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Abstract: Low-carbon bainitic steels are known for their excellent combination of strength and
toughness, making them suitable for various industrial applications. Understanding the tempering
behavior of these steels is crucial for optimizing their mechanical properties through heat treatment.
This study presents predictive models for tempering behavior based on empirical data, which is
fundamental for understanding the thermal stability and transformation kinetics of the steel. Through
integrated tempering parameters, we established predictive models that integrate tempering tem-
perature and time, yielding a robust framework for predicting hardness. The equivalent tempering
kinetic curves and nomographs plotted in this study allow for the direct determination of hardness
under various tempering conditions, facilitating the optimization of tempering parameters. The
nomogram approach provides a practical method for adjusting tempering parameters to achieve de-
sired mechanical properties efficiently. The accuracy of the predictive models was validated through
statistical tests, demonstrating a high correlation between predicted and experimental values.

Keywords: tempering process; predictive model; mechanical properties; low-carbon bainitic steels;
tempering parameters optimization

1. Introduction

The application of advanced smelting technology significantly reduces impurities such
as sulfur (S) and phosphorus (P) in steel, resulting in higher purity and cleanliness of the
liquid steel [1–4]. This technological advancement has paved the way for the development
of low-carbon high strength bainitic steel, which exemplifies the benefits of pure smelting
techniques [5,6]. The enhanced properties of this steel are achieved through a combination
of fine-grain strengthening, sub-structural strengthening, micro-alloying, and precipitation
strengthening. These methods contribute to the steel’s excellent mechanical properties,
such as superior strength and toughness, making it ideal for demanding applications [7,8].

The significance of bainitic steel lies in its ability to maintain high strength and tough-
ness under various conditions. This is particularly beneficial for high-performance struc-
tures and components, where material failure could have catastrophic consequences. For
instance, in the construction of bridges, the robustness and durability of bainitic steel
ensure long-term reliability and safety. Similarly, in the fabrication of oil platforms, this
steel provides the necessary resilience to withstand harsh marine environments and ex-
treme weather conditions. The shipbuilding industry also relies on bainitic steel to deliver
ships that are not only strong but also capable of withstanding the rigors of sea voyages,
including corrosive sea water and mechanical stress.

Moreover, the ongoing research and development in smelting and alloying techniques
continue to enhance the properties of bainitic steel, pushing the boundaries of its appli-
cations. The integration of cutting-edge technologies in the production process not only
improves the steel’s performance but also makes it more cost-effective and environmen-
tally friendly. As industries strive for materials that offer a balance between performance
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and sustainability, low-carbon high-strength bainitic steel stands out as a prime exam-
ple of modern metallurgical innovation. This progress underscores the critical role of
advanced smelting technologies in meeting the evolving demands of high-performance
engineering applications.

Research on the effect of carbon content on bainitic steels began in the 1960s [9]. To
improve the hardenability of low-carbon bainitic steels, researchers added manganese
(Mn) along with suitable amounts of boron (B) and titanium (Ti) to the steel, achieving
tensile strengths up to 1000 MPa [10]. Further investigations delved into the specifics
of manganese content and its effects on the properties of bainitic steels. These studies
culminated in the development of a Mn-B alloy system tailored for air-cooled bainitic steel,
highlighting the critical role of Mn in enhancing the steel’s hardenability and mechanical
properties [11–13]. This Mn-B alloy system has proven particularly effective, enabling
the production of steels with exceptional strength and toughness suitable for demanding
industrial applications. Significant contributions to this field have been made by Caballero
and colleagues, who examined the impact of varying carbon content on bainitic steels.
Their research demonstrated that increasing the carbon content to 0.4% can elevate the
tensile strength of bainitic steel to over 1375 MPa. However, this impressive increase in
strength came at the cost of reduced toughness, necessitating further treatments to balance
these properties. Tempering treatments became essential to mitigate the brittleness induced
by higher carbon content, ensuring the steel maintained adequate toughness for practical
applications [14–18].

These foundational studies underscore the complex interplay between alloying ele-
ments and carbon content in determining the mechanical properties of bainitic steels. They
also highlight the ongoing need for precise control over the composition and heat treatment
processes to optimize these materials for high-performance applications. Research efforts
from the 1960s onwards have paved the way for the development of advanced bainitic
steels, tailored to meet the stringent demands of modern engineering and industrial ap-
plications. To ensure the optimal mechanical properties of steel, heat treatments such as
quenching, normalizing, and tempering are often required [19,20]. Among these, tempering
stands out as the final and most crucial heat treatment process. The success of tempering
largely depends on the precise selection of temperature and time parameters; incorrect
selections can adversely affect the mechanical properties of steel, including inducing temper
brittleness, altering hardness, and reducing impact toughness. Therefore, the establish-
ment of reliable tempering prediction models is vital for optimizing these parameters and
predicting the resulting mechanical properties.

