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Abstract: Since a multiaxial loading environment may lead to the fatigue failure of structures,
establishing a reliable fatigue model to predict the multiaxial fatigue lives of structures has always
been a concern of engineers. This study proposes a new multiaxial fatigue theoretical model (WYT
model) based on the critical plane theory, which takes the plane of the maximum shear strain
amplitude as the critical plane and considers the effects of shear stress and normal stress on fatigue
damage. Moreover, a backpropagation neural network (BPNN) model for multiaxial fatigue life
prediction with the shear strain amplitude, normal strain amplitude, mean shear stress, and mean
normal stress on the same critical plane as input parameters and fatigue life as the output variable is
established. Finally, the WYT model and the BPNN model are compared with two existing multiaxial
fatigue models to evaluate the life prediction effects of different models for S45C and 7075-T651 under
constant-amplitude and variable-amplitude multiaxial loadings. The calculation results show that
the WYT model is feasible, and the BPNN model is more accurate in predicting the fatigue lives of
specimens than other multiaxial fatigue theoretical models.

Keywords: multiaxial fatigue; critical plane theory; fatigue life prediction; neural network; fatigue
damage

1. Introduction

In many fields of industry, such as automobiles, aircraft, and marine ships, engineering
structures are often subjected to multiaxial loading and may experience fatigue failure
during use [1,2]. Under complex loading paths, the multiaxial fatigue lives of structures
are more difficult to predict [3,4]. For example, the attachments of a turbine blade to
the disk are often subjected to complex loadings, including high rotational speeds and
vibrations at high temperatures, and their failures are caused by a variety of mechanisms [5].
Therefore, it is worth studying efficient and reliable multiaxial fatigue life prediction
methods. Considering the damage behavior of materials under multiaxial loading, many
multiaxial fatigue models are proposed based on critical plane theory [6–8]. Currently, the
application of neural networks has greatly promoted development in the field of fatigue
life prediction [9–11].

Through decades of research, scholars have proposed many theoretical models for
multiaxial fatigue life prediction. Several typical multiaxial fatigue models include the
following: Smith et al. [12] proposed a model with the maximum normal strain plane as
the critical plane, which takes the maximum normal strain range and the maximum normal
stress on the critical plane as the fatigue damage parameters and has better prediction
effects on the tensile materials. Kandil et al. [13] used the combination of shear strain
and normal strain on the maximum shear strain plane to calculate the fatigue lives of
materials. Taking the plane with the maximum shear strain amplitude as the critical
plane, Fatemi et al. [14] proposed a critical plane model based on the shear strain and
introduced the maximum normal stress on the critical plane to consider the influence of
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normal stress. Shang et al. [15] took the maximum shear plane as the critical plane and
proposed a critical plane model based on the equivalent strain. The above models were
verified with experimental data and achieved better prediction effects. The experiment
in Ref. [16] shows that the existence of non-zero mean stresses can reduce the life of a
specimen under constant-amplitude loading. Although the above models have already
realized the influences of the shear strain, normal strain, and normal stress on the critical
plane for fatigue damage, they do not introduce shear stress. Thus, when predicting a
specimen with mean shear stress using these models, their prediction results may be not
accurate. Therefore, it is necessary to propose a new multiaxial fatigue theoretical model
that comprehensively considers the influence of various variables on the critical plane,
including the shear stress.

Since multiaxial fatigue theoretical models are developed based on the semi-empirical
formula summarized from experimental data from some specific or limited materials,
they may not generally reflect the mapping relationship between loading and fatigue
life for other materials under different loadings and may lead to larger errors in the
prediction of the specimen’s life. Compared with multiaxial fatigue theoretical models, life
prediction methods based on neural networks can effectively and autonomously learn the
nonlinear mapping relationship between fatigue life and multiple variables from existing
experimental data [17]. Yang et al. [11] proposed a prediction model based on deep learning.
The principle is to take out a series of points on the loading path, use a long short-term
memory neural network to establish an intermediate quantity closely related to the life
from these points, and, finally, use a fully connected neural network to build a mapping
relationship between the intermediate quantity and the fatigue life. Sun et al. [18] used
a convolutional neural network to extract features from hysteresis images and capture
information in the loading path for life prediction. In addition, Zhang et al. [19] developed
a deep neural network model to predict life under creep-fatigue conditions. Feng et al. [20]
established a convolutional neural network to predict the residual useful life of a structure.
However, constructing a deep neural network is not easy for engineers and technicians
who are not familiar with neural networks; it is valuable to establish a simple but effective
network prediction model for engineering designers.

In practice, no matter what method is used to predict the life of a structure, both
accuracy and convenience are important factors to be considered. A theoretical model has
its specific theoretical formula, which facilitates the prediction of a structure’s life. Usually,
a neural network model that is trained enough could be more accurate for predicting a
structure’s life than a theoretical model. To provide engineers with more options, this
study attempts to establish both a new theoretical model and a neural network model for
fatigue prediction.

In order to comprehensively consider the influences of the critical plane variables
on the fatigue damage and improve the prediction effect of the theoretical model, a new
theoretical model (WYT) is proposed in this study, which takes the plane with the maximum
shear strain amplitude as the critical plane and introduces the shear strain amplitude,
normal strain range, maximum shear stress, and maximum normal stress as the main
damage parameters simultaneously. To reduce the prediction error, a simple and convenient
neural network framework is established. The shear strain amplitude, normal strain
amplitude, mean shear stress, and mean normal stress on the critical plane are taken as the
input parameters of the BPNN, and the fatigue life is taken as the output parameter. The
fatigue lives of specimens under constant-amplitude and variable-amplitude loadings are
predicted with the WYT model and the BPNN model, respectively. By comparing with the
experimental results, it is proved that the WYT model is feasible, and the BPNN model
is more accurate in predicting the fatigue lives of specimens. Finally, the influences of
different variable groups as input parameters of the neural network on its prediction effect
are discussed.
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2. Stress–Strain Analysis under Multiaxial Loading

To describe the stress and strain states of a structure under multiaxial loading conditions,
a smooth thin-walled tube and notched specimen are considered as the analysis objects.

