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Abstract: This study adopts a new surface pretreatment method, Laser Surface Remelting (LSR). This
experiment aims to establish a set of laser welding process parameters suitable for aluminum alloy
and glass under this specific pretreatment. This experiment explores the impact of laser welding
parameters on the welding strength between high borosilicate glass and aluminum alloy. The
study specifically investigates the effects of four process parameters: defocus amount, laser power,
frequency, and pulse width on the welding outcome. The results indicate that the welding quality
between the aluminum alloy and glass reaches its optimum when the defocus amount is zero (i.e.,
when the laser converges at the interface between the glass and the metal) and the laser welding
parameters are set to a power of 250 W, a welding speed of 1 mm/s, a welding frequency of 10 Hz,
and a pulse width of 2.5 ms. The experiment also analyzes the fracture morphology under different
parameters, summarizing the locations and causes of fractures, and establishing the relationship
between the fracture location and the welding strength.

Keywords: glass; aluminum alloy; laser sealing process; microstructure; formation mechanism;
laser parameters

1. Introduction

Aluminum alloys and high borosilicate glass are important materials with broad ap-
plication prospects in industrial and technological fields. For example, welding aluminum
alloys with glass is used in manufacturing car body components, which can enhance the
strength and lightweight properties of automotive structures.

High borosilicate glass has a very high silicon content and very low alkali content,
with a boron oxide (B2O3) content exceeding 10%. This composition gives high borosilicate
glass excellent optical and electrical properties, along with an extremely low coefficient of
thermal expansion, high hardness, superior chemical resistance, and outstanding thermal
shock resistance. The light transmittance of high borosilicate glass can reach over 90%,
and its thermal expansion coefficient has a range of 32~40 × 10−7/◦C, which is only about
one third that of ordinary glass. This makes it less prone to cracking when exposed to
temperature changes, a characteristic that makes high borosilicate glass widely used in
products such as solar water heater tubes, glass instruments, chemical pipelines, and heat-
resistant glassware [1–4]. In this experiment, its excellent thermal shock resistance and low
thermal expansion coefficient help ensure that the welded samples experience less stress
and are less likely to develop cracks or other defects [5].

Aluminum alloy is a common metallic material known for its high strength, high
toughness, high specific strength, and good machinability, making it widely used in
large, lightweight structural components such as aerospace and automotive engine parts.
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AlCu5Mn aluminum alloy, developed independently in China, is a high-strength, high-
toughness cast aluminum alloy. Compared to other aluminum alloys, AlCu5Mn offers
superior mechanical and processing properties, making it widely applied in large, load-
bearing structural components. Although AlCu5Mn aluminum alloy has relatively low
strength, it has good toughness, is easier to process, and generates less stress during weld-
ing. At the same time, it retains the corrosion resistance and lightweight characteristics
typical of other aluminum alloys. These properties are the primary reasons for selecting
AlCu5Mn aluminum alloy in this experiment [6–8].

Currently, the connection between glass and metal in most scenarios relies on adhesive
bonding. However, this method often fails in high-temperature and heavy-load environ-
ments. Therefore, in recent years, many scholars have researched the welding of glass and
metal. Laser welding, with its advantages of high speed, small weld seams, and precise
welding, is a highly feasible welding solution [9–14]. Nevertheless, due to the significant
differences in the chemical and physical properties of aluminum alloys and glass, welding
them together has always been a challenging task. Appropriate surface pre-treatment
processes greatly enhance the welding strength between aluminum alloys and glass.