Holloman and Jaffe made significant contributions to this field by proposing a nu-
merical relationship that predicts the mechanical properties of steels post-tempering. This
relationship has been expressed in various forms by different authors [21–24]. Their model
ingeniously integrates tempering temperature and time into a single P tempering param-
eter, effectively capturing the combined influence of these variables on the tempering
process [25–27]. This parameter is calculated using the Hollomon-Jaffe equation, which
primarily depends on the carbon content in the steel and can be determined through em-
pirical formulas. This P tempering parameter has proven to be a reliable predictor of the
mechanical outcomes of tempering. Due to the fact that the P tempering parameter only
considers the carbon content and uses a look-up table for its calculation, without accounting
for the effects of other alloying elements, other researchers have been prompted to seek
alternative tempering prediction parameters. In parallel, Inoue developed a similar param-
eter, designated as the λ tempering parameter, to quantify the degree of tempering progress
during heating and soaking processes [28–31]. The λ tempering parameter, derived from
experimental data and statistical analysis, provides a more accurate representation of the
material’s tempering process. The λ tempering parameter provides a quantitative measure
of the degree of tempering by incorporating the activation energy into its calculation. This
parameter allows for a more comprehensive understanding of the tempering process by
accounting for the energy required for atomic movements and transformations during
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tempering. Once the λ tempering parameter is determined for specific temperature and
time conditions, it can be used to predict the mechanical properties of steels during the
tempering process. This parameter-based approach allows for a more nuanced and accurate
prediction of how different tempering conditions will affect the steel.

The objective of this study is to investigate the tempering behavior of low-carbon
bainitic steel, with a particular focus on the key parameters of tempering temperature
and time. By developing mechanical prediction models based on the P and λ tempering
parameters, this research aims to optimize the tempering parameters and accurately predict
the mechanical properties of the steel during the tempering process. Through statistical
methods, the tempering activation energy of the steel is calculated, and kinetic curves for
hardness equivalents are plotted alongside a nomograph for tempering process parameters.

2. Experimental Procedure

The material investigated in this study is a low-carbon bainitic steel, with its primary
chemical composition detailed in Table 1. Following controlled rolling and cooling, speci-
mens measuring 15 mm × 15 mm × 20 mm were prepared. The rolling process commenced
at an initial temperature of 1050 ◦C and concluded at 800 ◦C. Subsequently, the samples
underwent tempering at temperatures ranging from 200 ◦C to 700 ◦C for durations of 0.5 h,
1.0 h, 1.5 h, and 2.0 h.

Table 1. Main chemical composition of steel (mass fraction, %).

Element C Si Mn P S Ni Nb Cr Mo Fe

Content 0.04 0.25 1.6 <0.006 <0.006 <1.0 0.015–0.07 <0.7 <0.5 Rest (up to 100%)

Post-tempering, the samples were subjected to a grinding and polishing process,
followed by etching with a 4% nitric alcohol solution to reveal the microstructure. The
microstructural examination was conducted using scanning electron microscopy (SEM),
providing detailed images of the steel’s microstructure. To obtain high-resolution images,
the scanning electron microscope (SEM) was operated with an accelerating voltage of
18 kV and a working distance of 12 mm. This setup ensured optimal imaging conditions
for detailed microstructural analysis. The hardness of the samples was measured using
an HVS-1000 microhardness tester (Vickers, London, UK), ensuring precise and accurate
measurements. The Vickers hardness tests were performed using a standard load of 1 kgf
and a dwell time of 10 s. This method ensures consistent and accurate measurements
of hardness, which are critical for analyzing the effects of tempering parameters on the
mechanical properties of low-carbon bainitic steels.

Based on the obtained hardness values, a tempering prediction model and tempering
kinetic curves for the steel were developed. These models are crucial for understanding
the tempering behavior and optimizing the tempering parameters for the steel. The
comprehensive data collected from these procedures provide a robust foundation for
further analysis and validation of the tempering models.

