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Abstract: This study investigated the effects of partially replacing expensive Mo with cheaper
Nb on the microstructure and properties of high-strength low-alloy (HSLA) steel during reverse
austenisation. The mechanical properties of the steel in the hot-rolled state were lower with a partial
replacement of Mo by Nb. However, after pre-tempering and reheating and quenching, the strength
increased greatly while the ductility and toughness did not decrease much. Thus, the negative effects
of replacing Mo with Nb were mostly alleviated, and a good balance between strength, ductility
and toughness was achieved. After heat treatment, the mass percentage of precipitates increased
substantially, which helped to pin grain boundaries during austenisation. The percent of high-angle
grain boundaries greatly increased while the average effective grain size decreased, which improved
grain refinement. The results showed that combining a partial replacement of Mo by Nb with
heat treatment allows the microstructure and mechanical properties of HSLA steel to be effectively
controlled while improving the balance between cost and performance. These findings provide
valuable insights into the preparation and design of steels with similar microstructures.
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1. Introduction

Research on enhancing the strength of steel without compromising ductility and tough-
ness has mostly focused on optimising the microstructure and chemical composition to
better balance the mechanical properties [1–6]. Innovative alloy designs and heat treatment
processes have been proposed to control and refine the microstructure, and they have
proven effective strategies for enhancing the strength while maintaining or improving its
plasticity and toughness [7–9]. High-strength low-alloy (HSLA) steels are designed by
microalloying elements such as titanium (Ti), niobium (Nb), vanadium (V) and molybde-
num (Mo) to improve the mechanical properties [10–13]. These elements easily combine
with atoms in steel to form nanoscale (<100 nm) carbides, nitrides and carbonitrides with
higher strength than the steel matrix. When the precipitate phase is distributed at grain
boundaries, it can pin the grain boundaries and hinder grain growth [14–16]. Ti, V and
Nb all have high melting points, and they are often added in combination to obtain small
carbonitrides with large volume fractions to improve the strength of HSLA steel. Mo plays
a unique role in HSLA steel because its differences and interactions with iron (Fe), carbon
(C) and other alloying elements in terms of the atomic structure, size and crystal lattice
can improve both strength and toughness. Many studies have found that Mo does not
precipitate separately in austenite but in a composite form when added in combination
with Nb, Ti and V [17–20]. The addition of Mo further refines second-phase particles in the
steel [21] and greatly improves the precipitation-strengthening effect. Mo can also reduce
the coarsening rate of second-phase particles to improve the high-temperature performance
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of the steel. However, Mo is relatively expensive compared to the other microalloying
elements, and a large amount of Mo needs to be added to improve the results.

One approach to improving the microstructure and properties of HSLA steel is by heat
treatment [22–27]. Heat treatment is often used in conjunction with microalloying to achieve
better results. For HSLA steels, it is difficult for fine precipitates such as carbonitrides to
precipitate fully and uniformly during the rolling process, which impedes the effectiveness
of precipitation strengthening. Therefore, improving the strength and plasticity of HSLA
steel can not only be achieved by optimising the rolling process. The modification of heat
treatment processes is an essential method to obtain superior microstructure and mechanical
properties. A proper heat treatment process combined with microalloying elements is used
to achieve the purpose of grain refinement. However, the role that microalloying elements
play in heat treatment processes is still unclear and requires further exploration.

In this study, hot-rolled steel was first pre-tempered to precipitate more second-phase
particles in the matrix. Subsequently, a heat treatment process comprising reheating and
quenching was carried out to use the second-phase particles to pin grain boundaries during
the reverse austenisation process, which helped to refine grains and substructures to obtain
HSLA steel with excellent strength and matching plasticity and toughness. The objective of
the study was to evaluate the roles that the microalloying elements Mo and Nb play in the
heat treatment process and the effects of partially replacing expensive Mo with cheaper Nb.
This work was expected to offer new insights into the preparation of HSLA steels and other
steels with similar microstructures and improve the balance between cost and performance.

