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Abstract: A dynamic impact test was performed on as-rolled AZ31 alloys with gradient microstructure
under various strains. The microstructural evolution and mechanical properties were systematically
investigated. As the strain rate gradually increased, an increasing number of twins were formed,
facilitating dynamic recrystallization (DRX), and the mechanical properties were also gradually
improved. The microstructure became heterogeneous at higher strain rates, but the peak stress
decreased. The impact process resulted in a significantly higher performance due to microstructural
refinement, work hardening by dislocations, and precipitates. In addition, both the adiabatic shear
band and the adjacent crack experienced a temperature rise that exceeded the recrystallization
temperature of the alloys. This observation also explains the presence of ultrafine recrystallized
grains within the adiabatic shear band and the appearance of molten metal around the crack.

Keywords: AZ31; high strain rate; gradient rolling; microstructure; mechanical property

1. Introduction

Magnesium (Mg) is recognized as the fourth most abundant metal worldwide. Its
lightweight nature, combined with its enhanced strength and processing capabilities, has led
to the widespread utilization of Mg alloys across various industries such as aviation, automo-
biles, electronics, and medicine [1–5]. Particularly in the case of aerospace and automotive
applications, magnesium alloys often experience dynamic loading, including impact, collision,
and explosion, which necessitates the need to characterize and improve the mechanical prop-
erties of magnesium alloys at high strain rates. Typically, wrought Mg alloys manufactured
by extrusion and rolling processes demonstrate superior properties [6–10], and they also
result in a distinct fiber texture, leading to noticeable anisotropy [11–14]. However, the
experimental samples are small in size, and only a single microstructure can generally be
formed after plastic deformation, while the actual magnesium alloy forgings lack a uniform
microstructure due to the different degrees of deformation in each part. Gradient rolling
can produce samples with different deformation degrees at the same time, thus greatly
reducing the test cost and experimental error [15].

Recently, the majority of research efforts on the deformation behavior of Mg alloys
have primarily focused on quasi-static conditions, with fewer investigations into high strain
rate deformation behavior [16]. In general, the deformation mechanism may be altered
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under high strain rate compression compared to quasi-static compression [17–19]. Thus,
exploring the microstructural evolution of Mg alloys under high strain rates would play
a crucial role in understanding such a phenomenon, which, in turn, would allow for a
better understanding of related mechanical properties [20–25]. For instance, Yu et al. [26]
conducted dynamic impact tests on the EW75 Mg alloy, demonstrating that an increase
in strain rate correspondingly led to a higher number of twins and recrystallized grains,
which resulted in improved mechanical properties. Moreover, Ji et al. [27] observed a
diminishing basal texture trend in the edge and central regions of a Mg alloy using the
cross-rolling process.

However, the existing literature primarily focuses on individual processing and lacks
systematic experiments on the high strain rate deformation behavior of magnesium alloys.
Therefore, this study aims to bridge this research gap by conducting dynamic impact tests
on AZ31 Mg alloys. All specimens underwent varying levels of deformation and were
exposed to different strain rates. The main objective was to investigate how high strain rates
influence the mechanical properties and microstructural evolution of gradient-deformed
Mg alloys. The findings will not only contribute to a theoretical foundation but will also
provide technical insight for developing high performance Mg alloys used in dynamic
load conditions.

2. Experimental Section

A commercial AZ31 (Mg-3.25Al-0.92Zn-0.34Mn, wt.%) Mg alloy (provided by Dong-
guan Kuangyu Metal Materials Co., Ltd., Dongguan, China) with a diameter of 60 mm
and a height of 120 mm was used. The specimen was extruded and deformed into a
cylindrical bar with a diameter of 20 mm, then turned into a conical workpiece with a
diameter of 10 mm at one end and a 20 mm diameter at the other end, and then rolled
at 723 K through a hole pattern in order to obtain transition tissues with different strain
levels. The methodology employed to achieve a gradient structure was comprehensively
described in our previous study [28]. Dynamic impact tests were conducted on samples
with rolling reductions of 0%, 10%, 20%, and 30% (referred to as R0, R10, R20, and R30,
respectively). A high-speed impact specimen shape of Ø8 mm × 5 mm cylindrical speci-
men was used. These tests were performed utilizing a split Hopkinson bar testing setup
(ARCHIMEDESALT 1000, ARCHIMEDES, Tianjin, China), with impact pressures set at
0.15 MPa, 0.2 MPa, 0.25 MPa, and 0.3 MPa, corresponding to strain rates of 800 s−1, 1400 s−1,
2000 s−1, and 2400 s−1, respectively.

