W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Synthesis of Core–Shell Powders
2.3. Dehydration Temperature of the Shells
2.4. Sintering of Powders
2.5. Microstructure Characterizations
3. Characteristics of the Doped Powders and the Shells
3.1. Morphology and Phase Composition of the Doped Powders
3.2. Core–Shell Characteristic of the Doped Powders
4. Macroscopic Migration of the Shell Material—From the Perspective of Microstructure Evolution
5. Macroscopic Migration Mechanism of the Shell—From the Perspective of Simulation
5.1. Simulation Method
5.2. Model Variables
5.3. Models and Constraints Conditions
5.4. Model Construction and Solution
5.5. Simulation Results
6. Conclusions
- (1)
- CeO2·2H2O was successfully coated on the surface of W particles, forming a core–shell structure with W particles as the core and CeO2·2H2O as the granular and porous shell, prepared by wet chemical method. The obtained doped powder contained about 3.97% CeO2, which closely matched the intended design content of 4%.
- (2)
- When sintered at 800 °C, the shell of the core–shell power underwent minimal macroscopic migration, indicative of the early sintering stage. Upon reaching 1100 °C, the shell material began to migrate in the core–shell system, concentrating around individual doped powders. At 1300 °C, some of the sintering powders displayed sintering necks composed of shell materials, while the core materials started to contact and entered their own sintering stage. Upon increasing the sintering temperature to 1800 °C, both the shell and core materials underwent migration, leading to the final stage of sintering and resulting in a dense sintered bulk.
- (3)
- From a simplification standpoint, the formation and growth of the sintering neck in the four-sphere model could be divided into seven stages: water release and sintering neck formation between CeO2 shell particles; growth of sintering necks between CeO2 shell particles and formation between adjacent CeO2 shells; fracture of the sintering necks of CeO2 shells and reduction of core–shell porosity; pore spheroidization; pore disappearance; contact and sintering neck formation between W particle; and growth of W sintering necks and CeO2 particles spheroidization.
- (4)
- The variation in the sintering neck radius indicated that the core–shell structure of W–CeO2 exhibited viscous flow behavior throughout the sintering process.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manikandan, R.; Raja Annamalai, A. Tungsten Heavy Alloys Processing via Microwave Sintering, Spark Plasma Sintering, and Additive Manufacturing: A Review. Processes 2022, 10, 2352. [Google Scholar] [CrossRef]
- Coenen, J.; Antusch, S.; Aumann, M.; Biel, W.; Du, J.; Engels, J.; Heuer, S.; Houben, A.; Hoeschen, T.; Jasper, B. Materials for DEMO and reactor applications-boundary conditions and new concepts. Phys. Scr. 2016, T167, 014002. [Google Scholar] [CrossRef]
- Nogami, S.; Nogami, S.; Fukuda, M.; Rieth, M.; Rieth, M. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan. J. Nucl. Mater. 2021, 543, 152506. [Google Scholar] [CrossRef]
- Yin, C.; Terentyev, D.; Zhang, T.; Nogami, S.; Antusch, S.; Chang, C.-C.; Petrov, R.H.; Pardoen, T. Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests. Int. J. Refract. Met. Hard Mater. 2021, 95, 105464. [Google Scholar] [CrossRef]
- Gaganidze, E.; Chauhan, A.; Schneider, H.-C.; Terentyev, D.; Terentyev, D.; Terentyev, D. Effect of irradiation temperature on the fracture-mechanical behaviour of tungsten irradiated to 1 dpa. J. Nucl. Mater. 2021, 556, 153200. [Google Scholar] [CrossRef]
- Hu, X. Recent progress in experimental investigation of neutron irradiation response of tungsten. J. Nucl. Mater. 2022, 568, 153856. [Google Scholar] [CrossRef]
- Yucheng, W.U. The routes and mechanism of plasma facing tungsten materials to improve ductility. Acta Metall. Sin. 2019, 55, 171–180. [Google Scholar]
- Chen, Z.; Yang, J.; Zhang, L.; Jia, B.; Qin, M. Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering. Mater. Charact. 2021, 175, 111092. [Google Scholar] [CrossRef]