Octav P. Ciuca et al. used a picosecond pulsed laser to perform precision welding of
1 mm thick quartz glass and 1 mm thick pure aluminum sheets and analyzed the welded
joints. However, due to the high transient characteristics of multiple picosecond high-
energy density laser pulses and the differences in the thermophysical properties of the two
weld components, the process of rapidly applying multiple picosecond high-energy density
laser pulses to form a weld is complex [15]. Lin et al. used a 1064 nm fiber laser to weld
quartz glass and anodized aluminum alloy. Under optimal processing conditions, with a
scanning speed of 100 m/s and laser power of 2 W, the welding interface displayed a dense,
uniform, and void-free morphology with an adhesive strength of 8 kg. However, aluminum
alloys require anodizing treatment, a complex process that demands strict control of process
parameters to ensure a high-quality oxide film [16]. Qiu et al. found that with a 5 µm
thick micro-arc oxidation film, the optimal welding parameters were a laser power of
100 W, a frequency of 10 Hz, and a pulse width of 2.5 ms, which resulted in the maximum
shear strength of the glass–metal weld. However, the micro-arc oxidation process is more
complex and not easy to produce [17]. Li et al. used an ink immersion staining method for
aluminum alloy surface pre-treatment. However, due to the presence of a large quantity of
organic substances in the blackening ink of the aluminum alloy, the ink participates in the
reaction during welding. Organic substances tend to release hydrogen at high temperatures,
which could be the cause of porosity in the weld [18].

Based on the research conducted by scholars, it can be observed that the current
exploration of laser welding processes for aluminum alloys and glass mainly focuses on
indirect welding methods, such as preparing micro-arc oxidation films on the surface and
adding surface coatings. Although these methods can achieve a certain level of welding
strength, their application is often limited due to the complexity of the process and the
need to introduce additional elements. This study adopts a new surface pretreatment
method, Laser Surface Remelting (LSR). LSR is a surface modification technique where the
material’s surface is rapidly melted by laser heating and subsequently cooled. This process
can enhance the surface properties of the material, such as hardness, wear resistance,
corrosion resistance, and fatigue resistance [19,20]. Since there is no documented research
on the laser parameters under this pretreatment method, this experiment aims to establish
a set of laser welding process parameters suitable for aluminum alloy and glass under this
specific pretreatment.

According to the principles of laser welding, the process parameters that mainly
affect the welding strength of high borosilicate glass and aluminum alloy include laser
power, laser frequency, pulse width, and defocus amount [21–27]. The welding results
were evaluated in the following three ways: first, studying the impact of different process
parameters on the weld morphology of high borosilicate glass and aluminum alloy; second,
recording and comparing the shear strength of high borosilicate glass and aluminum alloy
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weldments under different process parameters; third, investigating the influence of different
process parameters on the shear fracture morphology of the welding test samples. Based
on the formation rules of weld and shear fracture morphology under different process
parameters, the laser welding mechanism of high borosilicate glass and aluminum alloy,
and the causes of shear fracture failure were analyzed and summarized.

2. Experimental Materials and Methods
2.1. Experimental Materials

In this experiment, the composition of AlCu5Mn is shown in Table 1 and the composi-
tion of high borosilicate glass is shown in Table 2.

Table 1. Composition of AlCu5Mn aluminum alloy (mass fraction %).

Al Si Cu Mg Mn

83.0–85.0 11.0–13.0 0.2–0.6 0.1 <0.1

Table 2. Composition of high borosilicate glass (mass fraction %).

SiO2 Al2O3 CaO MgO Na2O

70–73 0–3 6–12 0–4 12–16

Based on previous experiments, using a 250 W laser power for surface remelting before
welding yielded better results. Therefore, this experiment is conducted under the premise
of such pre-weld treatment.

2.2. Experimental Equipment

The primary equipment used in this study and their purposes are listed in Table 3.

Table 3. Experimental equipment and their uses.

Name Model Purpose

CNC Wire Cutting Machine DK7732 Cutting metal samples

Ultrasonic Cleaning Machine LTB-500 Cleaning samples

Vacuum Drying Oven 101-4 Drying experimental samples

Nd: YAG MD-Focus300 Welding

Electronic Universal Testing
Machine RGM-4100 Shear strength testing

X-ray Photoelectron Spectroscopy
(XPS) EXCALAB 250 XI Phase analysis

Scanning Electron Microscope
(SEM) EVO18 Morphological observation and

spectroscopy

Grinding and Polishing Machine MP-2A Grinding and polishing samples

Confocal Colored Electron
Microscope OLS5000-SAF Observing three-dimensional

morphology

Spectrophotometer 7230G Testing absorbance

The laser used in the experiment is an Nd: YAG, model MD-Focus300. The specifica-
tions are as follows:

• Wavelength: 1064 nm
• Pulse width: 0.1–20 ms
• Maximum frequency: 500 Hz
• Maximum power: 300 W
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• Spot diameter: 0.2–20 mm
• Cooling system: Thermostatic closed-loop water cooling system
• Worktable travel range: 500 mm × 500 mm

The laser focusing lens used in the experiment has a focal length of 75 mm.

