riser.

The pressure armor layer [5,6] typically has different cross-sectional forms (see Figure 2),
among which the Z-type is the most applied. The pressure armor layer is one of the im-
portant layers in an unbonded flexible riser, which mainly bears the internal pressures
of the unbonded flexible riser. Unbonded flexible risers are subject to oversized internal
pressure during operation, especially at the seabed where subsea oil and gas extraction
locations are located. When the internal pressure inside the riser exceeds the internal
pressure-bearing capacity of the riser, burst failure will occur, resulting in huge economic
losses and environmental pollution [7–9]. Therefore, the prediction of bursting failure
characteristics of pressure armor layers is of great significance.
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Analytical and numerical analysis of the cross-sectional properties of unbonded flexi-
ble risers is the common research method since test measurement is not only expensive
and time-consuming, but also some special test equipment is sometimes needed and harsh
conditions of the test are conducted. Compared with other mechanical cross-sectional prop-
erties of unbonded flexible risers [10,11], the burst failure characteristics of the pressure
armor layer are relatively rare since the geometric properties of unbonded flexible risers are
complex and most studies have simplified the pressure armor layer to a cylindrical layer.
There are still some studies concentrated on this topic.
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For test measurement, Kagoura et al. [12] applied internal pressure to a flexible pipe
and observed the cross-section, which found that the pressure armor layer was the first to
cause fracture failure, confirming that the pressure armor layer carries most of the internal
pressure. Witz [13] investigated the effect of internal pressure on bending by giving the
moment-curvature curves at an internal pressure of 30 MPa and found that the bending
stiffness decreased after the application of internal pressure, but they did not add the
internal pressure to the riser burst. Magluta et al. [14], Bech and Skallerud [15], Ma et al. [16],
and Troina et al. [17] also studied the combined effect of internal pressure and bending
moment by means of experimental methods, but they did not further study the burst failure
of the pressure armor layer. Additionally, Ramos et al. [18]. gave experimental results for a
2.5-inch riser under a combination of axial and internal radial forces. Researchers mostly
adopted theoretical and numerical methods, but they mainly concentrated on the axial
tensile behavior of unbonded flexible risers [11,19,20].

Theoretical and numerical methods are the main analytical methods to study the
cross-sectional behavior of an unbonded flexible riser. Theoretically, it is a more accurate
algorithm to determine the burst pressure from a detailed stress analysis of the entire
cross-section of the unbonded flexible riser [21–26]. Cylindrical shell-layer structures can
be solved by considering the strains in the structure by means of the functional principle.
While the helical layer can be divided into layers with regular cross-section (tensile armor
layer) and with irregular cross-section (pressure armor layer and carcass layer), both
considering the axial strain along the helical tendon, the tensile armor layer additionally
considers the radial strain [27,28]. Numerically, existing studies of burst failure analysis of
the pressure armor layer are relatively limited. Among them, Berge et al. [21] proposed a
fast-calculating method for the overall response of an unbonded flexible riser and provided
an expression for the stress-strain relationship under internal pressure alone; however,
this theoretical method is not applicable to the calculation of multiple external loads and
cannot decouple the response characteristics of each layer. Féret and Bournazel [22] present
an analytical method to quickly assess the stress of the helical tendon while ignoring the
effects of internal and external pressures and interlayer gaps in the unbonded flexible riser
model, and it is concluded that the non-metallic cylindrical shell layer only transmits the
interlayer pressures and ignores the role of its axial stiffness. Kebadze et al. [27,28] divided
all interlayer structures of the unbonded flexible risers into cylindrical layers and helical
layers, making a significant contribution to the response characteristics and mechanical
analysis of the unbonded flexible riser under axisymmetric loads, but they also did not
concentrate on the burst failure of the pressure armor layer. Neto et al. [29,30] proposed
linear and nonlinear analytical equations for the analysis of burst failure of the pressure
armor layer. They assumed that the pressure armor layer can be represented as a thin-
walled cylinder and considered the thickness of the pressure armor layer equivalent to
the Z-section, and reasonable results were obtained. Lanteigne [31] investigated the effect
of internal radial pressure on the effective stiffness of helical armor layers. The carcass
layer and pressure armor layer were simplified due to their self-locking caused by the
unique helical single-wire-shaped cross-section of the carcass and tensile armor layers.
Cuamatzi-Melendez [32] established a numerical model containing only the internal sheath
layer and the pressure armor layer to study the internal pressure-carrying capacity of an
unbonded flexible riser and compared it with the analytical method. They illustrated the
importance of the numerical simulation and analysis method, but they did not take the
effect of the tensile armor layer into account.