For microstructural analysis, an optical microscope (OM, OLYCIA M3) and a scanning
electron microscope (SEM, JSM-6510A, JEOL Ltd., Tokyo, Japan) were employed. The
Φ3 mm disk foils were carefully prepared by grinding and punching. Subsequently,
the samples underwent electrolytic jet polishing and ion milling. Transmission electron
microscope (TEM) analysis was conducted using a JEM2100F with an energy dispersive X-
ray spectrometer (EDAX-TSL, JEOL Ltd., Tokyo, Japan). The electron backscatter diffraction
(EBSD) samples were subjected to argon ion polishing using the Hitachi Implus400 system
(Hitachi, Tokyo, Japan) and were characterized using an SEM equipped with an Oxford
C-nanoprobe (Zeiss Gemini 300, Carl Zeiss, Jena, Germany). To ensure accurate acquisition
of EBSD datasets, a scanning step of 0.8 mm was implemented.

3. Results and Discussion
3.1. Microstructural Evolution

Figure 1a–d shows the OM of the four strain samples before impact, and Figure 1e–t
illustrates the OM of the four AZ31 samples following impact at various strain rates. The
evolution of the impacted samples can be categorized into four stages as the strain rate
increased. (1) At a strain rate of 800 s−1, a significant number of twins formed across
all samples. (2) At a strain rate of 1400 s−1, the previously formed deformation twins
largely disappeared, and further impact led to grain size reduction. (3) At a strain rate of
2000 s−1, the impacted specimen experienced further growth in grain size accompanied
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by a noticeable rise in temperature. (4) At a strain rate of 2400 s−1, all samples underwent
fracture, characterized by a prominent presence of adiabatic shear bands and deformation
twins within the sample. Clearly, the extent of temperature rise was positively correlated
with the magnitude of the strain rate [16,29,30], which, in turn, allowed for the coarsening
of the grain size to be imaged.
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Figure 1. OM of AZ31 alloys with different rolling reductions of 0%, 10%, 20%, and 30% under
different strain rates: (a–d) initial state, (e–h) 800 s−1, (i–l) 1600 s−1, (m–p) 2000 s−1, and (q–t)
2400 s−1. ID: impact direction.

Figure 2a–d presents the inverse pole figure (IPF) and grain size distribution diagram of
samples that underwent different rolling reductions after impact at a strain rate of 2000 s−1.
The impact-induced grain structure of the R0 and R30 samples appeared relatively uniform,
while the R10 and R20 samples exhibited significant variation in grain size. In particular, the
maximum grain size observed in the R10 sample was approximately 14.5 times larger than
the average grain size (AGS). This discrepancy can be attributed to two factors. On one hand,
the short impact deformation time resulted in some grains failing to promptly coordinate
deformation, leading to significant disparities in grain distribution. On the other hand, the
initial grain homogeneity also influenced this phenomenon. It is important to highlight
that irrespective of the AGS before impact deformation, the AGS of each sample converged
to around 9 µm after impact at a strain rate of 2000 s−1. Even when the morphology varied
considerably among all samples, the impact-induced deformation facilitated the formation
of numerous fine grains within the coarse grains, enabling coordinated deformation and
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a remarkable reduction in AGS. These findings align with observations from previous
dynamic impact studies on Mg alloys [31–33].
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Figure 2. IPF and grain size distribution of AZ31 alloys with various rolling reductions after impact
at a strain rate of 2000 s−1: (a) 0%; (b) 10%; (c) 20%; and (d) 30%. ID: impact direction.

Figure 3 shows the texture distribution of the samples after impact at a strain rate of
2000 s−1. There were no significant variations in texture intensity. The (0001) pole figure
(PF) demonstrated a predominantly parallel distribution in relation to the impact direction
(ID). Additionally, an IPF revealed the formation of a non-fiber texture component that was
roughly parallel to the transverse direction (TD). In addition, the texture components were
also detected in transitional orientations between the [10-10]||TD and [11-20]||TD.

