Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Peeling Test Results
3.2. Response Surface Analysis
3.3. Optical Micrograph of the Samples
4. Conclusions
- At 400 °C, the bonding properties were excellent across all levels of rolling reduction. Higher temperatures and reductions, in the studied range, resulted in a more uniform, homogenized material, indicating a stronger metallurgical bond.
- At 300 °C and 65% reduction, good bonding quality was observed, with no significant decrease in force after crack initiation during the peel tests. At 35% reduction, bonding was weak, while an intermediate condition was found at 50% reduction.
- At 200 °C, with 35% and 50% reduction, the quality of the bonding was poor, with minimal difference between the initial peak force and the force required for crack propagation. At 65% reduction, the peak force was quite high but showed a noticeable drop in force after the crack began to propagate, indicating inferior bonding quality at lower temperatures.
- A response surface analysis model was created, suggesting its effectiveness in predicting bond strength indicated as the width-normalized peak force required to initiate cracking in the interface layer of the peel tests.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carta, M.; Buonadonna, P.; Marongiu, G.; Mehtedi, M.E. Analysis of Friction Stir Processed Surface Quality of AA2098 Aluminum Alloy for Aeronautical Applications. Metall. Mater. Eng. 2023, 29, 16–23. [Google Scholar] [CrossRef]
- Ghalehbandi, S.M.; Malaki, M.; Gupta, M. Accumulative Roll Bonding—A Review. Appl. Sci. 2019, 9, 3627. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Lai, D.; Almehtedi, R.; Carta, M.; Buonadonna, P.; Aymerich, F. Bonding of similar AA3105 aluminum alloy by Accumulative Roll Bonding process. ESAFORM 2021 2021, 942, 1–11. [Google Scholar] [CrossRef]
- Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. Novel Ultra-High Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process. Acta Mater. 1999, 47, 579–583. [Google Scholar] [CrossRef]
- Kwan, C.; Wang, Z. Microstructure Evolution upon Annealing of Accumulative Roll Bonding (ARB) 1100 Al Sheet Materials: Evolution of Interface Microstructures. J. Mater. Sci. 2008, 43, 5045–5051. [Google Scholar] [CrossRef]
- Morovvati, M.R.; Dariani, B.M. The Effect of Annealing on the Formability of Aluminum 1200 after Accumulative Roll Bonding. J. Manuf. Process. 2017, 30, 241–254. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Buonadonna, P.; Carta, M.; El Mohtadi, R.; Mele, A.; Morea, D. Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach. Sustainability 2023, 15, 11434. [Google Scholar] [CrossRef]
- Eizadjou, M.; Kazemitalachi, A.; Daneshmanesh, H.; Shakurshahabi, H.; Janghorban, K. Investigation of Structure and Mechanical Properties of Multi-Layered Al/Cu Composite Produced by Accumulative Roll Bonding (ARB) Process. Compos. Sci. Technol. 2008, 68, 2003–2009. [Google Scholar] [CrossRef]
- Alizadeh, M.; Paydar, M.H. Fabrication of Al/SiCP Composite Strips by Repeated Roll-Bonding (RRB) Process. J. Alloys Compd. 2009, 477, 811–816. [Google Scholar] [CrossRef]
- Rezayat, M.; Akbarzadeh, A. Bonding Behavior of Al–Al2O3 Laminations during Roll Bonding Process. Mater. Des. 1980–2015 2012, 36, 874–879. [Google Scholar] [CrossRef]
- Mori, K.; Bay, N.; Fratini, L.; Micari, F.; Tekkaya, A.E. Joining by Plastic Deformation. CIRP Ann. 2013, 62, 673–694. [Google Scholar] [CrossRef]
- Quadir, M.Z.; Wolz, A.; Hoffman, M.; Ferry, M. Influence of Processing Parameters on the Bond Toughness of Roll-Bonded Aluminium Strip. Scr. Mater. 2008, 58, 959–962. [Google Scholar] [CrossRef]
- Ruppert, M.; Böhm, W.; Nguyen, H.; Höppel, H.W.; Merklein, M.; Göken, M. Influence of Upscaling Accumulative Roll Bonding on the Homogeneity and Mechanical Properties of AA1050A. J. Mater. Sci. 2013, 48, 8377–8385. [Google Scholar] [CrossRef]
- Lu, C.; Tieu, K.; Wexler, D. Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-Sized SiO2 Particles. J. Mater. Process. Technol. 2009, 209, 4830–4834. [Google Scholar] [CrossRef]
- Samadzadeh, M.; Toroghinejad, M.R. The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets. J. Mater. Eng. Perform. 2014, 23, 1887–1895. [Google Scholar] [CrossRef]
- Soltani, M.A.; Jamaati, R.; Toroghinejad, M.R. The Influence of TiO2 Nano-Particles on Bond Strength of Cold Roll Bonded Aluminum Strips. Mater. Sci. Eng. A 2012, 550, 367–374. [Google Scholar] [CrossRef]
- Alizadeh, M. Effects of Temperature and B4C Content on the Bonding Properties of Roll-Bonded Aluminum Strips. J. Mater. Sci. 2012, 47, 4689–4695. [Google Scholar] [CrossRef]
