Investigating the Synergistic Corrosion Protection Effect of an Alloy Element and Corrosion Inhibitor on Steel Reinforcement Using Machine Learning and Electrochemical Impedance Spectroscopy
Abstract
:1. Introduction
2. Methods
2.1. Establishment of Quantitative Predictive Model
2.2. Validation of Quantitative Prediction Model
3. Results and Discussion
3.1. Preliminary Machine Learning
3.2. Machine Learning after Data Cleaning
3.3. Establishment of Prediction Model
3.4. Validation of the Prediction Model
4. Conclusions
- (1)
- The Gaussian kernel support vector machine model (SVR.rbf), obtained through data processing and the analysis and evaluation of machine learning models, exhibited excellent predictive accuracy and stability. The correlation coefficient between the prediction results and experimental values of polarization resistance of the steel reinforcement exceeded 0.85. This provides an accurate and efficient technical method for the prediction of polarization resistance under multi-factor coupling.
- (2)
- By means of the generalization prediction performance of machine learning models, they provide quantitative reference results for steel reinforcement composition design and corrosion inhibitor selection under actual service conditions. The addition of 1 wt% Cr to steel slightly increases its polarization resistance. However, when the Cr content reaches 3 wt%, the polarization resistance of the steel reinforcement increases significantly; when the Cr content reaches 5 wt%, in the range of pH 12.5~9.5 and containing 0~3.5 wt% chloride, the steel reinforcement’s corrosion is essentially negligible.
- (3)
- The addition of the corrosion inhibitor LDH-NO2 to concrete gradually reduces the corrosion rate of the steel reinforcement. Adding 0.2 wt% LDH-NO2 in the environment has a similar effect to adding 3 wt% Cr in the steel reinforcement, while adding 0.5 wt% LDH-NO2 is comparable to adding 4 wt% Cr.
- (4)
- The synergistic use of Cr and LDH-NO2 is more effective in the inhibition of steel reinforcement corrosion than their individual use. With a Cr content of 3 wt% and an LDH-NO2 concentration of 0.5 wt%, it can be ensured that the steel reinforcement’s corrosion is negligible in the range of pH 12.5~9.5 and containing 0~3.5 wt% chloride.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cr Content (wt%) | LDH-NO2 Dosage (wt%) | Cl− Concentration (wt%) | pH Value | Polarization Resistance (kΩcm2) | Ref. |
---|---|---|---|---|---|
0 | 0 | 0 | 13.3 | 75 | [20] |
0 | 0 | 0 | 13.3 | 262 | [20] |
0 | 0 | 0 | 12.5 | 1000 | [17] |
0 | 0 | 0 | 13.5 | 604 | [17] |
0 | 0 | 0 | 12.0 | 457 | [20] |
0 | 0 | 0 | 10.5 | 591 | [20] |
0 | 0 | 0 | 9.0 | 433 | [20] |
0 | 0 | 0 | 13.5 | 344 | [20] |
0 | 0 | 0 | 12.0 | 311 | [20] |
