Morphology Modulation of ZnMn2O4 Nanoparticles Deposited In Situ on Carbon Cloth for Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.H.; Li, J.P.; Meng, T.; Dong, S. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor. Small 2023, 20, 2308804. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Senthil, R.A.; Sun, Y.; Kumar, T.R.; Pan, J. Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J. Power Sources 2022, 520, 230886. [Google Scholar] [CrossRef]
- Rosaiah, P.; Prakash, N.G.; Divya, P.; Sambasivam, S.; Shkir, M.; Algarni, H.; Ko, T.J. One-pot synthesis of flower-like Ni-Co/reduced graphene oxide layered double hydroxide nanocomposites as advanced electrodes for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 56, 106133. [Google Scholar] [CrossRef]
- Li, T.P.; Hu, Y.T.; Zhang, J.X.; Li, H.J.; Fang, K.; Wang, J.W.; Wang, Z.; Xu, M.; Zhao, B. Doping effect and oxygen vacancy engineering in nickel-manganese layered double hydroxides for high-performance supercapacitors. Nano Energy 2024, 126, 109690. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; He, Z.; Zhang, Z.; Fan, L.; Wang, S. Green fabrication of pore-modulated carbon aerogels using a biological template for high-energy density supercapacitors. J. Mater. Chem. A 2023, 11, 20011–20020. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, P.; Liu, H.; Yan, L.; Song, H.; Liu, D.; Zhao, X. Metal-organic framework derived porous flakes of cobalt chalcogenides (CoX, X = O, S, Se and Te) rooted in carbon fibers as flexible electrode materials for pseudocapacitive energy storage. Electrochim. Acta 2021, 369, 137681. [Google Scholar] [CrossRef]
- Hu, H.W.; Yang, C.; Chen, F.Y.; Li, J.H.; Jia, X.L.; Wang, Y.T.; Zhu, X.L.; Man, Z.M.; Wu, G.; Chen, W.X. High-Entropy Engineering Reinforced Surface Electronic States and Structural Defects of Hierarchical Metal Oxides@Graphene Fibers toward High-Performance Wearable Supercapacitors. Adv. Mater. 2024, 2406483. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.H.; Wang, K.; Cao, J.; Zhang, M.; Lin, F.; Ling, M.; Wang, M.J.; Liang, C.D.; Chen, J. Recent Progress of Self-Supported Metal Oxide Nano-Porous Arrays in Energy Storage Applications. Small 2023, 19, 2302786. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, A.Z.; Zhang, Y.; Li, W.; Qin, Y.J. Evaporation-induced hydrated graphene/polyaniline/carbon cloth integration towards high mass loading supercapacitor electrodes. Chem. Eng. J. 2022, 445, 13627. [Google Scholar] [CrossRef]
- Li, Q.Q.; Liu, M.J.; Huang, F.Z.; Zuo, X.Q.; Wei, X.; Li, S.K.; Zhang, H. Co9S8@MnO2 core–shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chem. Eng. J. 2022, 437, 135494. [Google Scholar] [CrossRef]
- Fu, M.; Zhu, Z.; Chen, W.; Yu, H.; Lv, R. Carbon cloth supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors. Carbon 2022, 199, 520–528. [Google Scholar] [CrossRef]
- Yin, X.; Li, H.; Yuan, R.; Lu, J. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors. J. Mater. Sci. Technol. 2021, 81, 162–174. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, X.; Su, F.; Lyu, X.; Miao, M. Rational Design of ZnMn2O4 Quantum Dots in a Carbon Framework for Durable Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2022, 59, 5752–5759. [Google Scholar]
- Wang, C.; Xiao, B.H.; Huang, J.; Xiao, K.; Liu, Z.Q. Microstructure Strain of ZnMn2O4 Spinel by Regulation of Tetrahedral Sites for High-Performance Aqueous Zinc-Ion Battery. Adv. Funct. Mater. 2024, 1616–3028, 2405680. [Google Scholar] [CrossRef]
- Jiu, H.F.; Zhang, Q.; Zhang, L.X.; Xu, Q.W.; Wang, C.L. ZnMn2O4@Mo6S9.5 hierarchical mesoporous microflowers for Li-ion batteries. Microporous Mesoporous Mater. 2022, 339, 111998. [Google Scholar] [CrossRef]
