High Strain Rate Deformation Behavior of Gradient Rolling AZ31 Alloys
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Mechanical Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Dong, G.; Zhao, B. Research progress of magnesium alloy application in aviation manufacturing. Nonferrous Met. Eng. 2015, 5, 23–27. [Google Scholar]
- Yu, K.; Li, W.; Ma, Z. Research, development and application of wrought magnesium alloys. Chin. J. Nonferrous Met. 2003, 13, 277–288. [Google Scholar]
- Yang, Y.; Li, J.; Song, H.; Liu, P. Application of Magnesium Alloys and Current Status of Their Forming Technology Research. Hot Work. Technol. 2013, 42, 24–27. (In Chinese) [Google Scholar]
- Wang, J.; Ju, J.; Huang, Z.; Shu, Y. Research Progress on Preparation Technology of Magnesium Alloy Sheet. Hot Work. Technol. 2014, 43, 6–9+5. [Google Scholar]
- Meng, R.; Zhang, D.; Yuan, H. Progress of Forming Technologies for Magnesium Alloy. Hot Work. Technol. 2008, 37, 89–92. [Google Scholar]
- Hou, Z.; Jiang, B.; Wang, Y.; Song, J.; Xiao, L.; Pan, F. Development and Application of New Magnesium Alloy Materials and their New Preparation and Processing Technologies. Aerosp. Shanghai 2021, 38, 119–133. [Google Scholar]
- Deng, H.; He, B. Research progress in fatigue properties of magnesium alloy welded joints. Ordnance Mater. Sci. Eng. 2016, 39, 125–129. [Google Scholar]
- Chen, W.; Zhan, M.; Chen, W.; Zhang, D.; Li, Y. Present Status of Plastic Working for Wrought Magnesium Alloy and Its Future. Spec. Cast. Non-Ferr. Alloys 2007, 27, 40–43. [Google Scholar]
- Bao, J.; Li, Q.A.; Chen, X.; Zhang, Q.; Chen, Z. Research Progress on Extruded Magnesium Alloys. Mater. Rev. 2022, 36, 20090073-12. [Google Scholar]
- Elambharathi, B.; Kumar, S.D.; Dhanoop, V.U.; Dinakar, S.; Rajumar, S.; Sharma, S.; Kumar, V.; Li, C.; Eldin, E.M.T.; Wojciechowski, S. Novel insights on different treatment of magnesium alloys: A critical review. Heliyon 2022, 8, e11712. [Google Scholar] [CrossRef]
- Che, B.; Lu, L.; Kang, W.; Luo, J.; Ma, M.; Liu, L. Hot deformation behavior and processing map of a new type Mg-6Zn-1Gd-1Er alloy. J. Alloys Compd. 2021, 862, 158700. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Langdon, T.G. Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall–Petch relationship and strain rate sensitivity. J. Mater. Res. Technol.-JmrT 2021, 14, 137–159. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhu, Q.; Zhang, H.; Qi, X.; Wang, J.; Jin, P.; Zeng, X. Twin recrystallization mechanisms in a high strain rate compressed Mg-Zn alloy. J. Magnes. Alloys 2021, 9, 499–504. [Google Scholar] [CrossRef]
- Long, J.; Xia, Q.; Xiao, G.; Qin, Y.; Yuan, S. Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps. Int. J. Mech. Sci. 2021, 191, 106069. [Google Scholar] [CrossRef]
- Malik, A.; Wang, Y.; Huanwu, C.; Nazeer, F.; Khan, M.A. Dynamic mechanical behavior of magnesium alloys: A review. Int. J. Mater. Res. 2019, 110, 1105–1115. [Google Scholar] [CrossRef]
- Malik, A.; Nazeer, F.; Naqvi, S.Z.H.; Long, J.; Li, C.; Yang, Z.; Huang, Y. Microstructure feathers and ASB susceptibility under dynamic compression and its correlation with the ballistic impact of Mg alloys. J. Mater. Res. Technol.-JmrT 2022, 16, 801–813. [Google Scholar] [CrossRef]