0 | 0 | 0 | 10.5 | 42 | [20] |
0 | 0 | 0 | 9.0 | 10 | [20] |
0 | 0 | 0.117 | 12.5 | 400 | [21] |
0 | 0 | 0.234 | 12.5 | 260 | [21] |
0 | 0 | 0.351 | 12.5 | 6 | [21] |
0 | 0 | 0.468 | 12.5 | 5 | [21] |
0 | 0 | 0.585 | 12.5 | 3 | [21] |
0 | 0 | 0.819 | 12.5 | 2 | [21] |
0 | 0 | 0.936 | 12.5 | 0.8 | [21] |
0 | 0 | 1.000 | 12.5 | 60 | [21] |
0 | 0 | 1.000 | 12.5 | 70 | [21] |
0 | 0 | 1.170 | 12.5 | 0.6 | [21] |
0 | 0 | 2.530 | 12.5 | 238 | [22] |
0 | 0 | 2.925 | 12.5 | 0.6 | [21] |
0 | 0 | 5.850 | 12.5 | 0.8 | [21] |
0 | 0 | 5.850 | 12.5 | 1 | [21] |
0.08 | 0 | 0 | 12.6 | 867 | [7] |
0.08 | 0 | 0.200 | 12.6 | 839 | [7] |
0.08 | 0 | 0.300 | 12.3 | 679 | [7] |
0.08 | 0 | 0.400 | 12.6 | 813 | [7] |
0.08 | 0 | 0.450 | 12.2 | 603 | [7] |
0.08 | 0 | 0.600 | 11.9 | 871 | [7] |
0.08 | 0 | 0.750 | 11.7 | 2 | [7] |
0.08 | 0 | 0.800 | 12.6 | 578 | [7] |
0.08 | 0 | 0.900 | 10.9 | 1 | [7] |
0.08 | 0 | 1.000 | 12.6 | 400 | [7] |
0.08 | 0 | 1.200 | 12.6 | 236 | [7] |
0.08 | 0 | 1.200 | 10.1 | 2 | [7] |
0.08 | 0 | 1.350 | 9.2 | 2 | [7] |
0.08 | 0 | 1.400 | 12.6 | 186 | [7] |
0.08 | 0 | 1.500 | 8.8 | 2 | [7] |
0.08 | 0 | 1.650 | 8.4 | 2 | [7] |
0.86 | 0 | 0 | 12.5 | 1800 | [18] |
0.86 | 0 | 0.117 | 12.5 | 2000 | [18] |
0.86 | 0 | 0.234 | 12.5 | 1000 | [18] |
0.86 | 0 | 0.351 | 12.5 | 8 | [18] |
0.86 | 0 | 0.468 | 12.5 | 7 | [18] |
0.86 | 0 | 0.585 | 12.5 | 12 | [21] |
0.86 | 0 | 0.819 | 12.5 | 4 | [18] |
0.86 | 0 | 0.936 | 12.5 | 2 | [18] |
0.86 | 0 | 1.000 | 12.5 | 90 | [18] |
0.86 | 0 | 1.000 | 12.5 | 240 | [18] |
0.86 | 0 | 1.170 | 12.5 | 1 | [18] |
0.86 | 0 | 2.925 | 12.5 | 0.7 | [21] |
0.86 | 0 | 5.850 | 12.5 | 2 | [21] |
0.86 | 0 | 5.850 | 12.5 | 1.5 | [21] |
1.00 | 0 | 3.530 | 12.5 | 393 | [19] |
1.50 | 0 | 0 | 12.6 | 963 | [19] |
1.50 | 0 | 1.000 | 12.6 | 618 | [19] |
1.50 | 0 | 2.000 | 12.6 | 508 | [19] |
1.50 | 0 | 2.200 | 12.6 | 476 | [19] |
1.50 | 0 | 2.600 | 12.6 | 348 | [19] |
1.50 | 0 | 2.800 | 12.6 | 211 | [19] |
1.50 | 0 | 3.000 | 12.6 | 161 | [19] |
3.00 | 0 | 4.530 | 12.5 | 650 | [19] |
5.06 | 0 | 1.000 | 12.6 | 1529 | [19] |
5.06 | 0 | 2.000 | 12.6 | 1238 | [19] |
5.06 | 0 | 3.000 | 12.6 | 1130 | [19] |
5.06 | 0 | 4.000 | 12.6 | 1000 | [19] |
5.06 | 0 | 5.000 | 12.6 | 800 | [19] |
5.06 | 0 | 6.000 | 12.6 | 600 | [19] |
5.06 | 0 | 7.000 | 12.6 | 400 | [19] |
5.06 | 0 | 7.200 | 12.6 | 310 | [19] |
5.06 | 0 | 7.400 | 12.6 | 170 | [19] |
5.06 | 0 | 7.600 | 12.6 | 146 | [19] |
5.73 | 0 | 0 | 12.5 | 3000 | [18] |
5.73 | 0 | 0.117 | 12.5 | 700 | [18] |
5.73 | 0 | 0.234 | 12.5 | 700 | [18] |
5.73 | 0 | 0.351 | 12.5 | 800 | [18] |
5.73 | 0 | 0.468 | 12.5 | 550 | [18] |
5.73 | 0 | 0.585 | 12.5 | 2353 | [18] |
5.73 | 0 | 0.819 | 12.5 | 1000 | [18] |
5.73 | 0 | 0.936 | 12.5 | 260 | [18] |
5.73 | 0 | 1.170 | 12.5 | 260 | [18] |