- Xu, W.Q.; Song, C.Z.; Qi, R.J.; Zheng, Y.H.; Wu, Y.N.; Cheng, Y.; Peng, H.; Lin, H.C.; Huang, R. In Situ Formed Core–Shell LiZnxMn2−xO4@ZnMn2O4 as Cathode for Li-Ion Batteries. ACS Appl. Mater. Inter. 2022, 14, 55528–55537. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.S.; Baji, D.S.; Nair, S.; Santhanagopalan, D. Stabilization of ZnMn2O4 Nanoparticle Electrodes by Electrolyte Modulations and Improved Li-Ion Storage. Energy Fuels 2023, 37, 12436–12444. [Google Scholar] [CrossRef]
- Gao, H.; Tan, Y.; Wang, S.; Sun, L.; Jin, J.; Zhao, Y.; Zhao, Y. High-performance zinc-ion batteries cathode material ZnMn2O4 modified by polypyrrole and reduced graphene oxide. J. Alloys Compd. 2023, 968, 171858. [Google Scholar] [CrossRef]
- Lyu, L.; Kim, C.W.; Seong, K.-d.; Kang, J.; Liu, S.; Yamauchi, Y.; Piao, Y. Defect engineering induced heterostructure of Zn-birnessite@spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor. Chem. Eng. J. 2022, 430, 133115. [Google Scholar] [CrossRef]
- Zuo, F.; Xie, H.D.; Gao, J.M.; Chen, K.; Yang, H.Y.; Wang, K.K.; Meng, L.Y.; Liu, H. Structural modulation of multi-layer hollow microspheres ZnMn2O4 and their application in supercapacitors. Appl. Surf. Sci. 2024, 669, 160395. [Google Scholar] [CrossRef]
- Borel, J.P.; Châtelain, A. Surface stress and surface tension: Equilibrium and pressure in small particles. Surf. Sci. 1985, 156, 572–579. [Google Scholar] [CrossRef]
- Marks, L.D. Shape, thermodynamics and kinetics of nanoparticles. In Encyclopedia of Nanomaterials, 1st ed.; Yin, Y., Lu, Y., Xia, Y., Eds.; Elsevier: Oxford, UK, 2023; pp. 383–417. [Google Scholar]
- Pawar, K.; Mirzaei, A.; Kim, S.S.; Kim, H.W. Hollow CuCo2O4 nanocages engineered by Kirkendall effect for room-temperature sensing of ammonia gas. Chem. Eng. J. 2024, 15, 148890. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, X.L.; Li, Q.W.; Lv, K.; Liu, J.S.; Hang, X.K.; Bayaguud, A. Mechanism research progress on transition metal compound electrode materials for supercapacitors. Rare Met. 2024. [Google Scholar] [CrossRef]
- Su, J.H.; Zhang, Y.; Meng, Y.T.; Guan, X.H.; Lu, M. Synthesis of CoNi@ZIF-LDH with hierarchical porous structure based on structural design and site-directed transformation strategy assisted hybrid supercapacitor with high energy density. J. Alloys Compd. 2023, 957, 170387. [Google Scholar] [CrossRef]
- Ding, Y.J.; Yan, Z.X.; Wang, G.S.; Sang, H.Q.; Xu, Z.H.; Li, W.H. Regulating the Oxygen Vacancy and Electronic Structure of NiCo Layered Double Hydroxides by Molybdenum Doping for High-Power Hybrid Supercapacitors. Small 2023, 20, 2306382. [Google Scholar] [CrossRef] [PubMed]
- Zardkhoshoui, A.M.; Ameri, B.; Davarani, S.S.H. Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors. Chem. Eng. J. 2022, 435, 135170. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Yan, Y.; Huo, P.; Wang, X. MOF-derived NiZnCo-P nano-array for asymmetric supercapacitor. Chem. Eng. J. 2022, 446, 137108. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, S.; Xu, Z.; Yin, S. Multicomponent Hybridization Transition Metal Oxide Electrode Enriched with Oxygen Vacancy for Ultralong-Life Supercapacitor. Small 2023, 19, 2302479. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.R.; Peng, G.; Li, Y.; Iqbal, R.; Saleem, A.; Wang, G.; Khan, A.S.; Ali, M.; Tahir, M.; Assiri, M.A.; et al. Hierarchical NiCo@NiOOH@CoMoO4 Core–Shell Heterostructure on Carbon Cloth for High-Performance Asymmetric Supercapacitors. Small 2023, 19, 2304686. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, Z.; Zhu, L.; Li, C.; Zhu, X.; Sun, Y. High mass loading porous CoNi2S4 nanosheets with ultrahigh areal capacity for flexible supercapacitors. J. Mater. Chem. A 2024, 12, 1816–1825. [Google Scholar] [CrossRef]