2.1. Thin-Walled Tube under Multiaxial Loading

The strain state of a point on a thin-walled tube under strain-controlled loading can be
expressed as follows [21,22]:

ε =

 εx
γxy

2 0
γyx

2 −υe f f εx 0
0 0 −υe f f εx

 (1)

where εx is the normal strain; γxy is the shear strain, and γxy = γyx; υe f f is the effective

Poisson ratio, and υe f f = 0.5− (0.5−υe)∆σeq,a
E∆εeq,a

[21,22], where υe is the elastic Poisson ratio, E
is the elastic modulus, ∆σeq,a is the equivalent stress amplitude, and ∆εeq,a is the equivalent
strain amplitude.

If the applied axial and shear strains are sinusoidal,

εx(t) = εx,a sin ωt + εx,m (2)

γxy(t) = γxy,a sin(ωt− ϕ) + γxy,m (3)

where ϕ is the phase angle between the axial strain and shear strain. εx,a and γxy,a are the
applied axial and shear strain amplitudes, respectively. εx,m and γxy,m are the applied mean
axial and shear strains, respectively.

The shear strain and normal strain amplitudes on the maximum shear strain plane
make an angle θc with the specimen axis, which can be expressed as [23]

∆γmax

2
= εx,a

{[
λ cos(2θc) cos ϕ− (1 + υe f f ) sin(2θc)

]2
+ [λ cos(2θc) sin ϕ]2

}0.5
(4)

∆εn

2
=

εx,a

2

{[
2(1 + υe f f ) cos2 θc + λ sin(2θc) cos ϕ− 2υe f f

]2
+ [λ sin(2θc) sin ϕ]2

}0.5
(5)

where

tan 4θc =
2λ(1 + υe f f ) cos ϕ

(1 + υe f f )
2 − λ2

(6)

λ =
γxy,a

εx,a
(7)

The critical plane is determined by taking the plane with the maximum shear strain
amplitude as the critical plane. Supposing that two or more planes have the same maximum
shear strain amplitude, the plane with the maximum normal strain range is considered as
the critical plane. The calculation of various variables on the different planes can be found
in Refs. [24–26].

2.2. Notched Specimen under Multiaxial Loading

For a notched specimen under multiaxial loading, the stress and strain states at a point
in the structure can be expressed as follows [27]:

σ =

 σx τxy τxz
τyx σy τyz
τzx τzy σz

 ε =

 εx εxy εxz
εyx εy εyz
εzx εzy εz

 =

 εx
γxy

2
γxz
2

γyx
2 εy

γyz
2

γzx
2

γzy
2 εz

 (8)
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where σx, σy, and σz are normal stresses; τxy, τxz, τyx, τyz, τzx, and τzy are shear stresses; εx,
εy, and εz are normal strains; γxy, γxz, γyx, γyz, γzx, and γzy are shear strains; εxy, εxz, εyx,
εyz, εyz, and εzy are variable symbols related to γxy, γxz, γyx, γyz, γzx and γzy, respectively,
as follows: εxy =

γxy
2 , εxz =

γxz
2 , εyx =

γyx
2 , εyz =

γyz
2 , εzx = γzx

2 , εzy =
γzy
2 .

The stress and strain components on any plane in a three-dimensional space can be
obtained through a coordinate transformation as follows [7]:

σ′ = MσMT ε′ = MεMT (9)

where M is the coordinate conversion matrix expressed as follows:

M =

 cos θ sin φ sin θ sin φ cos φ
− sin θ cos θ 0

− cos θ cos φ − sin θ cos φ sin φ

 (10)

As shown schematically in Figure 1, the angles θ and φ are the coordinate rotation
angles. Any plane in a three-dimensional space can be obtained by changing angles θ and
φ, where θ increases from 0◦ to 360◦ by ∆θ and φ increases from 0◦ to 180◦ by ∆φ.
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Figure 1. Stress and strain on any plane in three-dimensional coordinates adapted from Ref. [7].

For a notched specimen with stress concentration, the stress–strain response of the
critical point should be obtained through finite element simulation, and then the stress–
strain response on different planes is obtained through coordinate transformation. Finally,
the plane with the maximum shear strain amplitude is taken as the critical plane.

3. Fatigue Life Prediction Model
3.1. A New Multiaxial Fatigue Model Based on the Critical Plane Theory

The initiation of a fatigue crack is due to the local plastic deformation of a stable slip
zone inside a material, and the direction of the stable slip zone is basically consistent with
the direction of the maximum shear strain [28]. Therefore, it is reasonable to take the plane
with the maximum shear strain amplitude as the critical plane.

Experiments show that cracks often initiate on the plane of maximum shear strain
under different loadings [29,30]. Socie [31] proposed the use of the maximum shear strain
amplitude ∆γmax

2 as the main parameter affecting fatigue damage. Brown [29] believed that
the normal strain εn on the maximum shear strain plane also promotes crack propagation
and used the maximum shear strain amplitude ∆γmax

2 and maximum strain range ∆εn
as the main parameters affecting multiaxial fatigue damage. Under non-proportional
loading, the values and directions of principal stresses and principal strains change within
a loading cycle, often causing additional cyclic hardening that reduces the life of the
specimen [31]. However, models based entirely on strain cannot effectively describe the
effect of additional cyclic hardening on multiaxial fatigue life under non-proportional
loading. Fatemi [28] proposed that the maximum shear strain amplitude ∆γmax

2 and the
maximum normal stress σn,max on the maximum shear strain plane be used as the main



Metals 2024, 14, 938 5 of 23

parameters affecting multiaxial fatigue damage, and the maximum normal stress could
reflect the cyclic hardening caused by non-proportional loading. The experiments showed
that the mean tensile stress perpendicular to the plane of maximum shear strain promoted
crack growth, and the mean compressive stress delayed crack growth [32]. The existence of
the mean shear stress reduces the life of a specimen under constant-amplitude loading [16].
Therefore, it is necessary to consider the influences of the normal stress and shear stress
on fatigue damage simultaneously when establishing a multiaxial fatigue model. The
stress–strain on a fatigue crack under tension–torsion loading is shown in Figure 2.
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Figure 2. Schematic of stresses and strains on a fatigue crack adapted from Ref. [33].