- Yao, G.; Liu, X.; Zhao, Z.; Luo, L.; Cheng, J.; Zan, X.; Wang, Z.; Xu, Q.; Wu, Y. Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement. Mater. Des. 2021, 212, 110249. [Google Scholar] [CrossRef]
- Antolak-Dudka, A.; Oleszak, D.; Zielinski, R.; Kulik, T. W-Y2O3 composites obtained by mechanical alloying and sintering. Adv. Powder Technol. 2021, 32, 390–397. [Google Scholar] [CrossRef]
- Suman, V.; Maurya, R.S.; Debata, M.; Chaira, D. Effect of Si addition on phase evolution and microstructure in Y2O3 dispersed tungsten (W) and W-based alloys synthesized via mechanical alloying and consecutive conventional sintering. Mater. Today Commun. 2022, 31, 103341. [Google Scholar] [CrossRef]
- Dong, Z.; Ma, Z.Q.; Yu, L.M.; Liu, Y.C. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nat. Commun. 2021, 12, 5052. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Sun, H.; Tang, K.; Xi, X.; Nie, Z. Characterization of W-Er2O3 alloy pre-pared by co-deposition method and spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2023, 114, 106253. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, N.; Ma, Z.; Liu, C.; Guo, Q.; Yamauchi, Y.; Alamri, H.R.; Alothman, Z.A.; Shahriar, A.; Hossain, M.; et al. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy. Int. J. Refract. Met. Hard Mater. 2017, 69, 266–272. [Google Scholar] [CrossRef]
- Hu, W.; Dong, Z.; Ma, Z.; Liu, Y. W–Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics. J. Alloys Compd. 2020, 821, 153461. [Google Scholar] [CrossRef]
- Dai, Y.; Lu, P.; Cao, Z.; Campbell, C.T.; Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331. [Google Scholar] [CrossRef] [PubMed]
- Eom, N.; Messing, M.E.; Johansson, J.; Deppert, K. Sintering Mechanism of Core@Shell Metal@Metal Oxide Nanoparticles. J. Phys. Chem. C 2021, 125, 16220–16227. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Hou, Q.Y.; Cui, Z.Q.; Zhang, N.F.; Luo, L.M.; Huang, Z.Y. Microstructure and properties of La2O3-doped tungsten-based bulk material and its densification mechanism during spark plasma sintering process. Fusion Eng. Des. 2023, 188, 113420. [Google Scholar] [CrossRef]
- Grulke, E.; Reed, K.; Beck, M.; Huang, X.; Cormack, A.; Seal, S. Nanoceria: Factors affecting its pro- and anti-oxidant properties. Environ. Sci. Nano 2014, 1, 429–444. [Google Scholar] [CrossRef]
- Abellan, P.; Moser, T.H.; Lucas, I.T.; Grate, J.W.; Evans, J.E.; Browning, N.D. The formation of cerium(III) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Adv. 2017, 7, 3831–3837. [Google Scholar] [CrossRef]
- Tok, A.I.Y.; Boey, F.Y.C.; Dong, Z.; Sun, X.L. Hydrothermal synthesis of CeO2 nano-particles. J. Mater. Process. Technol. 2007, 190, 217–222. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, Y.; Qiao, D.; Liu, H. Morphology-controllable synthesis and characterization of CeO2 nanocrystals. Particuology 2011, 9, 170–173. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics, Inc.: Eden Praire, MI, USA, 1995. [Google Scholar]
- Subramanian, N.D.; Moreno, J.; Spivey, J.J.; Kumar, C. Copper Core-Porous Manganese Oxide Shell Nanoparticles. J. Phys. Chem. C 2011, 115, 14500–14506. [Google Scholar] [CrossRef]
- Amarjargal, A.; Tijing, L.D.; Im, I.-T.; Kim, C.S. Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem. Eng. J. 2013, 226, 243–254. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Wei, Y.; Zhang, R. Core-shell structure effect on CeO2 and TiO2 supported WO3 for the NH3-SCR process. Mol. Catal. 2020, 485, 110822. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Melendres, C.A.; Mansour, A.N. X-ray absorption spectroscopy study of the local structure of heavy metal ions incorporated into electrodeposited nickel oxide films. J. Electrochem. Soc. 1999, 146, 607–614. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Melendres, C.A.; Mansour, A.N. An X-ray absorption study of the local structure of cerium in electrochemically deposited thin films. Thin Solid Film. 1999, 347, 178–183. [Google Scholar] [CrossRef]
- Izaki, M.; Saito, T.; Chigane, M.; Ishikawa, M.; Katayama, J.I.; Inoue, M.; Yamashita, M. Low temperature deposition of cerium dioxide film by chemical reaction. J. Mater. Chem. 2001, 11, 1972–1974. [Google Scholar] [CrossRef]