When the Mg alloy was impacted at high speed, a considerable number of deformed
grains were formed to accommodate the severe deformation [34]. Figure 4 presents the
distribution and proportion of grains below the AGS in the impacted samples, along with
their corresponding textures. The volume fraction (Vf) of grains below the AGS was ap-
proximately 13%, and a highly uneven grain distribution was found due to more unbroken
coarse grains when compared with Figure 2. Wang et al. [35] observed that when the
compression direction (CD) aligns with the rolling direction (RD), the texture is enhanced.
Conversely, when the CD is perpendicular to the RD, the texture becomes weaker.

The corresponding (0001) PF revealed that while certain grains maintained an orien-
tation in which the c-axis was parallel to the impact direction (ID), most grains tended to
diffuse along the normal direction (ND) and formed orientations offset by about 30◦ in
the transverse direction (TD). The color distribution in the figure shows that the texture
formed after impact became more pronounced as the rolling reduction increased. Weak
texture components were observed in the R0 and R10 samples, while the R20 and R30
specimens exhibited distinct base poles. This illustrates that when the two deformations
shared the same direction, the deformation during the initial process also influenced the
texture generated by the subsequent deformation.
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Generally, the deformation twins observed at high strain rates directly contribute to an
increase in the average orientation difference (known as KAM), as depicted in Figure 5. The
impacted samples displayed remarkably high KAM values, and the distribution of KAM
within the coarse grains exhibited notable heterogeneity [36,37]. This phenomenon can
be attributed to two factors: (1) The very short impact process limited the ability of some
coarse grains to promptly undergo coordinated deformation. As a result, a nonuniform
strain emerged within these grains. (2) A multitude of small grains involving dynamic
recrystallization (DRX) formed within the coarse grains subsequent to impact. These
newly formed grains exhibited relatively low KAM values and actively contributed to
coordinating and influencing the KAM distribution to a significant extent. A similar finding
was observed by Deng et al. [38], who proposed that twinning promotes the generation of
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slip to further achieve coordinated deformation. Thus, a substantial number of twins were
indeed produced during the impact process to facilitate coordinated deformation, resulting
in a reduction in the AGS.
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In addition, the microstructure of the samples after impact predominantly contained
tensile twins, while compression twins and double twins were nearly absent. These tensile
twins were primarily observed within the coarse grains, which highlights that tensile twins
dominated the initial twinning deformation at high strain rates, as suggested by Chen
et al. [39]. Figure 6 illustrates the specific distribution and Vf of the twins in specimen. For
instance, in the case of the impact samples at a strain rate of 2000 s−1, the R20 specimen
exhibited the highest number of tensile twins, with a Vf of 23.4%. The formation of tensile
twins mainly arose from certain original grains with basal texture. Additionally, due to the
low critical resolved shear stress (CRSS) value associated with activating tensile twins, the
strains corresponding to the impact deformation stage were fully sufficient to induce the
highest number of tensile twins.

Comparing the IPF in Figure 2, nearly all the tensile twins form within the grains
tended to exhibit a distribution aligned with the [11-20]||TD, as illustrated in Figure 4.
However, the actual orientation of the twins exhibited a noticeable deviation from this
direction. As a result, the texture with a higher quantity of formed twins after impact
significantly weakened in the [11-20]||TD. Furthermore, it is notable that in Figure 4e,
no non-fiber texture parallel to the TD formed. Gao et al. [40] also discovered that twins
not only reduce the intensity of the texture but also alter the type of texture. In addition,
the formation of numerous tensile twins within specific coarse grains largely affected the
neighboring grain orientations. To conduct a comprehensive analysis, we focused on grains
within two typical designated green rectangular frames, as depicted in Figure 6. The details
are presented in Figure 7, using “P” to denote the parent grain and “ETs” to represent the
tensile twins.
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In region A, a considerable number of tensile twins were observed within the P1
grains, and their orientations were generally consistent with the grains below the AGS.
The corresponding texture components were formed near a 30◦ deviation from the ND to
the TD in the (0001) PF. Conversely, the orientations of the grains surrounding P1 differed
significantly from P1 itself. Some grains exhibited texture components similar to those
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of the tensile twins, while others aligned with the [10-10]||TD. Particularly, the black
rectangular frame in Figure 7a revealed compelling evidence of the influence of tensile
twins on the orientation of surrounding grains. A discernible gradient trend was observed
in the grain boundary (GB) orientation difference among the three small grains formed
adjacent to the twins. Moreover, the colors of these grains underwent significant changes.
These observations further emphasize that the formation of tensile twins substantially
impacts the orientation changes of the surrounding grains [41,42].