To comprehensively consider the influences of stresses and strains on the critical plane
on fatigue damage, this study takes the plane with the maximum shear strain amplitude as
the critical plane and proposes a new multiaxial fatigue model based on the critical plane
theory. The proposed new multiaxial fatigue model includes several parameters, including
the maximum shear strain amplitude ∆γmax

2 and the normal strain range ∆εn on the plane.
Meanwhile, in order to consider the influences of stresses, normal stress and shear stress
correction factors σn,max

σ′f
and τmax

τ′f
[34] are also introduced. The newly proposed multiaxial

fatigue model is expressed as follows:

∆γmax

2

(
1 +

τmax

τ′f

)
+ ∆εn

(
1 +

σn,max

σ′f

)
= f

(
N f

)
(11)

where ∆γmax
2 and ∆εn are introduced to take into account the influences of the shear strain

and normal strain on crack propagation; τmax
τ′f

is the normalization of the shear stress; the

maximum shear stress τmax includes the mean shear stress, considering the influence of
the mean shear stress on fatigue damage; σn,max

σ′f
is the normalization of the normal stress,

considering the influence of additional cyclic hardening under non-proportional loading on
fatigue damage, and the maximum normal stress σn,max includes the mean normal stress,
considering the influence of the mean stress on crack propagation; N f is the fatigue life, i.e.,
the number of loading cycles when the specimen undergoes fatigue failure. τ′f is the shear
fatigue strength coefficient, and σ′f is the fatigue strength coefficient. The units of τmax, τ′f ,
σn,max, and σ′f are Pa.

In Ref. [35], ∆γmax
2 , ∆εn, and σn,max are expressed as follows:

∆γmax
2 = (1 + υe)

σ′f
E

(
2N f

)b
+
(
1 + υp

)
ε′f

(
2N f

)c

∆εn = (1− υe)
σ′f
E

(
2N f

)b
+
(
1− υp

)
ε′f

(
2N f

)c

σn,max =
σ′f
2

(
2N f

)b

(12)

where E is the elastic modulus of the material (unit: Pa); ε′f is the fatigue ductility coefficient;
b is the fatigue strength exponent; c is the fatigue ductility exponent; υp is the plastic Poisson
ratio of the material.
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The maximum shear stress τmax on the critical plane can be expressed as follows [34]:

τmax =
∆τ

2
= τ′f

(
2N f

)b0
(13)

where ∆τ
2 is the shear stress amplitude; b0 is the shear fatigue strength exponent.

For metallic materials, υe = 0.3 and υp = 0.5 [36]. Equations (12) and (13) are
substituted into Equation (11) to obtain the following:

∆γmax
2

(
1 + τmax

τ′f

)
+ ∆εn

(
1 + σn,max

σ′f

)
=

[
1.3

σ′f
E

(
2N f

)b
+ 1.5ε′f

(
2N f

)c
]

×
[

1 +
(

2N f

)b0
]
+

[
0.7

σ′f
E

(
2N f

)b
+ 0.5ε′f

(
2N f

)c
]
×
[

1 + 0.5
(

2N f

)b
] (14)

Based on the von Mises criterion [5], b0 = b. Then, the right side of Equation (14) can
be approximately expanded as follows:

∆γmax
2

(
1 + τmax

τ′f

)
+ ∆εn

(
1 + σn,max

σ′f

)
= 2

σ′f
E

(
2N f

)b
+ 2ε′f

(
2N f

)c

+1.65
σ′f
E

(
2N f

)2b
+ 1.75ε′f

(
2N f

)(b+c)
(15)

The mean value of the coefficients of
σ′f
E

(
2N f

)2b
and ε′f

(
2N f

)(b+c)
in Equation (15) is

considered, and Equation (14) can be approximately expressed as follows:

∆γmax
2

(
1 + τmax

τ′f

)
+ ∆εn

(
1 + σn,max

σ′f

)
≈
[

σ′f
E

(
2N f

)b
+ ε′f

(
2N f

)c
]

×
[

2 + 1.7
(

2N f

)b
] (16)

To distinguish it from other fatigue models, the multiaxial fatigue theoretical model
proposed in this study is called the WYT model.

3.2. Establishment of a Neural Network Model

Compared with the multiaxial fatigue theoretical model, a life prediction method
based on neural networks can effectively and autonomously learn the nonlinear mapping
relationships between fatigue life and multiple variables from existing experimental data,
and it can better predict the fatigue life of a specimen under complex loading. With the
advancement of data science, the application of deep neural networks has achieved better
prediction effects on structural life prediction, but the construction of its complex network
has brought great inconvenience, and it is rather difficult for engineers and technicians who
are not familiar with neural networks. Therefore, the purpose of this section is to establish
a simpler neural network method for predicting the lives of specimens under different
types of loadings. BPNNs have a strong nonlinear adaptive ability, and they are widely
used in life predictions for structures [37]. In this study, the variables of the critical plane
are used as the input variables of the neural network so that the trained neural network
can be used to predict the specimen lives under different types of loadings and can also
predict the lives of some complex structures.

In this section, a BPNN model for predicting a specimen’s life under multiaxial loading
is established by combining the critical plane theory with a BPNN.

3.2.1. Structure of a BPNN

A BPNN is a multilayer feedforward neural network; its main features are that the
signal is the forward propagation, and the error is the backward propagation [38]. The
training process of a BPNN is mainly divided into two stages. The first stage is the forward
propagation of the signal, from the input layer to the hidden layer and, finally, to the output
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layer; the second stage is the backpropagation of the error from the output layer to the
hidden layer and, finally, to the input layer. If the output layer does not achieve the desired
output, the error change value of the output layer is calculated, and then backpropagation
is performed. The error signal is sent back through the network in reverse along the original
connection path, and the weight of each layer of neurons is modified until the desired goal
is achieved.