This paper aims to present the burst failure of the pressure armor layer and the
pressure-bearing capacity of an unbonded flexible riser based on a numerical method.
Based on a type of 2.5-inch unbonded flexible riser, a theoretical model of the riser under
axisymmetric loads is established to calculate the axial and radial strains of the pressure
armor layer. Additionally, a 7-layer simplified model neglecting the carcass layer is estab-
lished by considering the force distribution characteristics and the material elasticity and
plasticity of the pressure armor layer. The model was validated against existing test data,
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showing a relative deviation of 6.32% for axial tensile behavior, confirming its accuracy.
Based on the yield strength and ultimate strength of the material, the burst failure of the
pressure armor layer is defined by the deformation from the numerical simulation, and the
pressure-carrying capacity is investigated. In addition, the effect of the frictional coefficient
was studied. This research contributes to a deeper understanding of unbonded flexible riser
mechanical performance under internal pressure, providing valuable insights for offshore
engineering applications.

2. Theoretical Formulations

The sketch of a loaded, unbonded flexible riser under axisymmetric loads is presented
in Figure 3.
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Figure 3. Sketch of an unbonded flexible riser under axisymmetric loads.

The theoretical model of the burst failure of the pressure armor layer must be built on
some assumptions. The theoretical modeling includes all balance equations of interlayers
and takes into account the geometric relationship between adjacent layers as well as the
effect of material nonlinearities. The cylindrical layer in unbonded flexible risers is solved
by applying thin-walled cylinder theory and considering radial strain deployment; the
axial tensile and radial strains are applied for the tensile armor layer, while only the axial
deformation along the pressure armor axial direction is considered. And, based on the
following theoretical assumptions, the theoretical model of this article is obtained [33–35]:

1. The materials of each layer (except for the pressure armor layer) are homogeneous
and vary within the linear elastic range;

2. Neglecting the frictional energy caused by relative sliding between layers;
3. Neglecting the influence of bending stiffener;
4. It is believed that the thickness of each layer varies uniformly along the length of

the riser;
5. The strain on all layers is small enough to meet the geometric linearity condition;
6. Neglecting initial defects generated during the manufacturing process;
7. It is considered that when the pressure armor layer reaches its yield stress, it still has

some internal pressure-bearing capacity until it reaches the ultimate stress.
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2.1. The Equilibrium Equation of the Cylindrical Layer under Axisymmetric Loads

The cylindrical layer in the unbonded flexible riser is mainly used to isolate the
fluid inside and outside the pipe, to reduce the friction between the adjacent layers, and to
prevent the wear of the structural surface of the steel layer. Assuming that the axisymmetric
loads include axial force F, torsion T, internal and external pressure Pi and Po, the energy
W performed by the axisymmetric loads can be expressed as follows:

W = F∆L + T∆φ + Pi∆Vi − Po∆Vo (1)

where ∆φ is the rotational angle seen in Figure 3, which is caused by torsion; ∆L stands for
the axial deformation along the axial direction of the riser; ∆Vi and ∆Vo are the volumetric
deformation and can be expressed as follows [2,3,32–34]:

∆Vi = π

(
Ri + ∆R − ∆t

2

)2

(L + ∆L)− πR2
i L ≈ πRiL(2Rmε2 − tε3 + Riε1) (2)