3. Results and Discussion
3.1. Effect of Tempering Parameters on Hardness

Hardness measurements were taken at a minimum of ten distinct positions on each
specimen after tempering at various temperatures and durations. For each tempering
process, at least three microhardness measurements were taken for each sample. If the
hardness deviation exceeded 5 HV, an additional three measurements were performed to
ensure accuracy. This rigorous measurement protocol ensures the reliability and consis-
tency of the hardness data, which is critical for the subsequent analysis and validation of
the tempering models. The additional measurements help to account for any potential
variations in the material’s microstructure and provide a more accurate representation of
the material’s mechanical properties after tempering. The final hardness value for each
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sample was determined by averaging the measurements and excluding any outliers to
ensure accuracy. The influence of tempering temperature and time on the hardness of the
steel is illustrated in Figure 1.

Metals 2024, 14, x FOR PEER REVIEW 4 of 14 
 

 

3. Results and Discussion 
3.1. Effect of Tempering Parameters on Hardness 

Hardness measurements were taken at a minimum of ten distinct positions on each 
specimen after tempering at various temperatures and durations. For each tempering pro-
cess, at least three microhardness measurements were taken for each sample. If the hard-
ness deviation exceeded 5 HV, an additional three measurements were performed to en-
sure accuracy. This rigorous measurement protocol ensures the reliability and consistency 
of the hardness data, which is critical for the subsequent analysis and validation of the 
tempering models. The additional measurements help to account for any potential varia-
tions in the material’s microstructure and provide a more accurate representation of the 
material’s mechanical properties after tempering. The final hardness value for each sam-
ple was determined by averaging the measurements and excluding any outliers to ensure 
accuracy. The influence of tempering temperature and time on the hardness of the steel is 
illustrated in Figure 1. 

  
(a) (b) 

Figure 1. Effect of tempering parameters on the hardness of steel: (a) effect of tempering time; (b) 
effect of tempering temperature. 

The results, depicted in Figure 1, indicate that the hardness of low-carbon bainitic 
steel generally decreases with increasing tempering time. This decrease follows a linear 
relationship with the logarithm of tempering time. However, the effect of tempering tem-
perature on hardness is more complex. At lower tempering temperatures, hardness ini-
tially increases, reaching a peak at around 400°C. Beyond this temperature, hardness be-
gins to decrease. A slight secondary hardening is observed at approximately 550°C, after 
which the hardness decreases sharply with further increases in temperature. These varia-
tions in hardness are closely related to the microstructural changes occurring during tem-
pering. At lower tempering temperatures, residual austenite decomposes, leading to an 
initial increase in hardness. As tempering temperature increases, martensitic decomposi-
tion occurs alongside residual austenite decomposition, causing hardness to increase fur-
ther. The secondary hardening observed at 550°C is likely due to the precipitation of NbC 
particles, as supported by findings from other researchers [32,33]. At temperatures above 
550°C, the rapid decrease in hardness is due to the complete decomposition of martensite 
and the coarsening of carbides, along with the formation of massive ferrite, which con-
tributes to the reduction in hardness. These findings highlight the importance of carefully 
selecting tempering parameters to achieve desired mechanical properties in low-carbon 
bainitic steels. 

The purpose of tempering is to improve the toughness and plasticity of quenched 
steel and to eliminate residual stresses from the quenching process. Therefore, overall, as 
the tempering temperature increases and the tempering time extends, the hardness of the 
material generally shows a decreasing trend. The microstructural transformations mainly 

Figure 1. Effect of tempering parameters on the hardness of steel: (a) effect of tempering time;
(b) effect of tempering temperature.

The results, depicted in Figure 1, indicate that the hardness of low-carbon bainitic
steel generally decreases with increasing tempering time. This decrease follows a linear
relationship with the logarithm of tempering time. However, the effect of tempering
temperature on hardness is more complex. At lower tempering temperatures, hardness
initially increases, reaching a peak at around 400 ◦C. Beyond this temperature, hardness
begins to decrease. A slight secondary hardening is observed at approximately 550 ◦C,
after which the hardness decreases sharply with further increases in temperature. These
variations in hardness are closely related to the microstructural changes occurring during
tempering. At lower tempering temperatures, residual austenite decomposes, leading to
an initial increase in hardness. As tempering temperature increases, martensitic decom-
position occurs alongside residual austenite decomposition, causing hardness to increase
further. The secondary hardening observed at 550 ◦C is likely due to the precipitation of
NbC particles, as supported by findings from other researchers [32,33]. At temperatures
above 550 ◦C, the rapid decrease in hardness is due to the complete decomposition of
martensite and the coarsening of carbides, along with the formation of massive ferrite,
which contributes to the reduction in hardness. These findings highlight the importance
of carefully selecting tempering parameters to achieve desired mechanical properties in
low-carbon bainitic steels.