In region B, a number of tensile twins were also formed within the P2 and P3 grains.
However, unlike the twins in region A, only a few grains surrounding the parent grains of
these twins exhibited similar orientations. The texture orientations of the majority of the
grains aligned with the [10-10]||TD, with only a small number of grains sharing a similar
orientation to their parent grains. Notably, it is important to highlight that grains with
significantly different orientations formed at higher twin densities within the P2 grains.
The texture orientations of the small grains formed around these grains closely resembled
their own orientations, differing from the P2 grains. These observations indirectly indicate
a notable influence of the formation of tensile twins on the texture components of the
surrounding grains.

3.2. Mechanical Property

Figure 8 presents the true strain–stress curves of the gradient rolling samples with
varying deformations after impact at different strain rates. All curves exhibited an S-shaped
plot, which is characteristic of the twinning-dominated deformation mechanism in Mg
alloys [43]. This kind of deformation process can be divided into three stages. Initially,
during the early stage of impact, the alloy undergoes significant work hardening, with
the stress rapidly increasing as strain accumulates. Once a certain threshold of strain is
reached, a distinct yield platform becomes evident, and the stress exhibits a gradual upward
trend. The presence of a low-yield platform arises from the loading direction induced
by impact, favoring the formation of tensile twins in the initial stages of deformation.
The relatively low CRSS required for tensile twin formation allows the material to adjust
its deformation by generating such twins, leading to an earlier attainment of the yield
condition. As deformation progresses further, the stress continues to rise, but the material
experiences a competition between strain hardening and an adiabatic temperature rise
associated with deformation at high strain rates. This competition results in fluctuations
in the curve, leading to an oscillating behavior [44], and the stress reaches its peak value.
Subsequently, the stress gradually decreases until deformation ceases. Figure 8e represents
the true strain–stress curve under quasi-static compression. It can be observed that the
shape of the curve is similar to those in Figure 8a–d, but the fluctuation region at the
peak is absent, which indicates that there was no pronounced adiabatic temperature rise.
Additionally, the peak stress was reduced, suggesting that higher strain rates contribute to
work hardening.