∆Vo = π

(
Ro + ∆R +

∆t
2

)2

(L + ∆L)− πR2
o L ≈ πRoL(2Rmε2 + tε3 + Roε1) (3)

where Rm, Ri, Ro are the average, internal, and external radii, separately; L is the riser’s
length; thickness and thickness deformation are defined by t and ∆t; and the corresponding
strains are defined by ε1, ε2, ε3, as follows:ε1

ε2
ε3

 =

 ∆L
L

∆R
Rm
∆t
t

 (4)

Thus, Equation (1) can be rewritten as follows:

W = (Fε1 + Tγ)L + πPiRiL(2Rmε2 − tε3 + Riε1)− πPoRoL(2Rmε2 + tε3 + Roε1) (5)

where γ = ∆φ/L.
Based on Hooke’s law, the relationship between strain and stress based on Hooke’s

law can be given by the following:

σ1 = µE
(1+µ)(1−2µ) (ε1 + ε2 + ε3) +

E
1+µ ε1

σ2 = µE
(1+µ)(1−2µ) (ε1 + ε2 + ε3) +

E
1+µ ε2

σ3 = µE
(1+µ)(1−2µ) (ε1 + ε2 + ε3) +

E
1+µ ε3

τ = E
2(1+µ)

γ

(6)

where σ1, σ2, σ3, and τ are the corresponding stresses of each direction, and E and µ are the
material constants representing Young’s modulus and Poisson’s ratio, respectively.

The strain energy U can be represented by the following:

U =
1
2
∫

V (σ1ε1 + σ2ε2 + σ3ε3 + τ12γ12)dV

=
1
2
∫

V
[
(λ + 2G)

(
ε2

1 + ε2
2 + ε2

3
)
+ 2λ(ε1ε2 + ε1ε3 + ε2ε3) + GR2

mγ2]dV
(7)

Then, based on principle of least potential energy:

∂Π = ∂W − ∂U = 0 (8)
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Thus, according to Equations (5), (7), and (8), the equilibrium equations of the cylin-
drical layer under axisymmetric loads can be derived as follows:

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




∆L/L
∆ϕ/L

∆R/Rm
∆t/t

 =


F + πPiRi

2 − πPoRo
2

T
2πRm(PiRi − PoRo)
−πt(PiRi + PoRo)

 (9)

where
k11 = µEA

(1+µ)(1−2µ)
+ EA

1+µ k13 = k31 = µEA
(1+µ)(1−2µ)

k22 = E
2(1+µ)

. π
2 (Ro

4 − Ri
4) k24 = k42 = 0

k34 = k43 = µEA
(1+µ)(1−2µ)

k12 = k21 = 0

k14 = k41 = µEA
(1+µ)(1−2µ)

k23 = k32 = 0

k33 = µEA
(1+µ)(1−2µ)

+ EA
1+µ k44 = µEA

(1+µ)(1−2µ)
+ EA

1+µ

2.2. The Equilibrium Equation of the Helical Layer under Axisymmetric Loads

The sketch of a helical layer under external loads is present in Figure 4. Helical layers
are the main structures that bear external loads of the unbonded flexible riser with a high
laying angle.
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The axial strain εa of a helical layer (including the carcass layer, pressure armor layer,
and tensile armor layer) can be defined by [22,27]:

εa = cos2 α
∆L
L

+ Rm sin α cos α
∆φ

L
+ sin2 α

∆R
Rm

(10)

The radial deformation of the carcass and pressure armor layer with a complex cross
section is difficult to define directly. While as for the tensile armor layer with regular
geometric cross-section, the radial deformation εr is also considered and can be given by
the following:

εr =
∆t
t

(11)

Based on Equation (10), the strain energy U1
s of the carcass and pressure armor layer

can be defined as follows [32–34]:

U1
s =

n
2

∫
v

σεadv (12)

where n is the number of helical tendons.
Based on Equations (10) and (11), the corresponding strain energy U2

s of tensile armor
layer is given by the following [3,4]:

U2
s =

n
2

∫
V
(σaεa + σrεr)dV (13)
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Also, based on the principle of least potential energy (Equation (8)), the balance
equation for the carcass and pressure armor layer is obtained by the following [36–38]: kebt

11 kebt
12 kebt

13
kebt

21 kebt
22 kebt

23
kebt

31 kebt
32 kebt

33

 ∆L/L
∆ϕ/L
∆R/Rm

 =

 F + πPiR2
i − πPoR2

o
T

2πRm(PiRi − PoRo)

 (14)

where
kebt

11 = nEA cos3 α kebt
12 = kebt

21 = nEARm sin α cos2 α

kebt
13 = kebt

31 = nEA sin2 α cos α kebt
22 = nEAR2

m sin2 α cos α

kebt
23 = kebt

32 = nEARm sin3 α kebt
33 = nEA sin4 α

cos α

.

The balance equation for the tensile armor layer is obtained by the following [3,4]:
k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




∆L/L
∆ϕ/L

∆R/Rm
∆t/t

 =


F + πPiRi

2 − πP0R0
2

T
2πRm(PiRi − P0R0)
−πt(PiRi + P0R0)

 (15)

where
k11 = nEA

1−µ2 cos3 α k12 = nEARm
1−µ2 sin α cos2 α

k13 = k31 = nEA
1−µ2 sin2 α cos α k14 = k41 = nEAν

1−µ2 cos α

k22 = nEAR2
m

1−µ2 sin2 α cos α k23 = k32 = nEARm
1−µ2 sin3 α

k24 = k42 = nEARmµ

1−µ2 sin α k33 = nEA
1−µ2

sin4 α
cos α

k34 = k43 = nEAµ

1−µ2
sin2 α
cos α k44 = nEA

(1−µ2) cos α

When subjected to axisymmetric load, the helical tendon deforms only along its own
axial direction, and the corresponding axial strain and the radial strain can be expressed by
Equations (10) and (11). For the steel homogeneous isotropic material, only the axial stress
of a pressure armor layer is considered and can be expressed as follows:

σa = Eεa (16)

2.3. Theoretical Model under Axisymmetric Loads

The interlayers of the unbonded flexible riser model are connected by the top ends,
and under axisymmetric loading, it can be assumed that the axial elongation and torsional
deformation of each layer are coordinately equal. Thus, the circumferential and radial
formulas for each layer under internal and external pressures are as follows:

(k41)j
∆L
L

+ (k42)j
∆φ

L
+ (k43)j

(∆R)j

Rj
+ (k44)j

(∆t)j

tj
= −π(Pi)j(Ri)tj − π(P0)j(R0)jtj (17)

(k31)j
∆L
L

+ (k32)j
∆φ

L
+ (k33)j

(∆R)j

Rj
+ (k34)j

(∆t)j

tj
= 2π(Pi)j(Ri)

2
j − 2π(P0)j(R0)

2
j (18)

Combined with the continuity boundary condition equations for the displacements
between adjacent layers:

uR,j − uR,j+1 + (ui,j + ui,j+1)/2 = 0, (j = 1, 2, . . . , Nt − 1) (19)

where ur,j and ut,j are the mean radius and thickness variations in layer j, respectively.
Thus, the circumferential and radial strains and the contact pressures in each layer

of the unbonded flexible riser under axisymmetric loading can be solved. When the
neighboring layer starts to separate, i.e., there is a gap between neighboring layers, the
contact pressure is set to 0. Based on the above equation, the analytical solution under
axisymmetric loads can be obtained.
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3. Numerical Simulation
3.1. Overall FE Model of Burst Failure Analysis of Unbonded Flexible Riser

Based on Witz’s model [13], the finite element model of a typical 2.5-inch unbonded
flexible riser is built by Abaqus software of 6.13 version, including detailed geometric
properties of the pressure armor layer and two tensile armor layers with opposite winding
angles, and a sketch of the geometric properties of the pressure armor layer is present in
Figure 5 (unit: mm). The overall geometric and material characteristics of the unbonded
flexible riser model are presented in Table 1, and a sketch of the numerical model is
illustrated in Figure 6.
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Table 1. Geometric and material properties of the unbonded flexible riser model.