- Haijiang, W.; Jiantang, L. Characterization and electrochemical corrosion behavior of cerium conversion coating on hot-dip galvanized steel. Chin. J. Nonferrous Met. 2011, 21, 1009–1015. [Google Scholar]
- Kobayashi, Y.; Fujiwara, Y. Chemical deposition of cerium oxide thin films on nickel substrate from aqueous solution. J. Alloys Compd. 2006, 408–412, 1157–1160. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Muñoz, J.A. Ce conversion and electrolysis surface treatments applied to A3xx.x alloys and A3xx.x/SiCp composites. Appl. Surf. Sci. 2007, 253, 3334–3344. [Google Scholar] [CrossRef]
- Xie, F.Y.; Gong, L.; Liu, X.; Tao, Y.T.; Zhang, W.H.; Chen, S.H.; Meng, H.; Chen, J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 112–118. [Google Scholar] [CrossRef]
- Bouvard, O.; Krammer, A.; Schüler, A. In situ core-level and valence-band photoelectron spectroscopy of reactively sputtered tungsten oxide films. Surf. Interface Anal. 2016, 48, 660–663. [Google Scholar] [CrossRef]
- Bussolotti, F.; Lozzi, L.; Passacantando, M.; La Rosa, S.; Santucci, S.; Ottaviano, L. Surface electronic properties of polycrystalline WO3 thin films: A study by core level and valence band photoemission. Surf. Sci. 2003, 538, 113–123. [Google Scholar] [CrossRef]
- Hughes, A.E.; Taylor, R.J.; Hinton, B.R.W.; Wilson, L. XPS and SEM characterization of hydrated cerium oxide conversion coatings. Surf. Interface Anal. 1995, 23, 540–550. [Google Scholar] [CrossRef]
- Weast, R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Gebert, E.; Ackermann, R.J. Substoichiometry of tungsten trioxide; the crystal systems of WO3.00, WO2.98, and WO2.96. Inorg. Chem. 1966, 5, 136–142. [Google Scholar] [CrossRef]
- Yu, P.; O’Keefe, T.J. The phase stability of cerium species in aqueous systems III. the Ce(III/IV)-H2O-H2O2/O2 systems dimeric Ce(IV) species. J. Electrochem. Soc. 2006, 153, C80–C85. [Google Scholar] [CrossRef]
- Shamsuddin, M. Physical Chemistry of Metallurgical Processes, 2nd ed.; Springer Cham: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Free, M.L. Hydrometallurgy: Fundamentals and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhang, R.-J.; Chen, Z.-W.; Fang, W.; Qu, X.-H. Thermodynamic consistent phase field model for sintering process with multiphase powders. Trans. Nonferrous Met. Soc. China 2014, 24, 783–789. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Y.; Zhang, J.; Conejo, A.N.; Liu, Z. The grain growth and grain boundary migrations during solid-phase sintering of Fe2O3: Experiments and simulations. Chem. Eng. Sci. 2022, 262, 118038. [Google Scholar] [CrossRef]
- Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M. Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows. Transp. Porous Media 2010, 82, 463–483. [Google Scholar] [CrossRef]
- Marchand, A.; Weijs, J.H.; Snoeijer, J.H.; Andreotti, B. Why is surface tension a force parallel to the interface? Am. J. Phys. 2011, 79, 999–1008. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, C.; Feng, J.J.; Ollivier-Gooch, C.F.; Hu, H.H. Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 2006, 219, 47–67. [Google Scholar] [CrossRef]
- Tianshu, Z.; Hing, P.; Huang, H.; Kilner, J. Early-stage sintering mechanisms of Fe-doped CeO2. J. Mater. Sci. 2002, 37, 997–1003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, N.; Wang, C.; Hou, Q. W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage. Metals 2024, 14, 842. https://doi.org/10.3390/met14080842
Yang H, Zhang N, Wang C, Hou Q. W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage. Metals. 2024; 14(8):842. https://doi.org/10.3390/met14080842
Chicago/Turabian StyleYang, Haitao, Ningfei Zhang, Chan Wang, and Qingyu Hou. 2024. "W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage" Metals 14, no. 8: 842. https://doi.org/10.3390/met14080842
APA StyleYang, H., Zhang, N., Wang, C., & Hou, Q. (2024). W–CeO2 Core–Shell Powders and Macroscopic Migration of the Shell via Viscous Flow during the Initial Sintering Stage. Metals, 14(8), 842. https://doi.org/10.3390/met14080842