The purpose of tempering is to improve the toughness and plasticity of quenched
steel and to eliminate residual stresses from the quenching process. Therefore, overall, as
the tempering temperature increases and the tempering time extends, the hardness of the
material generally shows a decreasing trend. The microstructural transformations mainly
include the decomposition of martensite, the precipitation of carbides, and the growth of
these carbides. We observed the effect of tempering for 30 min on the microstructure of the
steel, with the results illustrated in Figure 2. This analysis provides a simple understanding
of how tempering time influences the microstructure and, consequently, the mechanical
properties of the steel.

As depicted in Figure 2a,b, the microstructures after low-temperature tempering
show no significant differences compared to those under initial water-cooling conditions.
This indicates that the low-temperature tempering process does not induce substantial
microstructural changes. However, during low-temperature tempering, the transformation
and decomposition of residual austenite lead to an initial increase in hardness [34,35]. This
phenomenon can be attributed to the stabilization of retained austenite, which transforms
into martensite during cooling. As the tempering temperature rises, the hardness of the steel
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continues to increase due to the further decomposition of residual austenite. Concurrently,
a decrease in hardness is observed due to the decomposition of martensite. This dual
effect creates a complex interplay between hardening and softening mechanisms. However,
as the temperature continues to rise to 550 ◦C (Figure 2c), a slight secondary hardening
phenomenon is observed. This phenomenon, as referenced by other scholars’ research
findings, is likely caused by the precipitation of carbides such as NbC. The presence of
NbC particles has been identified as a factor contributing to this secondary hardening
effect, enhancing the steel’s mechanical properties at this specific temperature [32,33].
This understanding aligns with the established theories on carbide precipitation and its
impact on the hardness of tempered steels. The comprehensive data and the alignment
with existing studies further validate our observations and provide a robust foundation
for optimizing tempering processes. When the tempering temperature exceeds 550 ◦C, a
sharp decrease in hardness is observed. This decline is due to the complete decomposition
of martensite, which reduces the steel’s overall hardness. Additionally, the coarsening
of carbides at high temperatures further contributes to the reduction in hardness. The
emergence of massive ferrite, as indicated by the arrow in Figure 2d, plays a significant role
in this process. Ferrite is a relatively soft phase, and its formation leads to a pronounced
decrease in hardness.
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3.2. Establishment of Tempering Model Based on λ and P Tempering Parameters

Tempering steel is a solid-state reaction process that involves the diffusive movement
of atoms activated by heat. Inoue proposed a λ tempering parameter to describe the degree
of tempering progress [25]. This parameter indicates the extent to which the tempering
process has been influenced by time and temperature. It is derived as follows:

C = γ · t = At exp(
Q

RT
) (1)

lgC = lgt − (
Q

2.3R
)(

1
T
) + lg(A) (2)

where:
A is the pre-exponential factor,
t is the tempering time (h),
Q is the activation energy during the tempering process,
R is the ideal gas constant (1.99 cal/mol),
T is the tempering temperature (K).
To represent lgC and utilize these assumptions, we derive a typical expression:

λ = lgt − (
Q

2.3R
)(

1
T
) + 50 (3)

It is evident that the parameter λ has a direct impact on the properties after tem-
pering. The mechanical properties, such as hardness, are dependent on the λ tempering
parameter, where:

M = f (λ) = f [lgt − (
Q

2.3R
)(

1
T
) + 50] (4)

To simplify calculations, it is assumed that:

M = algt + b(
1
T
) + c (5)

M = a[lgt + (
b
a
)(

1
T
) + 50]− 50a + c (6)

Compare Equation (6) and Equation (3):

Q = 2.3R(
b
a
) (7)

The values for a, b, and c are determined using the least squares method by substituting
various temperatures, times, and hardness values into Equation (5). The activation energy
and tempering model for the steel in this study have been calculated as follows:

M = 11.96 − 24.54lgt + 2.22 × 105( 1
T )

Q = 2.3R( b
a ) = 41.63(kcal/mol)

(8)

Holloman and Jaffe proposed a prediction model for steel after the tempering pro-
cess [21]. The equation commonly referred to as the Holloman-Jaffe equation is as follows:

P = T(K + lgt) (9)

where:
P is the tempering parameter,
t is the tempering time (h),
T is the tempering temperature (K),
K is a material-dependent constant.
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For low-carbon bainitic steel, the constant (K) is related to the carbon content, deter-
mined as follows:

K = 21.3 − 5.8 × (C%wt) (10)

As the carbon content is 0.04% carbon, the constant (K) is calculated to be 21.2. The
predictive model for hardness during the tempering process was derived through linear
fitting based on the P tempering parameter. The resulting equation is the following:

H = 492.26 − 10.76T(21.1 + lgt) (11)

where (H) represents hardness, (T) is the tempering temperature, and (t) is the tempering
time. This model boasts a correlation coefficient of 0.85, demonstrating its high accu-
racy and reliability in predicting the hardness of low-carbon bainitic steel under various
tempering conditions.