2.3. Experimental Method

In this experiment, aluminum alloy and glass were welded using an overlap joint
configuration, as shown in Figure 1a. To evaluate the breaking strength of the current
sealing samples, a method was developed based on ASTM F 734 (Standard Test Method for
Shear Strength of Fusion Bonded Polycarbonate Aerospace Glazing Material) [28]. Since
there is no directly applicable standard for glass-to-metal sealing, the specimen dimensions
were tailored to the specific requirements of aerospace electronics, referencing the ASTM F
734 standard. The aluminum alloy was dimensioned at 18 mm × 14 mm × 3 mm, while the
borosilicate glass was set at 18 mm × 14 mm × 1 mm. Shear tests were conducted to assess
the bonding quality. A shear force test platform was designed, as illustrated in Figure 1b,
and was mounted on the RGM-4100 electronic universal testing machine(Jinan Times Shijin
Testing Machine Co., Ltd., Jinan, China). This shear testing machine, with a maximum
force capacity of 4 kN, was used to evaluate the bonding strength of the glass-to-metal
sealed samples. The tests were conducted at a constant speed of 1 mm/min until the
samples failed. The breaking strength was determined by the force required to separate the
sealed components. Due to variations in laser track width and depth, the effective bonding
area differed for each set of parameters. To ensure accuracy, five samples produced under
identical conditions were tested to determine the average breaking strength for each joint.
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Figure 1. Schematic of welding and shear force test. (a) Welding diagram. (b) Shear test diagram.

The laser used in the welding experiment is an Nd: YAG. The energy density during
operation is calculated using Equation (1).

ρN =
Ep

A
=

4Ptp

πD2 (1)

where ρN is the energy density in joules per square millimeter (J/mm2). Ep is the energy of
the laser pulse in joules (J). A is the area of the laser spot. P is the maximum pulse power
in watts (W). tp is the pulse duration in seconds (s). D is the spot diameter in millimeters
(mm) [29].

This experiment primarily investigates the effects of four parameters on welding strength:

• Laser Power
• Pulse Width
• Frequency
• Defocus Amount
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The schematic diagram of the process flow is shown in Figure 2. The selection of
parameters was fine-tuned based on the relevant literature [15–18]. With other parameters
fixed, the influence of the variable parameters on welding strength was investigated.
Accordingly, the welding experimental plan in Table 4 was designed.
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Figure 2. The schematic diagram of the process flow.

Table 4. Welding parameters for aluminum alloy and glass using laser welding.

Experiment
Number Power Frequency Pulse Width Defocus

Amount

1 250 W 10 Hz 2.5 ms −1
2 250 W 10 Hz 2.5 ms 0
3 250 W 10 Hz 2.5 ms 1
4 250 W 10 Hz 2.5 ms 2
5 150 W 10 Hz 1.5 ms 0
6 200 W 10 Hz 1.5 ms 0
7 250 W 10 Hz 1.5 ms 0
8 300 W 10 Hz 1.5 ms 0
9 150 W 10 Hz 2.0 ms 0
10 200 W 10 Hz 2.0 ms 0
11 250 W 10 Hz 2.0 ms 0
12 300 W 10 Hz 2.0 ms 0
13 150 W 10 Hz 2.5 ms 0
14 200 W 10 Hz 2.5 ms 0
15 250 W 10 Hz 2.5 ms 0
16 300 W 10 Hz 2.5 ms 0
17 200 W 8 Hz 2.5 ms 0
18 200 W 10 Hz 2.5 ms 0
19 200 W 12 Hz 2.5 ms 0
20 200 W 14 Hz 2.5 ms 0
21 250 W 8 Hz 2.5 ms 0
22 250 W 10 Hz 2.5 ms 0
23 250 W 12 Hz 2.5 ms 0
24 250 W 14 Hz 2.5 ms 0
21 300 W 8 Hz 2.5 ms 0
22 300 W 10 Hz 2.5 ms 0
23 300 W 12 Hz 2.5 ms 0
24 300 W 14 Hz 2.5 ms 0
25 200 W 10 Hz 1.5 ms 0
26 200 W 10 Hz 2.0 ms 0
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Table 4. Cont.