2. Materials and Methods

Table 1 presents the chemical compositions of the two HSLA steels considered in this
study: GQ0 and GQ1. GQ1 was derived from GQ0 by a partial substitution of Nb with
Mo. Two HSLA steels have a high Ti content, the purpose of which is to improve the
precipitation-strengthening effect of steel. Both steels were melted in a vacuum induction
furnace and cast into 25 kg ingots, which were then forged into 100 mm thick slabs. For the
hot-rolling process, the slabs were homogenised at 1250 ◦C for 2 h, which was followed by
controlled rolling and cooling. The HSLA steels were rolled for 8 passes. The cumulative
reductions of the first three passes were 0.6 (rough rolling), the cumulative reductions
of the fourth to eighth passes were 0.8 (finish rolling), and the reductions of each pass
were between 0.25 and 0.3. The finishing rolling temperature was set at 870 ◦C, and the
slabs were laminar-cooled at a rate of 15 ◦C/s to 615 ◦C before being air-cooled to room
temperature. The final thickness of the steel plate was 8 mm. For the heat treatment process,
the slabs were pre-tempered at 550 ◦C for 3 h, reheated to 880 ◦C for 5 min and then
quenched in water. Figure 1 illustrates the hot-rolling and heat treatment processes. The
original hot-rolled steels retained the designations of GQ0 and GQ1, and heat-treated steels
were designated as GQ0-HT and GQ1-HT, respectively.

Table 1. Chemical composition of the experimental steels.

Type C Si Mn Ti Cr Mo Nb Fe

GQ0
0.25–0.28 0.25–0.30 1.0–1.3 0.1–0.2 0.3–0.4

0.25–0.30 --
Bal.GQ1 0.10–0.15 0.05–0.09

The microstructure was examined with scanning electron microscopy (SEM; FEI
Inspect F50, ZIESS, Oberkochen, Germany). Samples with dimensions of 10 mm × 8 mm ×
5 mm were extracted from the slabs by electrical discharge machining. The samples were
then ground, polished and etched with 4% nitric acid in alcohol. The samples were rinsed
with water and anhydrous ethanol and dried. The high-angle grain boundary and effective
grain size (EGS) were analysed by electron backscatter diffraction (EBSD) using the SEM
system (FEI Inspect F50) at a step length of 0.5 µm. The data were interpreted by using
the Oxford Instruments Channel 5HKL 2.0 programme package. The phase and carbide
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morphologies were observed at high resolution by transmission electron microscopy (TEM;
FEI Talos F200X, Hillsboro, OR, USA). Samples for TEM analysis were prepared from a
3 mm diameter disc thinned by using a Gatan 691 ion-milling machine. The precipitates
were calculated and quantified by the phase analysis method. Precipitates were extracted
by electrolysis under the conditions of a 3% HCI + 5% glycerol + 2.5% (g/L) citric acid
methanol solution, current density I = 0.05–0.08 A/cm2 and temperature T = −5 to 10 ◦C.
The size distribution of precipitates was tested by small angle X-ray scattering (SAXS;
SmartLab, Tokyo, Japan) using a Co target with an incident slit of 40 µm, scattering slit of
0.1 mm and receiving slit of 0.02 mm. Tensile tests were performed at room temperature
by using an electronic universal testing machine (WDW-300-I, Zhongyi, Jinan, China).
Low-temperature Charpy V-notch impact tests were conducted at −20 ◦C by using a
microcomputer-controlled low-temperature automatic impact tester (JBD-300J-60, Keshen,
Jinan, China). The results were recorded as the averages from three measurements for the
tensile tests and five measurements for the impact tests.
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Figure 1. Hot-rolling and heat treatment processes for the steels.

3. Results and Discussion
3.1. Effect of Partial Replacement of Mo by Nb on the Mechanical Properties

Figure 2 shows the mechanical properties of the steel samples. GQ1 had a lower
strength, elongation and −20 ◦C impact absorption energy than GQ0. In particular, the
impact absorption energy was only 27% that of GQ0. Thus, in the case of the current re-
placement ratio, partially replacing Mo with Nb initially resulted in comprehensively lower
mechanical properties of the steel after hot-rolling treatment. After heat treatment, however,
both GQ0-HT and GQ1-HT showed substantial increases in strength to almost the same
value, while the elongation and impact absorption energy did not decrease substantially.
Thus, the reduction in plasticity and toughness was controlled. GQ1-HT showed a 144.7%
increase in impact absorption energy compared to GQ1. In addition, the impact absorption
energy of GQ1-HT was 79.5% that of GQ0-HT, which greatly narrowed the gap compared
with between GQ1 and GQ0. Thus, heat treatment greatly alleviated the negative effects
of replacing Mo with Nb. These findings indicate that the heat treatment process of pre-
tempering, reheating and quenching effectively optimised the balance between ductility
and toughness while maintaining a high strength. This heat treatment enhanced the overall
material properties, which indicates that it is a promising approach for the development of
high-performance HSLA steels.
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Figure 2. Mechanical properties of hot-rolled and heat-treated steel samples: (a) tensile strength and
yield strength; (b) elongation and impact absorption energy.