In conclusion, the establishment of tempering models based on λ and P tempering
parameters provides a robust framework for predicting the mechanical behavior of low-
carbon bainitic steels during the tempering process. These models not only enhance our
understanding of the tempering dynamics but also offer practical tools for optimizing
heat treatment protocols. Figure 3 illustrates the relationship between hardness and the
tempering parameters for low-carbon bainitic steel. The figure clearly demonstrates that
hardness after tempering shows a strong linear correlation with the λ and P tempering
parameters, with some deviation observed at lower temperature ranges. This suggests
that both parameters are reliable predictors of hardness, but the accuracy may be slightly
reduced under low-temperature conditions.
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Figure 3. Relationship between tempering parameters and hardness: (a) based on λ tempering
parameter; (b) based on P tempering parameter.

In Figure 3a, the hardness is plotted against the λ tempering parameter, revealing
a consistent linear relationship across most temperature ranges, except at the lower end
where minor deviations occur. Similarly, Figure 3b shows the hardness in relation to the
P tempering parameter, again displaying a predominantly linear trend. These findings
underscore the robustness of the tempering models based on the λ and P tempering
parameters in predicting the mechanical properties of the steel. The linear relationships
depicted in the graphs affirm the models’ effectiveness and highlight the importance of
precise temperature control during the tempering process to achieve desired hardness
levels. Statistical analysis was conducted to validate the accuracy of the predictive models
using metrics such as the R-squared value and root mean square error (RMSE). The results
demonstrated a high level of accuracy, with the R-squared values for the models based on
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the P and λ tempering parameters being 0.85 and 0.80, respectively. These values indicate
a good correlation between the predicted and experimental hardness values. The RMSE
values further corroborate the reliability of the models, showcasing their robustness in
predicting the tempering behavior of low-carbon bainitic steel.

3.3. Error Analysis and Mechanical Prediction

A comprehensive comparison of the measured and calculated hardness values for
various tempering processes is depicted in Figures 4 and 5. These figures highlight the
accuracy of the prediction models based on the λ and P tempering parameters.
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Figure 5. Model accuracy analysis based on P tempering parameter: (a) comparison of calculated
and test values; (b) relative error distribution.

In Figure 4a, the comparison between the calculated and experimental hardness
values based on the λ tempering parameter demonstrates a strong correlation, indicating
the model’s reliability. Figure 4b presents the relative error distribution, showing that most
errors fall within an acceptable range, confirming the model’s precision. The error is less
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than 15% for the λ tempering parameter model, showcasing its robustness in predicting
hardness accurately across different tempering conditions.

Similarly, Figure 5a illustrates the comparison between calculated and measured
hardness values using the P tempering parameter. The data points align closely along the
line of equality, signifying a high degree of accuracy in the model’s predictions. Figure 5b
shows the relative error distribution for the P-parameter model, with most errors remaining
below 10%. This indicates that the P tempering parameter model provides a highly accurate
prediction of hardness, making it a reliable tool for optimizing tempering processes.

Overall, the error analysis validates that both the λ and P tempering parameter models
can be effectively utilized to predict the mechanical properties of low-carbon bainitic steel
during tempering. These models facilitate the optimization of tempering parameters,
ensuring desired mechanical properties are achieved consistently. The high correlation
coefficients and low error margins underscore the models’ applicability in practical settings,
enhancing the efficiency and precision of heat-treatment processes.

An equivalent tempering kinetic curves has been developed based on λ tempering
parameter models, as shown in Figure 6. This curve allows for a straightforward deter-
mination of hardness corresponding to various tempering temperatures and times. For
instance, Figure 6 enables direct reading of hardness values for given tempering conditions,
facilitating practical applications in industrial settings.
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The nomogram is plotted based on the P tempering parameter, which is shown in
Figure 7. The nomogram offers a convenient method for adjusting heat treatment processes
to achieve desired mechanical properties.