- Jin, Z.Z.; Cheng, X.M.; Zha, M.; Rong, J.; Zhang, H.; Wang, J.G.; Wang, C.; Li, Z.G.; Wang, H.Y. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg-Al-Zn alloys during gradient hot rolling. J. Mater. Sci. Technol. 2019, 35, 2017–2026. [Google Scholar] [CrossRef]
- Zhang, L.; Townsend, D.; Petrinic, N.; Pellegrino, A. Measurement of Pure Shear Constitutive Relationship From Torsion Tests Under Quasi-Static, Medium, and High Strain Rate Conditions. J. Appl. Mech.-Trans. ASME 2021, 88, 121003. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, C.; Liu, S.; Liu, Y.; Zhu, J.; Yuan, X. Effect of strain rates on mechanical properties, microstructure and texture inside shear bands of pure magnesium. Mater. Charact. 2022, 184, 111686. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Q.; Chen, X.; Zhu, H. Research Status and Application of Zn-Containing Magnesium Alloys and Influence of LPSO on Alloy Properties. J. Chin. Soc. Rare Earths 2021, 39, 860–870. [Google Scholar]
- Pan, H.; Ren, Y.; Fu, H.; Zhao, H.; Wang, L.; Meng, X.; Qin, G. Recent developments in rare-earth free wrought magnesium alloys having high strength: A review. J. Alloys Compd. 2016, 663, 321–331. [Google Scholar] [CrossRef]
- Su, Z.; Huang, Y.; Liu, C.; Yang, X. Progress in RE-containing Cast Magnesium Alloys. Spec. Cast. Nonferrous Alloys 2015, 35, 1047–1051. [Google Scholar]
- Cerreta, E.K.; Fensin, S.J.; Perez-Bergquist, S.J.; Trujillo, C.P.; Morrow, B.M.; Lopez, M.F.; Roach, C.J.; Mathaudhu, S.N.; Anghel, V.; Gray, G.T., III. The High-Strain-Rate Constitutive Behavior and Shear Response of Pure Magnesium and AZ31B Magnesium Alloy. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2021, 52, 3152–3170. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhu, B.; Yang, H.; Xiao, G.; Hu, M. Influence of Microstructure and Mechanical Properties on Formability in High Strain Rate Rolled AZ31 Magnesium Alloy Sheets. Met. Mater. Int. 2022, 28, 1361–1371. [Google Scholar] [CrossRef]
- Liu, X.; Wan, Q.; Yang, H.; Zhu, B.; Wu, Y.; Liu, W.; Tang, C. The Effect of Twins on Mechanical Properties and Microstructural Evolution in AZ31 Magnesium Alloy during High Speed Impact Loading. J. Mater. Eng. Perform. 2022, 31, 3208–3217. [Google Scholar] [CrossRef]
- Yu, J.; Dong, F.; Xu, N.; Chen, Y.; Mao, P.; Liu, Z. Dynamic compressive properties and microstructural evolution of EW75 magnesium alloy at high temperatures and high strain rates. Chin. J. Rare Met. 2019, 43, 141–150. [Google Scholar]
- Ji, Y.-F.; Duan, J.-R.; Yuan, H.; Li, H.-Y.; Sun, J.; Ma, L.-F. Effect of variable thickness cross rolling on edge crack and microstructure gradient of AZ31 magnesium alloy. J. Cent. South Univ. 2022, 29, 1124–1132. [Google Scholar] [CrossRef]
- Yu, H.; Wang, D.; Liu, Y.; Liu, Y.; Huang, L.; Jiang, B.; Park, S.; Yu, W.; Yin, F. Recrystallization mechanisms and texture evolution of AZ31 alloy by gradient caliber rolling. J. Mater. Res. Technol. 2023, 23, 611–626. [Google Scholar] [CrossRef]
- Guo, P.; Tang, Q.; Li, L.; Xie, C.; Liu, W.; Zhu, B.; Liu, X. The deformation mechanism and adiabatic shearing behavior of extruded Mg-8.0Al-0.1Mn alloy in different heat treated states under high-speed impact load. J. Mater. Res. Technol.-JmrT 2021, 11, 2195–2207. [Google Scholar] [CrossRef]