3.2. Effect of Partial Replacement of Mo by Nb on the Microstructure

Figure 3a,b show the microstructural morphology of the two experimental steels after
the hot-rolling treatment. Both GQ0 and GQ1 comprised granular bainite, ferrite and small
amounts of martensite/austenite islands. The main difference was that GQ1 had a slightly
coarser microstructure than GQ0. Figure 3c and d show the microstructural morphology of
the steels after heat treatment. Both GQ0-HT and GQ1-HT exhibited a fine and uniform
martensitic structure, which contrasted sharply with the coarser structures observed after
hot-rolling treatment. This transformation suggests that the austenisation process that took
place during the reheating step (i.e., 5 min at 880 ◦C) facilitated the long-distance diffusion
of C atoms within the austenite, which led to a uniform distribution. During the subsequent
quenching step, the supercooled austenite effectively transformed into martensite. The
partial substitution of Nb for Mo appeared to have little impact on the matrix phase of
GQ0-HT and GQ1-HT.

Figure 4 shows the TEM images of the steel samples after heat treatment. Both GQ0-HT
and GQ1-HT exhibited fine and uniform martensitic structures with clear lath boundaries.
The martensitic laths had widths of 150–450 nm. Many nanoscale carbonitrides were
observed along dislocations in the laths. In addition, larger second-phase particles were
observed at the junctions of several laths, which helped to pin the interface (Figure 4d,g).
Ooi and Fourlaris [28] similarly concluded that second-phase particles would inhibit grain
growth. Hong et al. [29] concluded that precipitates along grain boundaries were more
effective than precipitates within grains at inhibiting grain growth. Large dislocations were
distributed around the martensitic packets and inside the laths, which entangled with each
other to form dislocation cells (Figure 4b,e,h,k). The strength was further increased by the
presence of high-density dislocations on the martensitic laths.

The grain boundaries and lath interfaces of GQ0-HT had coarse carbides with square
and spherical shapes ranging in size from 60 nm to 150 nm. Figures 5 and 6 provide
elemental mapping analyses of the carbides in GQ0-HT and GQ1-HT, respectively. The
carbides in GQ0-HT primarily comprised (Ti, Mo)C, and those in GQ1-HT comprised (Ti,
Nb)C. Many studies [17–19] have found that adding Mo in combination with Nb, V and Ti
usually results in Mo precipitating as a composite rather than separately in austenite. In
GQ1-HT, Mo was not found in the larger precipitates but was mainly distributed in the
smaller precipitates.
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Figure 3. SEM images showing the microstructures of the steel samples: (a) GQ0, (b) GQ1, (c) GQ0-HT
and (d) GQ1-HT.

Figure 7 shows the inverse pole figure (IPF) maps of the steel samples after hot-rolling
treatment and heat treatment. High-angle grain boundaries with orientation differences
greater than 15◦ are indicated by black lines. After hot-rolling treatment, GQ1 had a
higher average EGS than GQ0. It is worth noting that GQ0 does not show a uniform
microstructure. In contrast, GQ1 exhibits a uniform microstructure, although it has a
coarser grain size. After heat treatment, GQ0-HT and GQ1-HT had similar average EGSs
that were noticeably smaller than the EGSs after hot-rolling treatment. This observation is
corroborated by the grain size distribution graphed in Figure 8, which indicates that the
average EGS values of GQ0 and GQ1 were approximately 2.54 and 6.26 µm, respectively.
These results indicate that the (Ti, Nb)C particles in GQ1 did not fully exert their pinning
effect during the hot-rolling treatment, which resulted in coarser grains. In contrast, the
carbide particles in GQ0 were more effective at pinning the grain boundaries, owing
to the higher Mo content. At high temperatures, Mo suppresses the disappearance of
dislocations, which increases the dislocation density and increases the nucleation positions
of Nb(C, N). However, Mo segregation at the interface between Nb(C, N) and ferrite
prevents the diffusion of Nb atoms from the ferrite matrix to Nb(C, N), which reduces
the activity coefficients of C and N and inhibits the precipitation of Nb(C, N). Thus, GQ0
had smaller and more dispersed precipitates [30,31]. After high-temperature deformation,
steel stores deformation energy in the deformation matrix. Deformation energy storage
is the driving force for austenite recrystallisation, but it also provides a driving force for
deformation-induced precipitation. Thus, there is a competitive relationship between
the two processes [32]. When a sufficient hot-rolling temperature is incorporated, the
per-pass deformation is sufficient, and per-passes during hot-rolling have been optimised,
the suppression of carbon nitride precipitation by Mo enables recrystallisation to store
more deformation energy, which results in more complete recrystallisation and better grain
refinement. This explains why GQ0 had a smaller average EGS.
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Figure 4. TEM images showing the microstructures of the steel samples after heat treatment:
(a–f) GQ0-HT and (g–l) GQ1-HT. The first column shows bright-field images, the second column
displays local magnifications of the first column and the third column exhibits the corresponding
high-angle annular dark-field (HAADF) images of the first column.
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The average EGSs of GQ0-HT and GQ1-HT were 1.85 and 1.7 µm, respectively. The
heat treatment transformed the microstructures of GQ0-HT and GQ1-HT into fine and uni-
form martensite laths, which improved the strength, ductility and toughness of the steels.