5.73 | 0 | 2.925 | 12.5 | 260 | [18] |
5.73 | 0 | 5.850 | 12.5 | 50 | [18] |
5.73 | 0 | 5.850 | 12.5 | 9 | [18] |
6.00 | 0 | 0 | 13.3 | 447 | [9] |
6.00 | 0 | 0 | 13.3 | 2067 | [9] |
10.36 | 0 | 0 | 9.0 | 2673 | [16] |
10.36 | 0 | 0 | 9.0 | 2055 | [20] |
10.36 | 0 | 0 | 10.5 | 2284 | [16] |
10.36 | 0 | 0 | 10.5 | 979 | [20] |
10.36 | 0 | 0 | 12.0 | 1770 | [16] |
10.36 | 0 | 0 | 12.0 | 481 | [20] |
10.36 | 0 | 0 | 13.3 | 1305 | [16] |
10.36 | 0 | 0 | 13.3 | 388 | [20] |
0.08 | 0.5 | 0.300 | 12.0 | 1148 | [15] |
0.08 | 0.5 | 0.450 | 11.5 | 1023 | [15] |
0.08 | 0.5 | 0.600 | 11.0 | 1004 | [15] |
0.08 | 0.5 | 0.750 | 10.7 | 839 | [15] |
0.08 | 0.5 | 0.900 | 10.7 | 935 | [15] |
0.08 | 0.5 | 1.200 | 10.6 | 974 | [15] |
0.08 | 0.5 | 1.350 | 10.6 | 947 | [15] |
0.08 | 0.5 | 1.500 | 10.6 | 134 | [15] |
0.08 | 0.5 | 1.650 | 10.0 | 31 | [15] |
Cr Content (wt%) | LDH-NO2 Dosage (wt%) | Cl− Concentration (wt%) | pH Value | Polarization Resistance (kΩcm2) |
---|---|---|---|---|
0.08 | 0 | 0 | 12.6 | 867 |
0.08 | 0 | 0.2 | 12.6 | 839 |
0.08 | 0 | 0.4 | 12.6 | 813 |
0.08 | 0 | 0.8 | 12.6 | 578 |
0.08 | 0 | 1.0 | 12.6 | 400 |
0.08 | 0 | 1.2 | 12.6 | 236 |
0.08 | 0 | 1.4 | 12.6 | 186 |
1.5 | 0 | 0 | 12.6 | 963 |
1.5 | 0 | 1.0 | 12.6 | 618 |
1.5 | 0 | 2.0 | 12.6 | 508 |
1.5 | 0 | 2.2 | 12.6 | 476 |
1.5 | 0 | 2.4 | 12.6 | 424 |
1.5 | 0 | 2.6 | 12.6 | 348 |
1.5 | 0 | 2.8 | 12.6 | 211 |
1.5 | 0 | 3.0 | 12.6 | 161 |
5.06 | 0 | 1.0 | 12.6 | 1529 |
5.06 | 0 | 2.0 | 12.6 | 1238 |
5.06 | 0 | 3.0 | 12.6 | 1130 |
5.06 | 0 | 4.0 | 12.6 | 1000 |
5.06 | 0 | 5.0 | 12.6 | 800 |
5.06 | 0 | 6.0 | 12.6 | 600 |
5.06 | 0 | 7.0 | 12.6 | 400 |
5.06 | 0 | 7.2 | 12.6 | 310 |
5.06 | 0 | 7.4 | 12.6 | 170 |
5.06 | 0 | 7.6 | 12.6 | 146 |
0.08 | 0.5 | 0.3 | 12.0 | 1148 |
0.08 | 0.5 | 0.45 | 11.5 | 1023 |
0.08 | 0.5 | 0.6 | 11.0 | 1004 |
0.08 | 0.5 | 0.75 | 10.7 | 839 |
0.08 | 0.5 | 0.9 | 10.7 | 935 |
0.08 | 0.5 | 1.2 | 10.6 | 974 |
0.08 | 0.5 | 1.35 | 10.6 | 947 |
0.08 | 0.5 | 1.5 | 10.6 | 134 |
0.08 | 0.5 | 1.65 | 10.0 | 31 |
0.08 | 0 | 0.3 | 12.3 | 679 |
0.08 | 0 | 0.45 | 12.2 | 603 |
0.08 | 0 | 0.6 | 11.9 | 871 |
0.08 | 0 | 0.75 | 11.7 | 1.672 |
0.08 | 0 | 0.9 | 10.9 | 1.362 |
0.08 | 0 | 1.2 | 10.1 | 1.846 |
0.08 | 0 | 1.35 | 9.2 | 1.822 |
0.08 | 0 | 1.5 | 8.8 | 2.495 |
0.08 | 0 | 1.65 | 8.4 | 1.556 |
References
- Ma, D.N.; Zhang, M.H.; Cui, J.Y. A review on the deterioration of mechanical and durability performance of marine-concrete under the scouring action. J. Build. Eng. 2023, 66, 105924–105953. [Google Scholar] [CrossRef]
- Rabi, M.; Shamass, R.; Cashell, K. Structural performance of stainless steel reinforced concrete members: A review. Constr. Build. Mater. 2022, 325, 126673–126686. [Google Scholar] [CrossRef]