Experiment
Number Power Frequency Pulse Width Defocus

Amount

27 200 W 10 Hz 2.5 ms 0
28 200 W 10 Hz 3.0 ms 0
29 250 W 10 Hz 1.5 ms 0
30 250 W 10 Hz 2.0 ms 0
31 250 W 10 Hz 2.5 ms 0
32 250 W 10 Hz 3.0 ms 0
33 300 W 10 Hz 1.5 ms 0
34 300 W 10 Hz 2.0 ms 0
35 300 W 10 Hz 2.5 ms 0
36 300 W 10 Hz 3.0 ms 0

3. Experimental Results
3.1. Pre-Welding Surface Preparation

The metal surface is pre-treated as follows. First, the surface of the metal block is
polished with 600-grit and 1000-grit sandpaper, then cleaned in an ultrasonic cleaning
machine for 20 min, and finally dried. After treatment, the metal surface undergoes laser
remelting. The laser power is 250 W, the focal distance is 0 mm, the scanning speed
is 1 mm/s, the pulse width is 2.5 ms, and the pulse frequency is 10 Hz. The surface
morphology before and after remelting and the cross-sectional morphology are shown in
Figure 3.
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Figure 3. Surface and cross-sectional morphology. (a,a1) Before remelting. (b,b1) Surface after
remelting. (c,c1) Cross-section after remelting. (d,d1) The three-dimensional morphology of the
surface before remelting. (e,e1) The three-dimensional morphology of the surface after remelting.
(a−c) Observed under optical microscope at 50× magnification. (a1−c1) Observed under optical
microscope at 200× magnification.

3.2. Impact of Defocus Amount on Welding of High Borosilicate Glass and Aluminum Alloy

The laser spot of the Nd: YAG is formed by the convergence of multiple beams of
light. Changing the defocus amount affects the position where the laser focuses during
the welding process, which significantly impacts the amount of energy absorbed by the
material being welded and, thereby, influences the welding seam. The effect of defocus
amount on laser welding is primarily manifested in changes to the vertical position of the
laser focus, as shown in Figure 4. Altering the vertical position of the laser focus changes
the heat distribution during welding, which is a primary reason for the different welding
outcomes observed. When the defocus amount is greater than 0, the focal point of the laser
spot is above the metal surface, specifically, on the side of the glass. Conversely, when the
defocus amount is negative, theoretically, the laser focus should penetrate into the interior
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of the metal. However, since metals are generally not transparent, when the laser interacts
with the sample, the spot area is larger, and the heating efficiency is lower compared to the
scenario where the focal point is precisely on the metal surface.
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than 0. (b) Defocus amount is equal to 0. (c) Defocus amount is greater than 0.

The welding experiments were conducted with a fixed power of 150 W, frequency of
10 Hz, and pulse width of 2.5 ms, with defocus amounts set at −1 mm, 0 mm, +1 mm, and
+2 mm. Figure 5 shows the cross-sectional images of the welds at different defocus amounts.
From the figure, it can be observed that when the defocus amount is 0 mm, the depth of
the weld pool is greater, and there are fewer defects such as cracks and voids. When the
defocus amount is +2 mm, the size of the weld pool is relatively smaller. This is because
the laser focus is further away from the interface between the glass and the metal, and
the energy cannot be fully absorbed by the aluminum alloy surface, resulting in a smaller
weld pool.
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The samples welded at different defocus amounts were subjected to shear force testing
using an RGM-4100 electronic universal testing machine. After testing, the fracture surfaces
were observed under a SEM, as shown in Figure 6. From the figure, it can be observed that
as the defocus amount increases, the width of the weld fracture surface initially increases
and then decreases. When the defocus amount is 0 mm, the width of the weld fracture
surface is the largest, and the splashed aluminum alloy is more uniform. Additionally,
there are more metallic splashes left on the glass surface.
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The results of shear force versus defocus amount are shown in Figure 7. From the
figure, it can be observed that as the defocus amount increases, the shear force initially
increases and then decreases. The reason for this phenomenon is analyzed as follows: when
the defocus amount is negative, the laser cannot converge the beam effectively, resulting
in lower heating efficiency. After welding to form a molten pool, the molten aluminum
alloy overflows upward, raising the height of the processed surface. This disperses the
beam further, reducing heating efficiency even more, as shown in Figure 8. As the defocus
amount continues to increase to a certain extent, the focal point moves too far away from
the material being welded, making it difficult to achieve the necessary heating for welding,
thus reducing welding quality.