A BPNN usually has a three-layer structure as its typical form. These three-layer
structures are usually the input layer, hidden layer, and output layer. Each layer may
have multiple neurons; the neuron structures of each layer are basically the same, and the
activation functions may be the same or different. The basic structure of a BPNN is shown
in Figure 3.
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The basic component unit of a neural network is a neuron, and the structure of a single
neuron is shown in Figure 4. The output of a neuron is as follows [40]:

y = f

(
n

∑
i=1

(ωixi) + b

)
(17)

where f is the activation function; ωi and xi are the weight and input value of the i-th input
of the neuron, respectively; b is the threshold of the neuron.
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In theory, BPNN can approximate any nonlinear continuous function under the con-
ditions of a reasonable structure and appropriate weight [41]. The flow of the BPNN
algorithm is shown in Figure 5.

3.2.2. Establishment of a BPNN Model

The research in Refs. [36,42] shows that the shear strain and normal strain on the critical
plane are important parameters affecting fatigue damage. Meanwhile, the experiment in
Ref. [16] shows that the existence of non-zero mean stresses can also reduce the life of
a specimen under constant-amplitude loading. The theoretical model proposed by Li
et al. [25] directly introduced the mean shear stress and mean normal stress, and they
verified their model by using the experimental data of some materials.

Inspired by the above research, when establishing a neural network, this study uses
the shear strain amplitude ∆γmax

2 , normal strain amplitude ∆εn
2 , mean shear stress τm, and
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mean normal stress σm on the critical plane as the input parameters of the neural network
and the life N f as the output parameter. The determination of the critical plane is detailed
in Section 2. The BPNN model established in this study is shown in Figure 6, and its
hyperparameter settings are shown in Table 1. The number of neurons in the hidden layer
can be calculated by using the following formula [43]:

m = 2n + 1 (18)

where n is the number of neurons in the input layer.
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Table 1. Parameters of the BPNN model.

Parameters Settings

Neurons at the input layer 4
Neurons at the hidden layer 9
Neurons at the output layer 1

Activation function of the hidden layer logsig
Activation function of the output layer tansig

Training function trainlm
Learning rate 0.01

To facilitate the training of the BPNN model, the data need to be normalized. The
formula is as follows [37]:

x =
x0 − xmin

xmax − xmin
(19)

where x0 is the original data, xmin is the minimum value of the original data, and xmax
is the maximum value of the original data. When the final result is output, it should be
de-normalized.

The BPNN model established in this study was realized using MATLAB R2019b Deep
Learning Toolbox 13.0.

3.3. Existing Multiaxial Fatigue Theoretical Models

In order to compare the prediction effects of the WYT model and the established
BPNN model with other existing multiaxial fatigue models, this study sorts out two
typical multiaxial fatigue theoretical models, as shown in Table 2. The model proposed
by Smith [12] is called the SWT model, and the model proposed by Shang [15] is called
the SHD model in this study. The SWT model takes the plane with the maximum normal
strain amplitude as the critical plane and uses the product of the maximum normal strain
amplitude and the normal stress on the plane as the damage parameter, without considering
the influences of the shear stress and shear strain on the critical plane on fatigue damage.
The SHD model takes the plane with the maximum shear strain amplitude as the critical
plane and considers that the maximum shear strain amplitude and the normal strain
range on the critical plane are the two main factors affecting the fatigue damage, without
considering the effects of the shear stress and normal stress. Both the WYT model and
the BPNN model proposed in this study consider the influences of stresses (shear stress
and normal stress) and strains (shear strain and normal strain) on the critical plane for
fatigue damage.

Table 2. Multiaxial fatigue models.

Models Life Prediction Equations References

1 SWT σn,max
∆εn

2 = f (N f ) [12]

2 SHD
[
∆ε∗2n + 1

3 (∆γmax/2)2
]1/2

= f (N f ) [15]

4. Experimental Data Verification

In order to compare the prediction effects of the four models (the WYT model, BPNN
model, SWT model, and SHD model) for different material specimens under constant-
amplitude loading and variable-amplitude loading, the experimental data of S45C steel [44]
and 7075-T651 aluminum alloy [45,46] are selected for life predictions in this study.

4.1. Life Prediction of the Two Material Specimens under Constant-Amplitude Loading

The two material specimens are both smooth thin-walled tubes, as shown in Figure 7.
The fatigue properties of each material are shown in Table 3. The loading mode of each
material specimen is sine-wave loading; the loading paths are shown in Figure 8, and
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the detailed experimental data are shown in Appendix A and Appendix B. The detailed
experimental processes of the two material specimens can be found in Refs. [44,45].
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Figure 7. Specimen dimensions (unit: mm). (a) S45C reprinted from Ref. [47]; (b) 7075-T651 reprinted
from Ref. [45].

Table 3. Material fatigue properties.

Properties Symbols S45C [44] 7075-T651 [45,48]

Modulus of elasticity E (GPa) 186 71.7
Shear modulus G (GPa) 73 27.5
Yield strength σy (MPa) 496 501

Ultimate tensile strength σu (MPa) 770 561
Fatigue strength coefficient σ′f (MPa) 1206 * 1235
Fatigue ductility coefficient ε′f 0.29 * 0.243
Fatigue strength exponent b −0.09 * −0.138
Fatigue ductility exponent c −0.56 * −0.71

Shear fatigue strength coefficient τ′f (MPa) 696 * 797
Shear fatigue ductility coefficient γ′f 0.5 * 5.42
Shear fatigue strength exponent b0 −0.09 * −0.126
Shear fatigue ductility exponent c0 −0.56 * −1.173

* The uniaxial fatigue parameters of S45C are estimated based on the Muralidharan–Manson method in Ref. [49],
and the torsional fatigue parameters can be estimated from the corresponding uniaxial fatigue parameters by
using the von Mises criterion [5].
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Figure 8. Loading paths considered in this study adapted from Refs. [21,45]. (a) is axial loading;
(b) is torsional loading; (c) is proportional loading; (d–f) are non-proportional loading; (g) is axial
loading, the mean normal stress is not zero; (h) is torsional loading, the mean shear stress is not
zero; (i) is proportional loading, the mean normal stress and mean shear stress are not zero; (j–m) are
non-proportional loading, the mean normal stress and mean shear stress are not zero.