Figure 9 shows the EBSD grain boundary distribution maps for two steels. These
images clearly depict the distribution of low-angle grain boundaries and high-angle grain
boundaries. A comparison reveals a significant increase in the percentage of high-angle
grain boundaries after pre-tempering and reheat quenching, indicating a finer substructure
within the martensite. A higher percentage of high-angle grain boundaries suggests smaller
martensite lath sizes within the substructure [33,34].
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Figure 10 presents the distributions of grain boundary misorientations for the steel
samples. GQ0 and GQ1 had 60.7% and 50.4% high-angle boundaries, respectively, while
GQ0-HT and GQ1-HT had 74.3% and 70.5% high-angle boundaries, respectively. GQ0-HT
and GQ1-HT had almost identical distributions of grain boundary misorientations: misori-
entations of 20◦–47◦ were rare (<2%) while misorientations of 47◦–60◦ were common. In
particular, misorientations of 60◦ reached 11.3% of all grain boundaries. This is characteris-
tic of the martensitic transformation, where the new phase and parent phase maintain the
Kurdjumov–Sachs relationship [35]. These results demonstrate that the partial replacement
of Mo by Nb can be combined with heat treatment to effectively control the microstructure
of the HSLA steel and optimise its properties.
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3.3. Strengthening and Toughening Mechanisms

Common strengthening mechanisms in high-strength steels include solid-solution
strengthening, dislocation strengthening, the precipitation hardening of second-phase
particles and grain refinement [35–37]. These strengthening mechanisms can be expressed
as follows [38]:

σ = σ0 + σs + σP + σd + kyd−
1
2 (1)

where σ is the yield strength of the steel, σ0 is the internal friction stress of pure Fe, σs is
the contribution of solid-solution strengthening, σp is the contribution from second-phase
precipitation hardening and σd is the contribution from dislocation strengthening. The final
term accounts for grain refinement enhancement where ky is the Hall–Petch slope and d is
the average EGS.

Grain refinement is the crucial mechanism for enhancing the mechanical properties of
GQ0-HT and GQ1-HT. According to the Hall–Petch relationship, the relationship between
the yield strength (σy) and grain size (d) can be expressed as follows [39,40]:

σy = σ0 +
k√
d

(2)

where σ0 is the base yield strength of a material and k is the Hall–Petch constant related
to material hardening. This relationship allows the improvement in yield strength due to
grain refinement to be predicted. In this study, the average EGSs of GQ0-HT and GQ1-HT
were 1.85 and 1.7 µm, respectively, compared to 2.54 µm for GQ0 and 6.26 µm for GQ1,
which indicates substantial grain refinement. GQ1-HT showed a substantial increase in
yield strength over GQ1, owing to the greater degree of grain refinement.

The refinements of grains and effective control units can enhance toughness while
improving strength. A larger grain size increases the amount of dislocations accumulated
in a grain, which increases the stress concentration at the end of the accumulation and
in turn increases the probability of cleavage fracture [41]. In contrast, grain refinement



Metals 2024, 14, 896 11 of 14

increases the density of grain boundaries, which creates more obstacles that a crack must
overcome during propagation and thus enhances the fracture toughness.

Grain boundaries serve as both sources and barriers for dislocations by promoting
their accumulation and movement, which manifest as plastic deformation of the material at
the macroscopic level. Therefore, grain refinement typically results in better ductility and
toughness while achieving high strength. Fine lath bundles not only enhance the strength
of martensite but also provide good ductility and toughness. The EBSD results showed
that GQ0-HT and GQ1-HT retained 0.36% and 0.33% austenite, respectively, compared to
GQ0 and GQ1 retaining 0.28% and 0.18%, respectively. The increase in retained austenite
content improved the plasticity of the steel samples to some extent, ensuring that they
retained good ductility while possessing ultrahigh strength [42–44].