- Qureshi, T.; Wang, G.; Mukherjee, S.; Islam, A.; Filleter, T.; Singh, C.V.; Panesar, D.K. Graphene-based anti-corrosive coating on steel for reinforced concrete infrastructure applications: Challenges and potential. Constr. Build. Mater. 2022, 351, 128947–128965. [Google Scholar] [CrossRef]
- Xu, L.; Xin, Y.; Ma, L.; Zhang, H.; Lin, Z.; Li, X. Challenges and solutions of cathodic protection for marine ships. Corros. Commun. 2021, 2, 33–40. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Jin, M.; Yan, Y.; Tang, J.; Jin, Z. A review of organic corrosion inhibitors for resistance under chloride attacks in reinforced concrete: Background, Mechanisms and Evaluation methods. Constr. Build. Mater. 2024, 433, 136583–136600. [Google Scholar] [CrossRef]
- Jin, Z.; Xiong, C.; Zhao, T.; Du, Y.; Zhang, X.; Li, N.; Yu, Y.; Wang, P. Passivation and depassivation properties of Cr-Mo alloyed corrosion-resistant steel in simulated concrete pore solution. Cem. Concr. Compos. 2022, 126, 104375–104387. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, D.; Wen, B.; Fu, Q.; Peng, G.; Su, L.; Blackwood, D.J. Initial-corrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction. Cem. Concr. Compos. 2021, 120, 104051–104064. [Google Scholar] [CrossRef]
- Ming, J.; Wu, M.; Shi, J.J. Passive film modification by concrete carbonation: Re-visiting a corrosion-resistant steel with Cr and Mo. Cem. Concr. Compos. 2021, 123, 104178–104193. [Google Scholar] [CrossRef]
- Shi, J.; Ming, J.; Wang, D.; Wu, M. Improved corrosion resistance of a new 6% Cr steel in simulated concrete pore solution contaminated by chlorides. Corros. Sci. 2020, 174, 108851. [Google Scholar] [CrossRef]
- Liu, T.; Chen, T.; Zhou, X.; Sun, L.; Yang, W.; Liu, C.; Cheng, X.; Li, X. Investigation of Cr and rare earth (RE) on the corrosion resistance of HRB400 rebar in simulated concrete pore solutions containing chloride and sulfate ions. Constr. Build. Mater. 2024, 423, 135935–135948. [Google Scholar] [CrossRef]
- Pan, D.; Niu, D.T.; Li, Z.J. Corrosion products of low-alloy steel bars and their induction of cracking in seawater sea-sand concrete cover. Constr. Build. Mater. 2023, 389, 131800–131809. [Google Scholar] [CrossRef]
- Wen, C.; Tian, Y.; Mai, Z.; Hu, J.; Wang, G. Effect of macropores at the steel-concrete interface on localized corrosion behaviour of steel reinforcement. Cem. Concr. Compos. 2022, 129, 104510–104520. [Google Scholar] [CrossRef]