To verify the generalization ability of the BPNN model’s prediction (prediction ability
on unknown data), eighty percent of the data in each material are used as the training set,
twenty percent of the data are used as the test set, i.e., nineteen groups of experimental data
for S45C are used as the training set, and five groups of experimental data are used as the
test set (the bolded experimental data in Appendix A); forty-two groups of experimental
data for 7075-T651 are used as the training set, and ten groups of experimental data are used
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as the test set (the bolded experimental data in Appendix B). In this section, the trained
BPNN with the four input parameters ( ∆γmax

2 , ∆εn
2 , τm, σm) is called the BPNN model.

4.1.1. Life Prediction

The mechanical properties and fatigue parameters of the two materials are given
in Table 3. According to the experimental data in Sections A and B, the SWT model,
SHD model, WYT model, and BPNN model are used to predict the fatigue lives of the
two material specimens under constant-amplitude loading, and the prediction results are
shown in Figures 9 and 10. To visually see the distribution of the prediction results of each
model, their distributions in the error band are counted, as shown in Tables 4 and 5.
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Figure 9. Predicted lives of each model for S45C: (a) SWT, (b) SHD, (c) WYT, and (d) BPNN.

Table 4. Distributions of the prediction results for S45C using different models within the error band.

Scatter Band SWT SHD WYT BPNN

±3 66.67% 95.83% 100% 100%
±2 50% 62.5% 91.67% 100%

Table 5. Distribution of the prediction results for 7076-T651 using different models within the error
band.

Scatter Band SWT SHD WYT BPNN

±3 53.85% 57.69% 75% 100%
±2 32.69% 36.54% 48.08% 86.54%

It can be seen from Figure 9 and Table 4 that the best prediction effect for S45C is that
of the BPNN model, and the prediction results are all within the two-time error band in
Figure 9d. The second is that of the WYT mode, and most of the results are within the
two-time error band in Figure 9c. The prediction effect of the SHD model for S45C is also
better, with only one data point outside the three-time error band in Figure 9b. However,
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the SWT model has a poorer prediction effect on S45C, and some data points are outside
the three-time error band in Figure 9a.
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Figure 10. Predicted lives of each model for 7075-T651: (a) SWT, (b) SHD, (c) WYT, and (d) BPNN.

Based on Figure 10 and Table 5, it can be seen that the best prediction effect for 7075-
T651 is that of the BPNN model, and all of the prediction results are within the three-time
error band in Figure 10d. The second is that of the WYT model, for which most of the
data points are within the three-time error band in Figure 10c. However, almost half of the
data points of the SWT model and the SHD model are outside the three-time error band in
Figure 10a,b.

4.1.2. Prediction Result Analysis

The experimental data of the two material specimens are used to evaluate the predic-
tion effects of the four models, and it can be found that the prediction results of different
models for the same material specimens are different.

The SWT model considers the normal strain and maximum normal stress on the
critical plane, which can reflect the effect of the non-proportional additional strengthening
phenomenon on fatigue life [50]. However, the SWT model does not consider the effect of
shear stress, so it has a poor prediction effect for 7075-T651 and has a poor prediction effect
for S45C under loading paths a, b, and f. The SHD model uses the von Mises criterion to
synthesize an equivalent damage parameter from the shear strain amplitude and normal
strain range on the critical plane, and it has a better prediction effect for S45C. Since the
fatigue damage parameter of the SHD model is just based on strains and does not consider
the effects of stresses on fatigue damage, its prediction results for S45C are conservative,
and for the same reason, it has poorer prediction effects for 7075-T651. Since the WYT
model considers the influences of both the strains and the stresses on the critical plane
simultaneously, it has better prediction effects for S45C and 7075-T651.

Compared with the three theoretical models (the SWT model, the SHD model, and the
WYT model), the BPNN model in this study does not need a detailed derivation process
and has a simple structure, and the results of the training set and the test set for each
material are within the three-time error band.
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4.2. Life Prediction of the Two Material Specimens under Variable-Amplitude Loading

To evaluate the prediction effects of the above four models on specimens of different
materials under variable-amplitude loading, the fatigue lives of S45C and 7075-T651 speci-
mens under variable-amplitude loading are predicted. When predicting the specimen life
under variable-amplitude loading, it is necessary to count the variables in the time domain
on the critical plane using the multiaxial rainflow counting method [51,52] and to record
the strain and stress results of each cycle by using a model to predict the fatigue damage
under each cycle’s loading. Based on the linear Palmgren–Miner damage accumulation
rule, the total fatigue damage of the specimen under variable-amplitude loading is

D =
n

∑
i=1

1
N f i

(20)

where n is the number of cycles, and N f i is the fatigue life corresponding to the i-th cycle.
Fatigue failure occurs when D = 1.

4.2.1. Life Prediction of the S45C Steel Specimen under Variable-Amplitude Loading in the
Time Domain

The S45C steel specimen is a thin-walled tube, as shown in Figure 7, and the time
histories of strains are given in Ref. [44]. Based on the experimental data of S45C under
variable-amplitude loading in Ref. [44], the four models are used to predict the life of the
S45C specimen, and the prediction results are shown in Figure 11. To visually see the
distribution of the prediction results of each model, their distributions in the error band are
counted, as shown in Table 6.
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Figure 11. Predicted lives of each model for S45C under variable-amplitude loading: (a) SWT,
(b) SHD, (c) WYT, and (d) BPNN.
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Table 6. Distribution of the prediction results for S45C under variable-amplitude loading using
different models within the error band.

Scatter Band SWT SHD WYT BPNN

±3 42% 94.74% 94.74% 100%
±2 10.53% 68.42% 89.47% 73.68

According to Figure 11 and Table 6, it can be seen that the BPNN model has the best
prediction effect for S45C, and the prediction results are all within the three-time error band
in Figure 11d. It is followed by the SHD model and WYT model, each of them has only
one data point outside the three-time error band in Figure 11b,c. However, the SWT model
has a poor prediction effect for S45C, with almost half of the data points being outside the
three-time error band in Figure 11a.