Carbides play a crucial role in high-strength steels by greatly enhancing the yield
strength and hardness [45]. In this study, the second-phase particles contributed not only
to precipitation strengthening, but also grain refinement. In the heat treatment, the hot-
rolled steel was first tempered to precipitate more second-phase particles in the matrix.
The reheating and quenching steps then helped the second-phase particles to pin grain
boundaries during the reverse austenisation process and grain growth, which helped to
refine the grains and martensite substructure. Table 2 and Figure 11 present the content
and size distribution of precipitates obtained by chemical calibration and SAXS.

Table 2. Mass fractions of individual elements in the precipitates of the steel samples (%).

Sample GQ0 GQ0-HT GQ1 GQ1-HT

Ti 0.096 0.192 0.088 0.196
Mo 0.112 0.256 0.069 0.144
Nb - - 0.034 0.086
C 0.036 0.051 0.039 0.068
N 0.003 0.006 0.004 0.008
Σ 0.247 0.505 0.234 0.502
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Figure 11. Precipitate size distributions of the steel samples.

The precipitates in GQ0 and GQ1 had relatively low mass fractions of 0.244% and
0.23%, respectively. They mainly precipitated in austenite during the hot-rolling process.
Heat treatment greatly increased the mass fractions of the precipitates, which can be
attributed to the precipitation of second-phase particles in ferrite or martensite during
the tempering process. After tempering, the reverse austenisation further increased the
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mass fractions of the precipitates to 0.499% and 0.494%, respectively. Therefore, the heat
treatment greatly increased the mass fractions of precipitates in the steel samples.

Figure 11 shows the precipitate size distributions of the steel samples. In GQ0, the
precipitates mainly had sizes of 1–10 nm and 140–300 nm, which indicated that fine
precipitates were obtained during the hot-rolling process. The precipitates at 140–300 nm
were mainly insoluble carbon nitride particles, and they may have included precipitates
that grew rapidly in high-temperature austenite. In GQ1, the precipitates mainly had sizes
of 1–10, 20–40 and 140–300 nm. GQ0 had more precipitates at 1–20 nm than GQ1, which
further confirmed that Mo helped to refine the second phase. In GQ0-HT and GQ1-HT,
most precipitates had sizes of 5–40 nm, and especially of 5–20 nm. The heat-treated steel
samples had relatively similar precipitate size distributions, which explains why they
exhibited similar grain refinement effects.

The austenitic grain size controlled by the second phase can be estimated as fol-
lows [46]:

DC =
π

6
d
f

(
3
2
− 2

Z

)
(3)

where Dc is the austenitic grain size, d is the mean diameter of the second phase, f is its
volume fraction and Z is a constant whose empirical values are between 1.4 and 2 [14].
According to Equation (3), the critical grain size that can be effectively pinned without
substantial growth is directly proportional to the average size of the second phase and is
inversely proportional to the volume fraction of the second phase. To reduce the coarsening
of the matrix grains, the second-phase particles require a sufficient volume fraction and
small size. Therefore, heat treatment is effective in precipitating finer second-phase particles
and pinning grain boundaries. These results indicate that the partial substitution of Nb for
Mo can be combined with heat treatment to improve the overall mechanical properties of
HSLA steels while reducing costs.

4. Conclusions

This study explored the effects of combining a partial replacement of Mo by Nb
with heat treatment on the microstructure and properties of HSLA steel. The following
conclusions were obtained:

1. Partially replacing Mo with Nb initially resulted in comprehensively lower mechanical
properties of HSLA steel after hot-rolling treatment. However, after pre-tempering
and reheating and quenching, the heat treatment greatly increased the strength while
retaining ductility and toughness, which helped to mitigate the negative effects of
replacing Mo with Nb and achieved a good balance between strength, ductility and
toughness.

2. The heat treatment increased the percentage of high-angle grain boundaries and
decreased the average EGS of the HSLA steels, which enhanced their strength, ductility
and toughness. Thus, the partial replacement of Mo by Nb can be combined with heat
treatment to effectively control the microstructure of HSLA steels.

3. Heat treatment greatly increased the mass fraction of precipitates, and the precipitates
in GQ1-HT and GQ2-HT had similar size distributions. The second-phase particles in
these steels were effective at pinning grain boundaries during austenisation, which
led to similar grain refinement effects and mechanical properties.
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