- Li, Q. Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2012, 540, 130–134. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, X.; Xie, C.; Liu, W.; Tang, C.; Lu, L. The flow behavior in as-extruded AZ31 magnesium alloy under impact loading. J. Magnes. Alloys 2018, 6, 180–188. [Google Scholar] [CrossRef]
- Nazeer, F.; Naqvi, S.Z.H.; Kalam, A.; Al-Sehemi, A.G.; Alrobei, H. Texture dependencies on flow stress behavior of magnesium alloy under dynamic compressive loading. Vacuum 2021, 191, 110323. [Google Scholar] [CrossRef]
- Tang, W.; Liu, S.; Liu, Z.; Kang, S.; Mao, P.; Zhou, L.; Wang, Z. Microstructure evolution and constitutive relation establishment of Mg–7Gd–5Y–1.2Nd–0.5Zr alloy under high strain rate after severe multi-directional deformation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2021, 809, 140994. [Google Scholar] [CrossRef]
- Du, Y.; Du, W.; Zhang, D.; Ge, Y.; Jiang, B. Enhancing mechanical properties of an Mg–Zn–Ca alloy via extrusion. Mater. Sci. Technol. 2021, 37, 624–631. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, H.; Xia, H.; Liu, L.; He, J.; Xia, D.; Yang, H.; Jiang, B. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy. Acta Metall. Sin.-Engl. Lett. 2022, 35, 1793–1811. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, K.; Xia, L.; Chen, S.; Men, X.; Deng, T.; Wang, Y.; Zhang, S.-H. Study on High-Speed Tensile Mechanical Properties and Deformation Mechanism of 2195 Al-Li Alloy Sheet. Rare Met. Mater. Eng. 2022, 51, 1283–1292. [Google Scholar]
- Liu, J.; Lu, L.; Zhong, Z. Deformation twins and annealing twins in high purity coarse-grained aluminum by equal channel angular pressing at high strain rate. J. Mater. Eng. 2021, 49, 89–94. [Google Scholar]
- Deng, J.-F.; Tian, J.; Zhou, Y.; Chang, Y.; Liang, W.; Ma, J. Plastic deformation and fracture mechanisms of rolled Mg-8Gd-4Y-Zn and AZ31 magnesium alloys. Mater. Des. 2022, 223, 111179. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, P.; Wang, Z.; Cao, G. Tensile twin evolution of Mg–3Al–1Zn magnesium alloy during high-strain rate deformation. Mater. Sci. Technol. 2021, 37, 1452–1464. [Google Scholar] [CrossRef]
- Gui, Y.; Cui, Y.; Bian, H.; Li, Q.; Ouyang, L.; Chiba, A. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature. J. Mater. Sci. Technol. 2021, 80, 279–296. [Google Scholar] [CrossRef]
- Han, X.; Xiao, T.; Yu, Z. Microstructure, Texture Evolution, and Strain Hardening Behaviour of As-extruded Mg-Zn and Mg-Y Alloys under Compression. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2023, 38, 430–439. [Google Scholar] [CrossRef]
- Deng, G.; Li, A.; Li, W.; Chang, G.; Liu, Y. Deformation Mechanism and Microstructural Evolution of a Mg–Y–Nd–Zr Alloy under High Strain Rate at Room Temperature. J. Mater. Eng. Perform. 2023, 33, 3101–3114. [Google Scholar] [CrossRef]
- Dixit, N.; Xie, K.Y.; Hemker, K.J.; Ramesh, K.T. Microstructural evolution of pure magnesium under high strain rate loading. Acta Mater. 2015, 87, 56–67. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Huang, J.; Lian, X. Difference in adiabatic shear susceptibility between pure copper and Cu–30% Zn solid solution alloy at different strain rate. J. Mater. Res. 2023, 38, 1410–1419. [Google Scholar] [CrossRef]