The calculation results show that the WYT model is feasible. By combining the critical
plane method with the neural network, the BPNN model takes the variables on the critical
plane as its input parameters, and its prediction effect is the best.

4.2.2. Life Prediction of the 7075-T651 Aluminum Alloy Specimen under Random-Vibration
Loading in the Frequency Domain

The 7075-T651 aluminum alloy notched specimen [46] is shown in Figure 12, and
the material properties are shown in Table 3. The loading acceleration power spectral
densities and experimental life results are shown in Table 7. The acceleration power
spectral density (PSD) diagram is shown in Figure 13. During the experiment, one end of
the specimen is fixed on a vibration table horizontally with a clamp and is subjected to
vertical random vibration acceleration excitation. The detailed experimental process can be
found in Ref. [46].
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Figure 12. Schematic diagram of the specimen’s dimensions adapted from Ref. [46].

Table 7. Acceleration power spectral densities and experimental life results of the 7075-T651 speci-
mens under random-vibration loading adapted from Ref. [46].

Specimen
No.

ξ1
(g2/Hz)

ξ2
(g2/Hz)

f min
(Hz)

f mid
(Hz)

f max
(Hz)

Excitation
Direction

Experimental
Lives (s)

1 0.025 0.025 10 - 400 Z 13,032
2 0.05 0.05 10 - 400 Z 2196
3 0.075 0.075 10 - 400 Z 1326
4 0.02 0.15 10 150 350 Z 15,210
5 0.05 0.15 10 150 350 Z 1380
6 0.075 0.15 10 150 350 Z 1032
7 0.03 0.025 10 150 350 Z 7974
8 0.06 0.025 10 150 350 Z 1710
9 0.08 0.025 10 150 350 Z 534
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(1) Finite Element Simulation

The dimensions of the 7075-T651 specimen are known, and finite element modeling
is performed, as shown in Figure 14. The first-order and second-order structural natural
frequencies of the specimen are shown in Table 8, and the relative errors between the
frequencies in the simulation and the experiment are less than 5%. The stress contour
diagram, PSD responses, and time histories are presented for the 7075-T651 specimen
shown in Figures 15–17, respectively. It can be seen from Figure 16 that the peak frequencies
of the response PSD functions of the specimen almost coincide with the first-order and
second-order natural frequencies in Table 8. However, due to the limited length of this
paper, the PSD responses under all conditions are not shown one by one, and only the
stress time responses in the X and Y directions under the PSD amplitude of 0.025 g2/Hz
loading are drawn in Figure 17. In this study, the sampling frequency is set to 20 times the
highest frequency of excitation (400 Hz) for the specimen, and the response time histories
of 10 s are obtained by using the inverse fast Fourier transform (IFFT), and the number of
sampling points for the 7075-T651 aluminum alloy specimen is 80,000 in Figure 17.
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Figure 16. Stress PSD responses of the specimen at the maximum von Mises stress point under the
PSD amplitude of 0.025 g2/Hz loading.
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Figure 17. Stress time histories of the specimen at the maximum von Mises stress point under the
PSD amplitude of 0.025 g2/Hz loading.

(2) Life Prediction

Based on the simulation results under PSD loadings with different amplitudes, all
four models are used to predict the life of the notched 7075-T651 specimen. The lives are
calculated repeatedly for each loading spectrum ten times to take the mean value, and the
prediction results are shown in Figure 18. To visually see the distribution of the prediction
results of each model, their distributions in the error band are counted, as shown in Table 9.
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Figure 18. Life prediction results of the four models for the notched 7075-T651 specimen under
random-vibration loading.

Table 9. Distribution of the prediction results for 7075-T651 under random-vibration loading using
different models within the error band.

Scatter Band SWT SHD WYT BPNN

±3 55.56% 0% 66.67% 100%
±2 0% 0% 44.44% 66.67%

According to Figure 18 and Table 9, it can be seen that the BPNN model has the best
prediction effect on the 7075-T651 specimen, and the predicted results are all within the
three-time error band. The second is the WYT model, but some of its points are outside
the three-time error band. The prediction points of the SWT model and the SHD model
are almost outside the three-time error band. The prediction effects of the four models in
predicting the life of the notched 7075-T651 specimen are ranked as follows: BPNN model,
WYT model, SWT model, and SHD model.

The calculation results in Sections 4.1 and 4.2 show that the WYT model and estab-
lished BPNN model are feasible, and they can predict not only the life of a specimen
under constant-amplitude loading but also the fatigue life of a specimen under variable-
amplitude loading.

5. Discussion

In order to study the influences of different forms of input parameters on the prediction
effect of the BPNN model, this section selects three different variable groups as the input
parameters of the BPNN model, namely, ( ∆γmax

2 , σn,max), ( ∆γmax
2 , ∆εn

2 , σn,max), and ( ∆γmax
2 ,

∆εn
2 , τmax, σn,max). The BPNN model with three different variable groups is trained by

using the experimental data of S45C and 7075-T651 under constant-amplitude loading. The
dataset division is detailed in Section 4.1. The calculation results of the BPNN model with
three different variable groups for the two materials under constant-amplitude loading are
shown in Figure 19. To visually see the distribution of the prediction results of the BPNN
model with three different variable groups, the distributions in the error band are counted,
as shown in Tables 10 and 11.

Table 10. Distribution of the prediction results for S45C using the BPNN model with different input
parameters within the error band.

Scatter Band
BPNN Model with Two Input

Parameters
( ∆γmax

2 , σn,max)

BPNN Model with Three Input
Parameters

( ∆γmax
2 , ∆εn

2 , σn,max)

BPNN Model with Four Input
Parameters

( ∆γmax
2 , ∆εn

2 , τmax, σn,max)

±3 100% 100% 100%
±2 100% 100% 100%
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Table 11. Distribution of the prediction results for 7075-T651 using the BPNN model with different
input parameters within the error band.