Layer
Number Layer Type Section

Size (mm2)
Number of

Tendons

Inner
Radius
(mm)

Outer
Radius
(mm)

Laying
Angle (◦) Material

Young’s
Modulus

(GPa)

Poisson’s
Ratio

1 Carcass 19.60 1 31.60 35.10 −87.5 AISI 304 205 0.29

2 Pressure
sheath - - 35.10 40.00 - Nylon 12 0.28 0.30

3 Zeta layer 5.55 1 40.05 46.25 −85.5 FI-15 205 0.29

4
Anti-

friction
layer

- - 46.25 47.75 - Nylon 11 0.30 0.30

5

Inner
tensile
armor
layer

18.00 40 47.75 50.75 −35.0 FI-41 205 0.29

6
Anti-

friction
layer

- - 50.75 52.25 - Nylon 11 0.30 0.30

7

Outer
tensile
armor
layer

18.00 44 52.25 55.25 35.0 FI-41 205 0.29

8 Fabric tape 4.50 - 55.25 55.75 - - 0.60 0.30

Some settings related to numerical modeling are presented first. The numerical model
of unbonded flexible risers needs to have sufficient length to reduce the influence of end
effects [39], thus the model is taken as 1 m, about twice the tensile armor layer’s pitches in
this paper. Due to the fact that the innermost carcass layer is a non-watertight structure,
it usually does not provide internal pressure-bearing capacity, where oil and gas would
directly act on the internal sheath. Therefore, a numerical model without a carcass layer
is simplified to a 7-layer model for numerical simulation (see Figure 6a). For comparison
reasons, the behavior of an 8-layer model is also present, and in the following analysis, it
is found that the relative error between the full-layer model and the simplified model is
small enough that the simplification is reasonable when an unbonded flexible riser model
is under internal pressure. The overall finite element model of the unbonded flexible pipe
is shown in Figure 6b.

In order to accurately obtain the detailed deformation of each layer and the stress
distribution along the riser model, the uncompliant 8-node linear hexahedral element
(C3D8I element in ABAQUS) was used to simulate all the interlayers of an unbonded
flexible riser.

3.2. Boundary Condition

In order to facilitate the control of the boundary conditions and apply external loads
to the numerical model, two reference points (top RP-1 and bottom RP-2, see Figure 7)
were set at the center of the cross-section at both ends of the numerical model. This is
because if the reference point is selected on the mesh at the edge of the end face, bending
moments may be generated during loading, resulting in inaccurate results. All degrees of
freedom of each interlayer at the end cross-section were kinematically coupled with the
two reference points.

Among them, all degrees of freedom on the bottom RP-2 are constrained, and in
addition, the twisting direction of the top RP-1 along the Z-axis (riser axis) is constrained.
The internal pressure load of the model is achieved by applying uniformly distributed
radial pressure to the inner surface of the pressure sheath.

Due to the possible gaps between the interlayers of unbonded flexible risers, there
might be contact and sliding between layers during the application of loads, and the
pressure armor layer might also experience self-contact within the layer, resulting in
complex contact situations. Therefore, the general contact algorithm of Abaqus is adopted
to model the contact simulation. In addition, the Coulomb friction model is adopted to
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simulate the tangential behavior with a friction coefficient of 0.1 [40], while the normal
contact is set to hard contact.
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3.3. Failure Determination

The yield strength of the pressure armor layer is defined by 300 MPa, and the cor-
responding ultimate strength is defined by 600 MPa [32]. A sufficiently large internal
pressure is applied for the unbonded riser model to ensure the burst failure of the pressure
armor layer. The internal pressure-axial tensile deformation curve, stress contour, and
strain contour of the pressure armor layer are adopted to define the burst failure of the
pressure armor layer. When the stress of the pressure armor is in the linear stage, the stress
variation is relatively uniformly distributed. When the stress of the pressure armor layer
enters the plasticity phase, the pressure armor layer is considered to remain compressive,
despite being much reduced, until the element reaches ultimate stress and undergoes
large deformation.