- Peinado-Pérez, J.J.; López-Escalante, M.C.; Martín, F. Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films. Nanomaterials 2023, 13, 3017. [Google Scholar] [CrossRef]
- Xie, P.; Wang, X.; Qian, Z.; Liu, T.; Yu, J.; Zhang, L. In-situ synthesis of FeS/N, S co-doped carbon composite with electrolyte-electrode synergy for rapid sodium storage. J. Colloid Interface Sci. 2023, 640, 791–800. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Han, H.; Kim, K.C.; Bae, S. Synthesis of ZIF-67-derived CoS2@graphitic carbon/reduced graphene oxide for supercapacitor application. Chem. Eng. J. 2023, 471, 144608. [Google Scholar] [CrossRef]
- Aruchamy, K.; Nagaraj, R.; Manohara, H.M.; Nidhi, M.R.; Mondal, D.; Ghosh, D.; Nataraj, S.K. One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Mater. Sci. Eng. B 2020, 252, 114481. [Google Scholar] [CrossRef]
- Liu, J.; Ren, X.; Gao, Y.; Liu, L. Ammonium ion intercalation and oxygen-rich vacancies in birnessite-type MnO2 for supercapacitor and oxygen evolution applications. New J. Chem. 2024. [Google Scholar] [CrossRef]
- Sannasi, V.; Subbian, K. A facile synthesis of ZnMn2O4/Mn2O3 composite nanostructures for supercapacitor applications. Ceram. Int. 2021, 47, 12300–12309. [Google Scholar] [CrossRef]
- Bhosale, R.P.; Kumbhar, S.S.; Bhosale, S.B.; Salunkhe, R.R.; Kadam, V.A.; Pardhi, S.P.; Gholap, S.S.; Lokhande, C.D.; Jamadade, V.S. Morphology modulation of MnFe2O4 thin film electrode for enhanced performance of hybrid supercapacitor. J. Energy Storage 2024, 86, 111146. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Sun, X.; Wang, J.; Yang, J.; Xu, X.; Hu, Q.; Sun, Y.; Wang, Z.; Kang, S.; et al. The rational design of Fe2O3@MnO2 derived from Fe[Fe(CN)6]∙4H2O as negative electrode for asymmetric supercapacitor. J. Energy Storage 2024, 96, 112676. [Google Scholar] [CrossRef]
- Samiei, E.; Mohammadi, S.; Torkzadeh-Mahani, M. Effect of gamma-irradiation on electrochemical properties of ZnCo2O4-rGO for supercapacitor application. Diamond Relat. Mater. 2022, 127, 109157. [Google Scholar] [CrossRef]
- Ma, L.; Li, F.; Zhou, M.; Dong, J.; Luo, H.; Zhang, W.; Zhao, W.; Li, X.; Jiang, Z.; Huang, Y. Phase reconfiguration of heterogeneous CoFeS/CoNiS nanoparticles for superior battery-type supercapacitors. J. Energy Chem. 2024, 96, 217–225. [Google Scholar] [CrossRef]
- Shen, B.; Liao, X.; Hu, X.; Ren, H.T.; Lin, J.H.; Lou, C.W.; Li, T.T. A hollow nano-flower NiCo2O4@Nb2CTx MXene heterostructure via interfacial engineering for high-performance flexible supercapacitor electrodes. J. Mater. Chem. A 2023, 11, 16823–16837. [Google Scholar] [CrossRef]
- Marje, S.J.; Tyagaraj, H.B.; Hwang, S.K.; Rama Raju, G.S.; Ranjith, K.S.; Chodankar, N.R.; Huh, Y.S.; Han, Y.K. Transition nickel/cobalt phosphates: An advanced cathode for hybrid supercapacitors. J. Mater. Chem. A 2023, 11, 14586–14613. [Google Scholar] [CrossRef]
- Liang, J.Y.; Luo, S.; Pan, D.; Xu, P.F.; Zhan, F.; Li, J. Metal organic framework derived CoNiOOH nanorods anchored on carbon cloth as electrodes for asymmetric supercapacitors. Chem. Eng. J. 2023, 464, 142646. [Google Scholar] [CrossRef]
- Pervez, S.; Iqbal, M.Z. Capacitive and Diffusive Contributions in Supercapacitors and Batteries: A Critique of b-Value and the ν–ν1/2 Model. Small 2023, 19, 2305059. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Peng, J.; Zeng, J.; Zheng, L.; Chen, H. B/N co-doped porous carbon nanosheets with high B/N doping contents and excellent supercapacitor performance. J. Energy Storage 2024, 87, 111514. [Google Scholar] [CrossRef]