Scatter band
BPNN Model with Two Input

Parameters
( ∆γmax

2 , σn,max)

BPNN Model with Three Input
Parameters

( ∆γmax
2 , ∆εn

2 , σn,max)

BPNN Model with Four Input
Parameters

( ∆γmax
2 , ∆εn

2 , τmax, σn,max)

±3 94.23% 88.46% 100%
±2 69.23% 75% 82.69
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Figure 19. Predicted lives of the BPNN model with different variable groups for two material
specimens. (a) Predicted lives of the BPNN model with two input parameters ( ∆γmax

2 , σn,max) for
S45C and 7075-T651. (b) Predicted lives of the BPNN model with three input parameters ( ∆γmax

2 , ∆εn
2 ,

σn,max) for S45C and 7075-T651. (c) Predicted lives of the BPNN model with four input parameters
( ∆γmax

2 , ∆εn
2 , τmax, σn,max) for S45C and 7075-T651.

For S45C, based on Figure 19 and Table 10, when the three variable groups ( ∆γmax
2 ,

σn,max), ( ∆γmax
2 , ∆εn

2 , σn,max), and ( ∆γmax
2 , ∆εn

2 , τmax, σn,max) are taken as input parameters of
the BPNN model, the BPNN model has a better prediction effect, and the prediction results
are all within the two-time error band. Its prediction effect is similar to that of the BPNN
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model with four input parameters ( ∆γmax
2 , ∆εn

2 , τm, σm) and better than that of the three
theoretical models in Section 4.1.1.

For 7075-T651, based on Figure 19 and Table 11, the BPNN model with two input
parameters ( ∆γmax

2 , σn,max) or three input parameters ( ∆γmax
2 , ∆εn

2 , σn,max) has a better predic-
tion effect, and the prediction results are almost within the three-time error band, making
them better than those of the three theoretical models in Section 4.1.1, but the prediction
effects are not better than that of the BPNN model with four input parameters ( ∆γmax

2 , ∆εn
2 ,

τm, σm). The prediction effect of the BPNN model with four input parameters ( ∆γmax
2 , ∆εn

2 ,
τmax, σn,max) for 7075-T651 is similar to that of the BPNN model with four input parameters
( ∆γmax

2 , ∆εn
2 , τm, σm), and the prediction results are all within the three-time error band.

Ref. [28] points out that it is reasonable to take the plane with the maximum shear
strain amplitude as the critical plane. The variables on the maximum shear strain plane
are taken as the input parameters of the BPNN in this study. Meanwhile, the BPNN can
effectively and autonomously learn the nonlinear mapping relationships between fatigue
life and multiple variables from existing experimental data, so the trained BPNN model
can better predict the specimen’s life.

For S45C, the mean shear stress and mean normal stress of all loading paths are zero,
and the life of the specimen is not affected by mean stresses. Therefore, when ( ∆γmax

2 , σn,max),
( ∆γmax

2 , ∆εn
2 , σn,max), ( ∆γmax

2 , ∆εn
2 , τmax, σn,max), and ( ∆γmax

2 , ∆εn
2 , τm, σm) are used as input

parameters of the BPNN, their prediction effects on S45C are similar, and the prediction
results are all within the two-time error band.

For 7075-T651, there are situations in the loading paths where the mean shear stress
and mean normal stress are not zero. At this time, the life of the specimen is affected
by mean stresses. However, the BPNN model with two input parameters ( ∆γmax

2 , σn,max)
or three input parameters ( ∆γmax

2 , ∆εn
2 , σn,max) does not consider the influences of mean

stresses simultaneously, and the prediction results for 7075-T651 are not all within the
three-time error band. The BPNN model with four input parameters ( ∆γmax

2 , ∆εn
2 , τmax,

σn,max) or four input parameters ( ∆γmax
2 , ∆εn

2 , τm, σm) considers the influences of mean
stresses simultaneously, and the prediction results of 7075-T651 are all within the three-time
error band.

The calculation results in Section 5 show that taking different variable groups as input
parameters of the BPNN model makes its prediction effects different. Therefore, we should
pay attention to the selection of input parameters when training the BPNN model.

6. Conclusions

(1) In Section 3.1, the WYT model not only considers the influences of shear strain and
normal strain on the critical plane but also those of normal stress and shear stress. By
predicting the lives of two material specimens under constant-amplitude and variable-
amplitude loading, respectively, in Section 4, the WYT model has better prediction
effects for the two material specimens than the SWT model and SHD model based on
Tables 4–6 and 9.

(2) In Section 3.2, a BPNN model with four input parameters ( ∆γmax
2 , ∆εn

2 , τm, σm) for
multiaxial fatigue life prediction is established by using the shear strain amplitude,
normal strain amplitude, mean shear stress, and mean normal stress on the critical
plane as input variables of the BPNN. In Section 4, the prediction effect of the trained
BPNN model with four input parameters ( ∆γmax

2 , ∆εn
2 , τm, σm) is better than that of the

WYT model for the same material specimen based on Tables 4–6 and Table 9. This
is because the BPNN model can effectively and autonomously learn the nonlinear
mapping relationships between fatigue life and multiple variables from existing
experimental data, which is its advantage.

(3) In Section 5, the influences of different variable groups as input parameters of the
neural network on the prediction effect are discussed. Two variables ( ∆γmax

2 , σn,max),
three variables ( ∆γmax

2 , ∆εn
2 , σn,max), and four variables ( ∆γmax

2 , ∆εn
2 , τmax, σn,max) are
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used as the input parameters of the BPNN model. Their effects for the two material
specimens are better than those of the three theoretical models (SWT, SHD, and WYT)
based on Tables 4, 5, 10 and 11; the prediction results of the BPNN model with four
input parameters ( ∆γmax

2 , ∆εn
2 , τmax, σn,max) and the BPNN model with four input

parameters ( ∆γmax
2 , ∆εn

2 , τm, σm) for S45C are both within the two-time error band
based on Tables 4 and 10; the prediction results of the BPNN model with four input
parameters ( ∆γmax

2 , ∆εn
2 , τmax, σn,max) and the BPNN model with four input parameters

( ∆γmax
2 , ∆εn

2 , τm, σm) for 7075-T651 are both within the three-time error band based on
Tables 5 and 11.