3.4. Load Loading and Time Step Control

Due to the complex structure of the model and the presence of a large number of
contact problems, using the implicit solution method would bring significant convergence
problems. Therefore, explicit solution methods are used for numerical computation. Al-
though the explicit solution method can effectively solve the convergence problem in
Abaqus, the inertia effect will seriously affect the numerical accuracy, and the kinetic energy
during the simulation must be controlled. It is generally believed that the ratio of kinetic
energy (ALLKE) to internal energy (ALLIE) should not exceed 5–10% during the whole
numerical simulation process. The quasi-static loading method of increasing the loading
time can be used to eliminate the influence of the inertia effect. However, too much loading
time will reduce the computational efficiency. In this study, the loading time is chosen to be
0.3 s while satisfying the computational accuracy.

4. Model Verification

Since there is no relevant test data of unbonded flexible risers under internal pressure
for comparison, the behavior of unbonded flexible risers under tension, which is also an
axisymmetric load, is present first to verify the present theoretical and numerical methods.
And then the behavior of an unbonded flexible riser under internal pressure is present.

Based on Witz’s test, the tensile behavior of an unbonded flexible riser is exhibited
in Figure 8. Unlike the test results, both the theoretical and numerical methods show
near-linear change since the tensile armor layers do not have obvious slippage. The relative
deviation between numerical and theoretical results is about 6.32%, which shows good
agreement. And the deviation is mainly caused by the assumptions made in the theoretical
method, for example, the uniformly distributed stress along the riser model. Meanwhile,
the numerical method can properly predict the axial tensile stiffness of an unbonded flexile
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riser compared to the test result, and the relative deviation is about 8.07%. Additionally, the
average axial tensile stiffness predicted by other scholars and organizations is also present
in Figure 8, and the proposed theoretical method in this paper has a better prediction.
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Figure 8. Axial tension-elongation curves of different methods [13]. 
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a significant indicator to study the effect of internal pressure [28]. Witz [13] did not give 
the experimental data under the action of internal pressure, so Figure 9 illustrates the 
comparison between the theoretical and numerical results in the linear phase of pressure 
armor layer material based on the above unbonded flexible riser model. From Figure 9, 
the two methods coincide well with each other, proving that the proposed numerical and 
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The pressure expansion coefficient (ratio of internal pressure and axial elongation)
is a significant indicator to study the effect of internal pressure [28]. Witz [13] did not
give the experimental data under the action of internal pressure, so Figure 9 illustrates the
comparison between the theoretical and numerical results in the linear phase of pressure
armor layer material based on the above unbonded flexible riser model. From Figure 9,
the two methods coincide well with each other, proving that the proposed numerical and
theoretical methods can well predict the behavior of an unbonded flexible riser under
internal pressure.
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5. Results and Discussion

Since the innermost carcass layer is not a watertight structure and there is usually a
gap with the internal sheath layer, a simplified unbonded flexible riser numerical model
without carcass layer is proposed in this section to accelerate the calculation simulation
and is also compared with the original 8-layer unbonded flexible riser model. Considering
the elasticity of the pressure armor layer, burst failure is defined by the stress distribution
and deformation from numerical simulation and the yield stress and ultimate stress from
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theoretical calculation. In addition, the effect of the friction coefficient on the internal
pressure-bearing capacity of an unbonded flexible riser is also discussed.