- Habib, S.; Shakoor, R.; Kahraman, R. A focused review on smart carriers tailored for corrosion protection: Developments, applications, and challenges. Prog. Org. Coat. 2021, 154, 106218–106249. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, C.; Liu, X.; Liu, A.; Li, T.; Ding, R.; Shah, S.P.; Li, W. Application of layered double hydroxides (LDHs) in corrosion resistance of reinforced concrete-state of the art. Constr. Build. Mater. 2021, 307, 124991. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, C.; Wang, G.; Deng, P.; Mo, W. Inhibiting property of nitrite intercalated layered double hydroxide for steel reinforcement in the contaminated concrete pore solution. J. Electrochem. Appl. 2020, 50, 835–849. [Google Scholar] [CrossRef]
- Ai, Z.; Jiang, J.; Sun, W.; Jiang, X.; Yu, B.; Wang, K.; Zhang, Z.; Song, D.; Ma, H.; Zhang, J. Enhanced passivation of alloy corrosion-resistant steel Cr10Mo1 under carbonation-passive film formation, the kinetics and mechanism analysis. Cem. Concr. Compos. 2018, 92, 178–187. [Google Scholar] [CrossRef]
- Ming, J.; Shi, J.J. Distribution of corrosion products at the steel-concrete interface: Influence of mill scale properties, reinforcing steel type and corrosion inducing method. Constr. Build. Mater. 2019, 229, 116854–116865. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Wu, M. Electrochemical behavior and corrosion products of Cr-modified reinforcing steels in saturated Ca(OH)2 solution with chlorides. Cem. Concr. Compos. 2020, 110, 103587–103598. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Lu, T.J. Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides. J. Electroanal. Chem. 2017, 803, 40–50. [Google Scholar] [CrossRef]
- Ai, Z.; Jiang, J.; Sun, W.; Song, D.; Ma, H.; Zhang, J.; Wang, D. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH. Appl. Surf. Sci. 2016, 389, 1126–1136. [Google Scholar] [CrossRef]
- Shi, J.; Sun, W.; Jiang, J.; Zhang, Y. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution. Constr. Build. Mater. 2016, 111, 805–813. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, D.; Wen, B.; Peng, G.; Sun, Z. Corrosion behavior of low alloy steel bars containing Cr and Al in coral concrete for ocean construction. Constr. Build. Mater. 2020, 258, 119564–119577. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Corrosion rate of carbon steel in carbonated concrete—A critical review. Cem. Concr. Res. 2018, 103, 35–48. [Google Scholar] [CrossRef]
Label of Steel | C Content (wt%) | Mn Content (wt%) | Si Content (wt%) | S Content (wt%) | P Content (wt%) | Cr Content (wt%) |
---|---|---|---|---|---|---|
0 Cr | 0.23 | 1.57 | 0.57 | 0.005 | 0.024 | 0.05 |
1 Cr | 0.16 | 0.58 | 0.26 | 0.005 | 0.004 | 1.02 |
2 Cr | 0.10 | 0.69 | 0.47 | 0.005 | 0.003 | 2.46 |
5 Cr | 0.04 | 1.07 | 0.56 | 0.006 | 0.003 | 5.21 |
Cr Content | LDH-NO2 Dosage | Qf (μΩ−1·cm−2·sn) | n | Rf (kΩ·cm2) | Qdl (μΩ−1·cm−2·sn) | n | Rct (kΩ·cm2) | Rp = Rf + Rct (kΩ·cm2) |
---|---|---|---|---|---|---|---|---|
0 wt% | 0 wt% | 59 | 0.92 | 91 | 32 | 0.89 | 57 | 148 |
1 wt% | 0 wt% | 2 | 0.67 | 0.02 | 54 | 0.91 | 161 | 161 |