- Liu, X.Y.; Pan, Q.L.; He, Y.B.; Li, W.B.; Liang, W.J.; Yin, Z.M. Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2009, 500, 150–154. [Google Scholar] [CrossRef]
- Wei, Q.; Yuan, L.; Shan, D.; Guo, B. Study on the microstructure and mechanical properties of ZK60 magnesium alloy with submicron twins and precipitates obtained by room temperature multi-directional forging. J. Mater. Sci. 2023, 58, 13236–13250. [Google Scholar] [CrossRef]
- Mottaghian, F.; Taheri, F. Strength and failure mechanism of single-lap magnesium-basalt fiber metal laminate adhesively bonded joints: Experimental and numerical assessments. J. Compos. Mater. 2022, 56, 1941–1955. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, F.; Feng, B.; Liu, L.; Dong, C.; Zhao, Y.; Song, B. Enhancing mechanical properties of friction stir welded AZ31 alloys by post-weld compression. Sci. Technol. Weld. Join. 2023, 28, 468–477. [Google Scholar] [CrossRef]
- Ding, N.; Du, W.; Zhu, X.; Dou, L.; Wang, Y.; Li, X.; Liu, K.; Li, S. Roles of LPSO phases on dynamic recrystallization of high strain rate multi-directional free forged Mg-Gd-Er-Zn-Zr alloy and its strengthening mechanisms. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2023, 864, 144590. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Okotete, E.A. Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. J. Magnes. Alloys 2017, 5, 460–475. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Ringer, S.P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater. 2018, 144, 365–375. [Google Scholar] [CrossRef]
- Tan, L.; Huang, X.; Wang, Y.; Sun, Q.; Zhang, Y.; Tu, J.; Zhou, Z. Activation Behavior of {10-12}-{10-12} Secondary Twins by Different Strain Variables and Different Loading Directions during Fatigue Deformation of AZ31 Magnesium Alloy. Metals 2022, 12, 1433. [Google Scholar] [CrossRef]
- Doiphode, R.L.; Murty, S.V.S.N.; Prabhu, N.; Kashyap, B.P. Grain growth in calibre rolled Mg–3Al–1Zn alloy and its effect on hardness. J. Magnes. Alloys 2015, 3, 322–329. [Google Scholar] [CrossRef]
- Pedersen, K.O.; Borvik, T.; Hopperstad, O.S. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions. Mater. Des. 2011, 32, 97–107. [Google Scholar] [CrossRef]
- Zou, D.L.; Zhen, L.; Zhu, Y.; Xu, C.Y.; Shao, W.Z.; Pang, B.J. Deformed microstructure evolution in AM60B Mg alloy under hypervelocity impact at a velocity of 5 kms−1. Mater. Des. 2010, 31, 3708–3715. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yu, H.; Liu, C.; Liu, Y.; Yu, W.; Xu, Y.; Jiang, B.; Shin, K.; Yin, F. High Strain Rate Deformation Behavior of Gradient Rolling AZ31 Alloys. Metals 2024, 14, 788. https://doi.org/10.3390/met14070788
Li Y, Yu H, Liu C, Liu Y, Yu W, Xu Y, Jiang B, Shin K, Yin F. High Strain Rate Deformation Behavior of Gradient Rolling AZ31 Alloys. Metals. 2024; 14(7):788. https://doi.org/10.3390/met14070788
Chicago/Turabian StyleLi, Yingjie, Hui Yu, Chao Liu, Yu Liu, Wei Yu, Yuling Xu, Binan Jiang, Kwangseon Shin, and Fuxing Yin. 2024. "High Strain Rate Deformation Behavior of Gradient Rolling AZ31 Alloys" Metals 14, no. 7: 788. https://doi.org/10.3390/met14070788
APA StyleLi, Y., Yu, H., Liu, C., Liu, Y., Yu, W., Xu, Y., Jiang, B., Shin, K., & Yin, F. (2024). High Strain Rate Deformation Behavior of Gradient Rolling AZ31 Alloys. Metals, 14(7), 788. https://doi.org/10.3390/met14070788