(4) Although the prediction effect of the WYT model is not better than that of the BPNN
model for the same material specimen, it is better than those reported earlier. On
the contrary, the construction of neural network models is not easy for engineers
and technicians who are not familiar with neural networks. The purpose of this
study is to provide more options for engineers when predicting a structural life under
different loadings.

(5) This study uses small-sample data to train the proposed BPNN model. If more test
data are used to train the BPNN model, it is believed that its prediction accuracy may
be further improved. If the WYT model is to be used to simulate and calculate life
data under different loading conditions, and these are used to train the BPNN model,
the effect of the trained BPNN model on the prediction of the life of a specimen needs
further study.

Author Contributions: Conceptualization, Y.W. and Y.Q.; methodology, Y.W. and J.L.; software, Y.W.
and J.B.; validation, Y.W. and Y.Q.; formal analysis, Y.Q.; investigation, J.B.; resources, J.L.; data
curation, Y.W. and Y.Q.; writing—original draft preparation, Y.W.; writing—review and editing, Y.Q.
and J.L.; visualization, Y.W. and J.B.; supervision, Y.Q. and J.B.; project administration, Y.Q. and
J.L.; funding acquisition, Y.Q. and J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors gratefully acknowledge the financial support of the Natural Science Basic
Research Program of Shaanxi (Program No. 2023-JC-YB-328) and the financial support of the Funda-
mental Research Funds for the Central Universities (Program No. ZYTS23014).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Experimental Results for S45C Steel [44]

Loading Paths
Phase

Angle (◦)
∆γ
2

∆ε
2

∆τ
2 (MPa) ∆σ

2 (MPa)
N f

(Cycles)

a - 0 0.025 0 595.19 110
a - 0 0.01 0 480.15 852
a - 0 0.005 0 389.1 3383
a - 0 0.004 0 361.9 5514
a - 0 0.015 0 509.02 421
a - 0 0.004 0 365.46 8933
a - 0 0.003 0 325.9 22071
a - 0 0.015 0 500.16 407
b - 0.015 0 287.14 0 1151
b - 0.015 0 283.81 0 1761
b - 0.015 0 286.3 0 1771
b - 0.009 0 244.25 0 5644
b - 0.008 0 229.38 0 14930
c 0 0.0052 0.006 103.55 370.33 2278
c 0 0.0082 0.009 111.4 395.16 568
c 0 0.0065 0.0072 108.88 391.11 1366
c 0 0.0065 0.0036 164.4 285.14 4647
c 0 0.0041 0.009 57.28 430.58 1181
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Loading Paths
Phase

Angle (◦)
∆γ
2

∆ε
2

∆τ
2 (MPa) ∆σ

2 (MPa)
N f

(Cycles)

d 22.5 0.0082 0.018 184.9 554.4 215
e 45 0.0055 0.006 214.82 419.13 1631
e 45 0.0082 0.018 189 542.51 191
f 90 0.0041 0.009 156.27 456.77 678
f 90 0.0055 0.006 204.27 432.96 1617
f 90 0.0066 0.0077 267.5 514.23 435

Appendix B. Experimental Results for 7075-T651 Aluminum Alloy [45]

Loading
Paths

Phase
Angle (◦)

∆τ
2 (MPa) ∆σ

2 (MPa) τm (MPa) σm (MPa)
N f

(Cycles)

a - 0 315 0 0 35,094
a - 0 260 0 0 181,817
a - 0 260 0 0 159,980
a - 0 235 0 0 848,760
a - 0 215 0 0 1,187,357
g - 0 203.04 0 228.95 87,622
g - 0 183.54 0 206.96 198,247
g - 0 183.3 0 206.69 175,509
g - 0 183.3 0 206.69 139,329
g - 0 183.3 0 206.69 391,636
g - 0 181.42 0 204.56 660,226
g - 0 178.6 0 201.38 373,265
g - 0 169.2 0 190.79 1,134,075
h - 105.83 0 119.34 0 730,491
h - 117.16 0 132.11 0 243,363
b - 117 0 0 0 2,159,208
b - 117 0 0 0 1,217,964
h - 151.33 0 170.64 0 19,500
h - 151.33 0 170.64 0 46,893
b - 151.33 0 0 0 207,445
b - 151.33 0 0 0 187,227
h - 139.12 0 156.88 0 209,904
h - 134.24 0 151.38 0 210,668
h - 134.24 0 151.38 0 310,472
h - 134.24 0 151.38 0 246,343
b - 134.24 0 0 0 1,179,056
b - 180 0 0 0 56,421
b - 210 0 0 0 13,630
b - 210 0 0 0 23,898
i 0 83.47 144.57 94.12 163.02 65,046
i 0 83.47 144.57 94.12 163.02 53,058
i 0 75.02 129.94 84.6 146.53 270,597
i 0 75.02 129.94 84.6 146.53 126,438
j 30 79.63 137.92 89.79 155.53 178,920
j 30 75.02 129.94 84.6 146.53 747,389
j 30 88.26 152.87 99.53 172.39 36,299
j 30 88.26 152.87 99.53 172.39 37,525
j 30 83.47 144.57 94.12 163.02 64,231
j 30 83.47 144.57 94.12 163.02 82,445
k 45 75.02 129.94 84.6 146.53 934,710
k 45 75.02 129.94 84.6 146.53 1,527,482
k 45 79.63 137.92 89.79 155.53 89,852
k 45 83.47 144.57 94.12 163.02 167,161
k 45 83.47 144.57 94.12 163.02 56,775
k 45 85.39 147.89 96.29 166.77 105,315
l 90 83.47 144.57 94.12 163.02 94,718
l 90 83.47 144.57 94.12 163.02 70,333
l 90 88.26 152.87 99.53 172.39 51,324
l 90 88.26 152.87 99.53 172.39 68,455
l 90 88.26 152.87 99.53 172.39 147180

m 180 83.47 144.57 94.12 163.02 78,147
m 180 81.55 141.25 91.96 159.28 102,512
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