Figure 9 illustrates the yield strength (YS) and peak compressive strength (CS) of
all specimens in Figure 8. The R20 sample exhibited a higher YS compared to the other
samples. Specifically, at a strain rate of 1400 s−1, the YS of the R20 sample reached 175 MPa,
surpassing the YS of the R0 sample at a strain rate of 0.001 s−1 by 65 MPa. In the case of the
peak CS within the range from 0.001 s−1 to 2000 s−1, the CS increased with higher strain
rates. However, the impacted samples fractured when the strain rate reached 2400 s−1,
resulting in a significant decline in CS. Notably, the R20 sample consistently exhibited the
highest CS across all strain rates. For example, the CS reached 644 MPa at a strain rate of
2000 s−1, exceeding the CS of the same strain sample at a strain rate of 0.001 s−1 by 145 MPa.
This also emphasizes the pronounced sensitivity of the CS of the impacted samples to the
strain rate [30,45].
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Generally, the mechanical properties can be strengthened by solid solution strengthen-
ing, grain boundary strengthening, dislocation strengthening, and shear band strengthen-
ing [46–49]. TEM analysis was carried out for a better understanding of such strengthening
mechanisms. Figure 10a displays the formation of high-density dislocations in the samples
after impact (which agrees with Figure 5), demonstrating numerous dislocations at high
strain rates using KAM analysis. Furthermore, the presence of layered structures in the
dislocation region (see Figure 10b) and lattice distortions in the high-resolution image (see
Figure 10c) confirm the existence of stacking faults (SFs) resulting from the interaction
between SFs and a large number of dislocations. This interaction severely hindered the
plastic deformation process, thereby improving the YS [50,51]. Additionally, a twin–twin
interaction was observed within the impact specimen (see Figure 10d,e), which also con-
tributed to strengthening of the AZ31 alloy. In addition to dislocations and twinning,
Figure 10g reveals the presence of numerous nanoscale second-phase particles and some
DRXed grains. Detailed EDS mapping indicated that these second particles were in the
Al-Mn phases. Most of these particles were located near dislocations and hindered the
movement of dislocations to some extent, thus enhancing these properties as well. In
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addition, in light of Figure 2, which exhibited lots of fine grains, a decrease in grain size
by DRX enhanced the YS according to the well-known Hall–Petch equation. In the case of
quasi-static compression at low strain rates, the YS and CS of as-rolled samples remained
low. However, when the strain rate reached a medium level and the sample still did not
fracture after impact, both the YS and CS increased significantly (i.e., R20 sample). When the
strain rate reached a high enough level that it caused specimen failure, the corresponding
strength decreased dramatically, and the alloy exhibited negative strain rate sensitivity [52].
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Figure 11 illustrates the Vickers hardness of AZ31 alloys subjected to different rolling
reductions after impact. By examining the OM presented in Figure 1 and correlating it with
these hardness values, it became apparent that the hardness values of all samples increased
significantly with higher strain rates. However, at strain rates of 1400 s−1, 2000 s−1, and
2400 s−1, the hardness values did not exhibit a positive strain rate sensitivity. Specifically,
both the R0 and R30 samples consistently exhibited hardness values of approximately 70 HV
after impact. In contrast, the hardness values of the R10 and R20 samples demonstrated
a negative strain rate sensitivity with an increase in strain rate from 1400 s−1 to 2000 s−1.
This phenomenon was attributed to the significant increase in grain size observed in the
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R10 and R20 samples following impact at a strain rate of 2000 s−1. It is noteworthy that
despite all samples fracturing at a strain rate of 2400 s−1, the hardness measurement of the
fractured sample indicates that the hardness value remained higher than the value prior
to impact. This suggests that a substantial amount of deformation energy was absorbed
by the sample prior to fracture/failure. Moreover, it is worth emphasizing that Figure 11
exhibits a significant hardness error bar for the R10 sample following impact at a strain
rate of 2400 s−1. Correlating this with the OM shown in Figure 1n, it becomes evident
that the microstructure of the sample became highly heterogeneous after impact, primarily
due to the presence of numerous shear bands. These measurements further support the
well-established Hall–Petch relationship between hardness and grain size [53].
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Further examination of the shear band is presented in Figure 12. Although the grains
within the shear band remained unevenly distributed, their size was significantly smaller
compared to previous structures. Additionally, some nanocrystals and numerous nanoscale
second phases in the shear band, as depicted in Figure 12b,d, contributed to the im-
proved performance. However, at high strain rates, molten metal can be seen, as shown in
Figure 12d (indicated by the red arrow), which, due to the local generation of heat during
impact, resulted in limited heat dissipation and elevated temperatures within the shear
band. Moreover, Figure 12b,d highlight the presence of micro-cracks surrounding specific
grains, as indicated by the orange arrows. These micro-cracks have a tendency to propa-
gate along adiabatic shear bands and can act as precursors to failure [54,55], providing an
explanation for the fracture at the strain rate of 2400 s−1.

In summary, when the as-rolled AZ30 alloy was subjected to deformation at high strain
rates, a substantial number of deformation twins were generated, leading to an increase
in dislocation density and noticeable work hardening. Concurrently, shear bands formed
as dislocations slipped along specific GBs, resulting in the accumulation and interaction
of dislocations, thereby enhancing the final performance. Moreover, due to the limited
dissipation of heat, there was a rapid rise in temperature during short impact, leading to
grain recrystallization, the occurrence of molten metal, and enhanced work hardening. All
these factors contributed to a reduction in the AGS and an improvement in the mechanical
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properties. Additionally, the continued development of adiabatic shear bands was accom-
panied by the formation of cracks, which led to the failure and fragmentation of the alloys
at excessively high strain rates.
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4. Conclusions

In this study, we conducted a comprehensive investigation of the dynamic impact
behavior of AZ31 alloys with different rolling reductions and subjected them to different
strain rates. Based on the above analysis and discussion of the microstructure and me-
chanical properties, the following conclusions can be drawn. With an escalation in strain
rate, the formation of twins promoted DRX, and the microstructure became heterogeneous.
These twins showed a remarkable effect regarding the modification of the orientation of
neighboring grains. Importantly, at very high strain rates, the specimens experienced
fractures, resulting in the formation of numerous adiabatic shear bands and deformation
twins. In addition, a positive strain rate sensitivity was observed in the mechanical prop-
erties of the specimens prior to fracture, with the 20% rolling reduction alloy exhibiting
the highest strength at a strain rate of 2000 s−1. This increase in strength was attributed
primarily to the combined influence of grain refinement, numerous dislocation formations,
and profuse precipitates.
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