5.1. Burst Failure of the Pressure Armor Layer

First of all, the proposed numerical method presents a comparison between the full-
layer unbonded flexible riser model and the simplified numerical model. Figure 10 presents
the axial displacement-internal pressure relationship. And it can be seen from Figure 10
that, before the yield of the pressure armor layer, the numerical results from both models
are close to linear and highly consistent. It is because the internal pressure was applied to
the inner sheath layer, and the deformation of the carcass layer has little effect on the overall
behavior of the unbonded flexible riser under internal pressure, verifying the effectiveness
of the 7-layer simplified numerical model. As the internal pressure continuously increases
and, by neglecting the nonlinear instability during numerical simulation, the pressure
armor layer reaches yield stress, plastic deformation of the pressure armor layer occurs,
and the pressure expansion coefficient decreases significantly. When the internal pressure
exceeds about 62.4 MPa, there is a certain deviation between the two numerical models,
which is mainly caused by the self-locking of the pressure armor layer, and the deformation
of the pressure armor layer affects the deformation of the carcass layer, contributing to
the difference. After the pressure armor layer reaches its ultimate strength, large plastic
deformation with the increase in internal pressure load will occur, and the unbonded
flexible riser model will lose its ability to stand internal pressure.
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The ratio of ALLKE to ALLIE during the numerical calculation process is shown in
Figure 11, and the maximum ratio is about 6%, indicating the correctness of the numerical
method. It can be seen from Figure 11 that when the internal pressure exceeds about
60 MPa, the ratio has a gradually increasing growth rate, which is caused by the dynamic
response of the increasing plastic deformation. It is also worth noting that this is consistent
with the internal pressure values when the two models in Figure 10 begin to deviate.

Also, a theoretical prediction is compared with the numerical method based on the
8-layer riser model (see Figure 12), which shows good agreement. Since the application of
the internal pressure load during the calculation of the theoretical results is directly applied
to the internal sheath layer rather than on the carcass layer, and the deformation in the
theoretical calculations does not lead to contact between the skeleton layer and the internal
sheath layer, the theoretical results of the 7 and 8 layers are the same. In order to avoid
repetition of the burdensome, we do not repeat the theoretical curve diagrams of the 7
layers in this paper. From the figure, we can see that the theoretical and numerical curves
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converge before the yield strength is reached (i.e., the linear phase). Then the curves trend
differently after failure due to the bending deformation of the numerical model with large
deflections, which cannot be simulated by the current theoretical method.
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The pressure armor layer is the main structure to withstand the internal pressure of
unbonded flexible risers. In order to conduct a detailed study, the internal pressure-bearing
capacity of the unbonded flexible riser and the stress and strain contours of the pressure
armor are examined. By neglecting the stress concentration of the end boundary effect,
the stress is relatively consistent and uniformly distributed during the internal pressure
loading process. Therefore, a Z-shaped section near the middle part of the pressure armor
layer is selected, and the stress contours under different internal pressures are present in
Figure 13. To make it clear, the stress change range in the contour is fixed at 300 MPa; red
markings are also used when the value is higher.

It can be seen from Figure 13 that the stress of the Z-shaped section gradually decreases
from bottom to top (from the inner surface to the outer surface of the pressure armor layer),
following the general law of stress variation along the thickness direction of the cross section
under internal pressure. However, considering the particular geometry of the Z-shaped
pressure armor layer, the maximum stress occurs at the sharp left and right ends. As the
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internal pressure increases, the stress of the pressure armor layer increases continuously,
and the innermost part of the section reaches yield first, then gradually expands to the
outer part. When the internal pressure loading is between 42 MPa and 42.5 MPa, the entire
section reaches yield stress, which is consistent with the range of the energy analysis above
(see Figure 11).
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Judged by the yield stress of the pressure armor layer, the overall stress contours of
the pressure armor layer are present in Figure 14. Figure 14a illustrates the stress contour
of the pressure armor layer when it is about to reach the yield stress. Due to the influence
of the end boundary effect, the stress distribution at both ends is significantly different
from that in the middle of the layer. Meanwhile, it can be seen that the stress on the inner
surface is significantly greater than that on the outer surface. The intersurface is directed to
the inner sheath, where the internal pressure is loaded, and it bears more internal pressure
than the outer part of the layer, which is consistent with Figure 13. Figure 8 exhibits the
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stress contours of the pressure armor layer after 300 MPa. Due to the self-locking structure
and hardening effect of the pressure armor layer, after the layer has basically reached yield
stress, the axial stress deformation of the pipeline is still relatively consistent, and there is
no stress concentration or local large deformation.
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As the internal pressure increases, the pressure armor layer near the top end first
reaches the ultimate stress of 600 MPa, as shown in Figure 15. Under the action of internal
pressure loading, significant irreversible plastic deformation occurs at both ends of the
pressure armor layer, and the self-locking structure cracks and fails.
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5.2. Effect of Friction Coefficient