To optimize the tempering process during heat treatment, a nomogram is an effective
tool. For example, if the tempering process is initially set at 360 ◦C for 10 h, this condition
is represented by the solid line in Figure 7, intersecting the P tempering parameter at
point M. To further optimize the process, a dashed line is drawn through point M. The
intersection of this dashed line with the axes for time (t) and temperature (T) reveals the
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optimized tempering parameters. In this specific case, the optimized parameters would be
tempering at 390 ◦C for 1 h. This adjustment ensures that the same mechanical properties
are achieved, owing to the consistent p value across different tempering conditions. By
using this model, it is possible to streamline and enhance the tempering process, ensuring
efficiency and precision. The ability to predict and control mechanical properties through
such graphical tools is invaluable in industrial applications, where maintaining consistent
material performance is crucial.
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Moreover, the use of this nomogram allows for quick adjustments and fine-tuning
of the tempering process without extensive trial and error. This not only saves time
and resources but also ensures the production of materials with reliable and predictable
properties. As a result, engineers can more effectively manage the tempering process to
meet specific requirements, enhancing the overall quality and performance of low-carbon
bainitic steels in various high-stress applications.
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3.4. Model Applicability Analysis

To verify and analyze the applicability of the predictive models, the authors investi-
gated the mechanical properties of low-carbon bainitic steels with compositions similar to
those studied in this research. For ease of comparison, the strength values reported in the
literature were converted to microhardness using empirical formulas, as shown in Table 2.
The tempering temperatures and times from these studies were then input into the models
developed in this research to obtain predicted hardness values. The comparison of the
predicted hardness values with the experimental measurements based on the tempering λ
tempering parameter model and the P tempering parameter model are shown in Figure 8.

Table 2. Data for Analysis of Tempering Model Applicability.

Tempering
Temperature (◦C)

Tempering
Time (h)

P Model
Predicted
Hardness

λ Model
Predicted
Hardness

Experimental
Hardness Source

400 1 331.64 312 312.8 [36]

500 1 314.424 298 306.4 [36]

600 1 297.20 291 291.5 [36]

450 0.5 324.81 350.0 341.5 [37]

450 0.5 324.81 341.0 330.6 [37]

450 0.5 324.81 330.0 346.2 [37]

400 1 331.64 320 320.3 [38]

400 5 327.78 340.0 340.2 [38]

400 10 326.12 332 332.2 [38]

400 15 325.15 331.0 331.4 [38]

680 0.5 285.78 252.0 262.4 [39]

680 1 283.42 247.0 257.5 [39]

680 8 276.37 239.0 250.6 [39]
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From the comparison shown in Figure 8a,b, it is evident that the predicted hardness
values from both the P model and the λ model exhibit a good correlation with the experi-
mentally measured values. The relative error analysis indicates that when the tempering
temperature exceeds 600 ◦C, the model’s prediction accuracy diminishes slightly, with
an error margin of about 15%. However, at tempering temperatures below 600 ◦C, the
relative error remains within 10%, demonstrating the robustness and reliability of the pre-
dictive models. The analysis confirms that the tempering performance prediction models
developed in this study are accurate and can be applied to other materials with similar
compositions. This comprehensive approach ensures that the predictive models are not
only validated against experimental data but also benchmarked against the established
literature, providing a solid foundation for further application and study.

4. Conclusions

In this study, we thoroughly investigated the tempering process of low-carbon bainitic
steel to develop robust predictive models for mechanical properties. The key findings are
summarized as follows:

1. The tempering activation energy for low-carbon bainitic steel was calculated to be
41.63 cal/mol, using a regression analysis method, specifically employing the least
squares technique. This value is critical for understanding the thermal stability and
transformation kinetics of the steel during the tempering process.

2. We successfully developed tempering prediction models based on the P and λ temper-
ing parameters. These models integrate the effects of tempering temperature and time,
providing a comprehensive framework for predicting the mechanical properties of the
steel.

3. Equivalent tempering kinetic curves and nomographs were plotted, allowing for
the direct determination of hardness values corresponding to different tempering
conditions. These graphical tools facilitate the optimization of tempering parameters,
ensuring desired mechanical properties with high accuracy.

4. The predictive models developed in this study offer a reliable method for estimating
the hardness of low-carbon bainitic steels. Validation through rigorous statistical
analysis has confirmed both their accuracy and applicability. Specifically, the predictive
errors for the P tempering parameter model are within 10%, while those for the λ

tempering parameter model are within 15%.
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