- Schmidt, C.W.; Knieke, C.; Maier, V.; Höppel, H.W.; Peukert, W.; Göken, M. Influence of Nanoparticle Reinforcement on the Mechanical Properties of Ultrafine-Grained Aluminium Produced by ARB. Mater. Sci. Forum 2010, 667–669, 725–730. [Google Scholar] [CrossRef]
- Lee, K.S.; Bae, S.J.; Lee, H.W.; Kang, S.H. Interface-Correlated Bonding Properties for a Roll-Bonded Ti/Al 2-Ply Sheet. Mater. Charact. 2017, 134, 163–171. [Google Scholar] [CrossRef]
- Xing, Z.P.; Kang, S.B.; Kim, H.W. Structure and Properties of AA3003 Alloy Produced by Accumulative Roll Bonding Process. J. Mater. Sci. 2002, 37, 717–722. [Google Scholar] [CrossRef]
- Chowdhury, S.G.; Srivastava, V.C.; Ravikumar, B.; Soren, S. Evolution of Texture during Accumulative Roll Bonding (ARB) and Its Comparison with Normal Cold Rolled Aluminium–Manganese Alloy. Scr. Mater. 2006, 54, 1691–1696. [Google Scholar] [CrossRef]
- Gholami, M.D.; Hashemi, R.; Sedighi, M. The Effect of Temperature on the Mechanical Properties and Forming Limit Diagram of Aluminum Strips Fabricated by Accumulative Roll Bonding Process. J. Mater. Res. Technol. 2020, 9, 1831–1846. [Google Scholar] [CrossRef]
- D14 Committee ASTM International. Test Method for Peel Resistance of Adhesives (T-Peel Test). Available online: https://www.astm.org/d1876-08r15e01.html (accessed on 14 July 2024). [CrossRef]
- Plata, M.; Piwnik, J. Theoretical and Experimental Analysis of Seam Weld Formation in Hot Extrusion of Aluminum Alloys. Proc. 7th Int. Alum. Extrus. Technol. Semin. 2000, 1, 205–211. [Google Scholar]
- Tronci, A.; Orrù, P.F.; Buonadonna, P. Product Quality and Energy Consumption Optimisation of Dyeing Fixing Process by Steaming through DOE Analysis: A Cotton Case Study. Int. J. Manag. Decis. Mak. 2018, 17, 467–487. [Google Scholar] [CrossRef]
- Lee, S.H.; Saito, Y.; Sakai, T.; Utsunomiya, H. Microstructures and Mechanical Properties of 6061 Aluminum Alloy Processed by Accumulative Roll-Bonding. Mater. Sci. Eng. A 2002, 325, 228–235. [Google Scholar] [CrossRef]
- Lan, X.; Xiao, Y.; Hu, B.; Yang, M.; Wang, Q.; Lu, Q.; Yang, T.; Li, K.; Wang, J.; Wang, Z.; et al. Systematic Study of Growth Behavior of β-Al9Fe2Si2 in Al Alloys with High Iron and Silicon Contents. J. Mater. Res. Technol. 2023, 26, 260–266. [Google Scholar] [CrossRef]
- Zinong, T.; Bing, Z.; Jun, J.; Zhiqiang, L.; Jianguo, L. A Study on the Hot Roll Bonding of Aluminum Alloys. Procedia Manuf. 2020, 50, 56–62. [Google Scholar] [CrossRef]
Elements | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Contents | 0.23 | 0.45 | 0.11 | 0.51 | 0.70 | 0.006 | 0.01 | 0.05 | Balanced |
Factors | Levels | ||||
---|---|---|---|---|---|
Name | Units | Symbols | 1 | 2 | 3 |
Temperature | [°C] | T | 200 | 300 | 400 |
Reduction | [%] | r | 35 | 50 | 65 |
Theoretical Reduction | T = 200 °C Mean Thickness [mm] | T = 300 °C Mean Thickness [mm] | T = 400 °C Mean Thickness [mm] |
---|---|---|---|
35% (1.56 mm) | 1.50 | 1.51 | 1.56 |
50% (1.20 mm) | 1.17 | 1.17 | 1.22 |
65% (0.84 mm) | 0.90 | 0.94 | 0.96 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Terms | DF | Adj SS | Adj MS | F-Value | p-Value |
Linear Terms | |||||
Temperature | 1 | 425.564 | 425.564 | 181.67 | 0.001 |
Reduction | 1 | 83.579 | 83.579 | 35.68 | 0.009 |
Square Terms | |||||
Temperature2 | 1 | 92.981 | 92.981 | 39.69 | 0.008 |
Reduction2 | 1 | 4.365 | 4.365 | 1.86 | 0.266 |
2-Way Interaction | |||||
Temperature × reduction | 1 | 13.092 | 13.092 | 5.59 | 0.099 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Terms | DF | Adj SS | Adj MS | F-Value | p-Value |
Linear terms | |||||
Temperature | 1 | 425.56 | 425.564 | 86.90 | 0.000 |
Reduction | 1 | 83.58 | 83.579 | 17.07 | 0.009 |
Square Terms | |||||
Temperature2 | 1 | 92.98 | 92.981 | 18.99 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carta, M.; Buonadonna, P.; Reggiani, B.; Donati, L.; Aymerich, F.; El Mehtedi, M. Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. Metals 2024, 14, 920. https://doi.org/10.3390/met14080920
Carta M, Buonadonna P, Reggiani B, Donati L, Aymerich F, El Mehtedi M. Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. Metals. 2024; 14(8):920. https://doi.org/10.3390/met14080920
Chicago/Turabian StyleCarta, Mauro, Pasquale Buonadonna, Barbara Reggiani, Lorenzo Donati, Francesco Aymerich, and Mohamad El Mehtedi. 2024. "Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process" Metals 14, no. 8: 920. https://doi.org/10.3390/met14080920
APA StyleCarta, M., Buonadonna, P., Reggiani, B., Donati, L., Aymerich, F., & El Mehtedi, M. (2024). Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. Metals, 14(8), 920. https://doi.org/10.3390/met14080920