The unbonded flexible riser is exposed to the marine wet environment, which would
affect the friction coefficient between and within the unbonded flexible riser model. Un-
bonded flexible risers experience axial displacement under internal pressure, and there
would be a certain relative slippage resulting in a certain amount of friction energy, which
thus might affect the burst failure characteristics of the pressure armor layer. As the theo-
retical method cannot include the effect of the friction coefficient, the proposed numerical
method is applied to study the influence. And six loading cases with an interval of 0.02 of
the friction coefficient from 0–0.1 are present.

Figure 16 shows the internal pressure-axial displacement relationship curve with
different friction coefficients. The black solid line and the red solid line stand for the friction
coefficients of 0 and 0.02, separately, which is significantly less than the ultimate internal
pressure loading performance with friction coefficients from 0.04 to 0.1. When the friction
coefficient is no more than 0.04, the mutual constraints between interlayers continue to
increase, and the bearing capacity of the pressure armor layer is significantly improved,
causing the burst failure of internal pressure to increase from 35.3 MPa to 55.8 MPa. When
the friction coefficient is 0, the friction between adjacent layers and within helical layers
is completely ignored, and the pressure armor layer loses the mutual constraint between
layers, allowing for free sliding between layers. When the friction coefficient is over 0.04,
the sensitivity of the internal pressure bearing capacity to the friction coefficient decreases
while still showing an increasing trend, which indicates that there is no relative slippage
between adjacent surfaces and that the friction coefficient has little effect on the critical
burst failure. In conclusion, the internal sheath should avoid damage, thus ensuring the
friction coefficient of the pressure armor layer and increasing the internal pressure-bearing
capacity of the unbonded flexible riser.
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6. Conclusions

This article explores the mechanical properties of a type of 2.5-inch unbonded flexible
riser under internal pressure using a numerical method and verified through an analytical
method. First of all, the theoretical model is established considering the material nonlinear-
ity of the pressure armor layer. Afterwords, a simplified 7-layer model without carcass layer
is established by considering the detailed geometric properties of interlayers within the
Abaqus software, and the validity of the simplified model is verified through the full-layer
numerical model and the proposed theoretical method. Finally, based on the yield and
ultimate stress of the pressure armor layer, the burst failure process of the pressure armor
layer is investigated. In addition, the influence of the friction coefficient on the burst failure
of the pressure armor layer is also analyzed. Some conclusions are drawn at the end of
this paper:

1. The internal pressure of unbonded flexible risers is mainly borne by the pressure
armor layer, and the non-watertight structure of the carcass layer has little effect on
the numerical modeling of the unbonded flexible riser with respect to the burst failure
analysis of the pressure armor layer.

2. As the internal pressure loads, the stress distributes uniformly along the pressure
armor layer, neglecting the end boundary effect. As for the Z-shaped section of the
pressure armor layer, the stress gradually decreases from the inner layer to the outer
layer, and the two sharp ends of the Z-shaped section first reach yield stress.

3. When the pressure armor layer is about to reach the yield stress, the stress distribution
at both ends of the riser is significantly different from that in the middle section, and
there is no stress concentration or local large deformation. When the stress exceeds
the ultimate stress, significant plastic deformation occurs at the end of the pressure
armor layer model, contributing to the burst failure.

4. The increasing friction coefficient can achieve the effect of increasing the internal
pressure load capacity borne by the riser, which is related to interlayer slippage. The
pressure armor layer should have a sufficient friction coefficient to ensure the internal
pressure-bearing capacity of the pressure armor layer.
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