- Zhu, M.; Tu, C.; Li, X.; Luo, Q.; Li, S. In situ formation of MnO@N-doped carbon for asymmetric supercapacitor with enhanced cycling performance. Mater. Chem. Front. 2022, 6, 491–502. [Google Scholar] [CrossRef]
- Emin, A.; Song, X.; Du, Y.; Chen, Y.; Yang, M.; Zou, S.; Fu, Y.; Li, J.; Li, Y.; He, D. One-step electrodeposited Co and Mn layered double hydroxides on Ni foam for high-performance aqueous asymmetric supercapacitors. J. Energy Storage 2022, 50, 104667. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Zhang, D.; Chen, J.; Zhang, S.; Zhang, S.; Yu, J.; Wu, Q.; Li, Q. Toward Enhanced Electrochemical Performance by Investigation of the Electrochemical Reconstruction Mechanism in Co2V2O7 Hexagonal Nanosheets for Hybrid Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 8106–8114. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Nayak, A.K.; Upadhyay, P.; Patra, S.; Subudhi, S.; Mahapatra, A.; Mahanandia, P. Hydrothermal synthesis of ZnFe2O4 anchored graphene and activated carbon as a new hybrid electrode for high-performance symmetric supercapacitor applications. Diamond Relat. Mater. 2023, 139, 110300. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Wei, D.; Cai, Z.; Song, Y.; Wang, X. Design and synthesis of K-doped tremella-like δ-MnO2 for high-performance supercapacitor. J. Energy Storage 2023, 72, 108468. [Google Scholar] [CrossRef]
- Devi, R.; Patra, J.; Tapadia, K.; Chang, J.K.; Maharana, T. Arrangement of ZnFe2O4@PPy nanoparticles on carbon cloth for highly efficient symmetric supercapacitor. J. Taiwan Inst. Chem. Eng. 2022, 138, 104474. [Google Scholar] [CrossRef]
- Rosaiah, P.; Maaouni, N.; Goddati, M.; Lee, J.; Sambasivam, S.; Karim, M.R.; Alnaser, I.A.; Reddy, V.R.M.; Kim, W.K. Surface design and engineering of ZnMn2O4/RGO composites for highly stable supercapacitor devices. J. Energy Storage 2024, 76, 109636. [Google Scholar] [CrossRef]
- Cheng, Y.; Xia, K.; Li, H.; Liu, P.; Zhao, Z.; Xu, G.; Wahid, F.; Wang, H. One-pot synthesis of NiO-MnCo2O4 heterostructure hollow spheres via template-free solvothermal method for high-performance supercapacitors. Colloids Surf. A 2023, 669, 131544. [Google Scholar] [CrossRef]
- Deva, P.; Ravi, S.; Manoharan, C. Synthesis of mesoporous structured ZnMn2O4 nanoparticles as electrode for supercapacitor application. Emergent Mater. 2024. [Google Scholar] [CrossRef]
- Deva, P.; Ravi, S.; Manikandan, E. Facile synthesis of CuMn2O4 nanoparticles for efficient of high performance electrode materials for supercapacitor application. Ceram. Int. 2024, 50 Pt B, 11916–11927. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Feng, X.; Zhou, J.; Zhao, G.; Cheng, K.; Yu, H.; Li, H.; Yang, H.; Zhao, D.; Wang, X. Morphology Modulation of ZnMn2O4 Nanoparticles Deposited In Situ on Carbon Cloth for Supercapacitors. Metals 2024, 14, 841. https://doi.org/10.3390/met14080841
Li C, Feng X, Zhou J, Zhao G, Cheng K, Yu H, Li H, Yang H, Zhao D, Wang X. Morphology Modulation of ZnMn2O4 Nanoparticles Deposited In Situ on Carbon Cloth for Supercapacitors. Metals. 2024; 14(8):841. https://doi.org/10.3390/met14080841
Chicago/Turabian StyleLi, Changxing, Xuansheng Feng, Jixue Zhou, Guochen Zhao, Kaiming Cheng, Huan Yu, Hang Li, Huabing Yang, Dongqing Zhao, and Xitao Wang. 2024. "Morphology Modulation of ZnMn2O4 Nanoparticles Deposited In Situ on Carbon Cloth for Supercapacitors" Metals 14, no. 8: 841. https://doi.org/10.3390/met14080841
APA StyleLi, C., Feng, X., Zhou, J., Zhao, G., Cheng, K., Yu, H., Li, H., Yang, H., Zhao, D., & Wang, X. (2024). Morphology Modulation of ZnMn2O4 Nanoparticles Deposited In Situ on Carbon Cloth for Supercapacitors. Metals, 14(8), 841. https://doi.org/10.3390/met14080841