2 wt% | 0 wt% | 38 | 0.91 | 154 | 115 | 1 | 24 | 178 |
5 wt% | 0 wt% | 35 | 0.94 | 140 | 18 | 0.81 | 116 | 256 |
0 wt% | 0.2 wt% | 179 | 0.96 | 0.008 | 204 | 0.92 | 278 | 278 |
1 wt% | 0.2 wt% | 15 | 1 | 0.1 | 16 | 0.84 | 502 | 502 |
2 wt% | 0.2 wt% | 28 | 0.93 | 448 | 16 | 0.96 | 215 | 663 |
5 wt% | 0.2 wt% | 16 | 1 | 0.1 | 14 | 0.85 | 694 | 694 |
0 wt% | 0.4 wt% | 1 | 0.65 | 0.07 | 38 | 0.92 | 416 | 416 |
1 wt% | 0.4 wt% | 0.02 | 0.79 | 0.04 | 44 | 0.90 | 612 | 612 |
2 wt% | 0.4 wt% | 27 | 0.93 | 0.001 | 2 | 0.44 | 647 | 647 |
5 wt% | 0.4 wt% | 16 | 1 | 0.09 | 15 | 0.86 | 1362 | 1362 |
Cr Content | LDH-NO2 Dosage | Qf (μΩ−1·cm−2·sn) | n | Rf (kΩ·cm2) | Qdl (μΩ−1·cm−2·sn) | n | Rct (kΩ·cm2) | Rp = Rf + Rct (kΩ·cm2) |
---|---|---|---|---|---|---|---|---|
0 wt% | 0 wt% | 141 | 0.9 | 0.03 | 194 | 0.89 | 1 | 1 |
1 wt% | 0 wt% | 220 | 0.89 | 0.02 | 276 | 0.88 | 2 | 2 |
2 wt% | 0 wt% | 126 | 0.86 | 0.6 | 20 | 0.87 | 6 | 7 |
5 wt% | 0 wt% | 29 | 0.92 | 208 | 62 | 0.99 | 56 | 264 |
0 wt% | 0.2 wt% | 102 | 0.95 | 0.09 | 84 | 0.92 | 2 | 2 |
1 wt% | 0.2 wt% | 99 | 0.93 | 0.1 | 58 | 0.9 | 2 | 2 |
2 wt% | 0.2 wt% | 4 | 0.76 | 0.02 | 62 | 0.89 | 30 | 30 |
5 wt% | 0.2 wt% | 2 | 0.56 | 0.04 | 24 | 0.94 | 351 | 351 |
0 wt% | 0.4 wt% | 41 | 0.92 | 103 | 28 | 0.81 | 68 | 171 |
1 wt% | 0.4 wt% | 38 | 0.92 | 98 | 34 | 0.8 | 75 | 173 |
2 wt% | 0.4 wt% | 35 | 0.92 | 232 | 0.5 | 0.38 | 0 | 232 |
5 wt% | 0.4 wt% | 16 | 0.99 | 0.1 | 16 | 0.83 | 466 | 466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, C.; Chen, B.; Lou, G.; Wang, N.; Tian, Y.; Yin, N. Investigating the Synergistic Corrosion Protection Effect of an Alloy Element and Corrosion Inhibitor on Steel Reinforcement Using Machine Learning and Electrochemical Impedance Spectroscopy. Metals 2024, 14, 865. https://doi.org/10.3390/met14080865
Wen C, Chen B, Lou G, Wang N, Tian Y, Yin N. Investigating the Synergistic Corrosion Protection Effect of an Alloy Element and Corrosion Inhibitor on Steel Reinforcement Using Machine Learning and Electrochemical Impedance Spectroscopy. Metals. 2024; 14(8):865. https://doi.org/10.3390/met14080865
Chicago/Turabian StyleWen, Cheng, Baitong Chen, Gongqi Lou, Nanchuan Wang, Yuwan Tian, and Ningxia Yin. 2024. "Investigating the Synergistic Corrosion Protection Effect of an Alloy Element and Corrosion Inhibitor on Steel Reinforcement Using Machine Learning and Electrochemical Impedance Spectroscopy" Metals 14, no. 8: 865. https://doi.org/10.3390/met14080865
APA StyleWen, C., Chen, B., Lou, G., Wang, N., Tian, Y., & Yin, N. (2024). Investigating the Synergistic Corrosion Protection Effect of an Alloy Element and Corrosion Inhibitor on Steel Reinforcement Using Machine Learning and Electrochemical Impedance Spectroscopy. Metals, 14(8), 865. https://doi.org/10.3390/met14080865