Considering both the weld seam and fracture morphology, as well as the comparison
of welding strength, the welding effect is optimal when the defocus amount is 0 mm. In the
subsequent exploration of laser-related process parameters, experiments were consistently
conducted with a defocus amount of 0 mm.

3.3. Influence of Power on Welding Strength of Glass and Aluminum Alloy

In the initial exploratory experiments, it was found that changes in laser power have
a significant impact on welding. This is mainly reflected in how changes in laser power
affect the input energy, thereby influencing penetration depth and weld width. Keeping
other welding parameters constant (frequency 10 Hz, pulse width 2.5 ms, defocus amount
0 mm, and welding speed 1 mm/s), only the power was varied sequentially: 150 W, 200 W,
250 W, and 300 W, as shown in Table 4 under serial numbers 5 to 16. The cross-sectional
morphology of the weld at different powers is shown in Figure 9. From the figure, it can be
observed that with increasing power, the penetration depth increases continuously, along
with an increase in cracks. Moreover, defects such as pores in the weld seam also increase
gradually, and cracks appear on the glass side at 300 W.
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Figure 7. Shear force of test sample as a function of defocus amount.
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As shown in Figure 10, after the fracture and separation of high borosilicate glass
and aluminum alloy, debris is produced that remains on the surfaces of both the glass and
aluminum alloy. Therefore, after fracture and separation, the weld interface between the
glass side and the aluminum alloy side is not completely aligned. From the figure, it can be
observed that with increasing power, the fracture surface widens significantly, and there is
a noticeable increase in splattering. Additionally, it can be seen that with increasing power,
the amount of adhered material on the aluminum alloy side gradually increases, while on
the glass side, it decreases.
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Due to the effect of pulse width on energy input, to ensure experimental accuracy,
welding experiments were conducted under conditions of 2.0 ms and 1.5 ms pulse widths.
Welded samples were tested for shear strength using a universal testing machine. Figure 11
shows the curve of shear strength as a function of power. From the figure, it can be observed
that as laser power increases from 150 W to 250 W, shear strength increases with increasing
power. However, at 300 W, shear strength sharply decreases. The reason for this is that
at excessively high laser power, beyond a certain threshold, the depth of the weld pool
increases continuously. This leads to more glass entering the weld pool and mixing with
molten metal, increasing stress on the glass side. Moreover, a higher energy input raises
the welding temperature, and combined with the poor thermal conductivity of glass, heat
tends to accumulate at the glass side of the weld, further increasing stress and making the
glass brittle. Additionally, the inherent reduction in material strength due to reduced glass
material can decrease its tolerance to stress.

3.4. Impact of Frequency on Welding Strength of Glass and Aluminum Alloy

The frequency of a pulsed laser refers to the number of times the laser operates within
a unit time, as illustrated in Figure 12. In this experiment, the unit time is one second.
When the welding speed remains constant, changing the frequency effectively alters the
density of the laser spots along the welding path, which affects the overlap of the laser
beams. Therefore, varying the frequency can significantly influence the welding outcome.

To investigate how changes in frequency affect welding results and to determine the
most suitable welding parameters, Nd: YAG was used to weld aluminum alloy and glass
under the experimental conditions listed in Table 4, experiment numbers 17 to 24. The weld
seam morphology under different frequencies is shown in Figure 13. From the images, it is
observed that as the frequency increases, there is little change in the depth of fusion, but
significant differences in the cross-sectional morphology of the weld seam. At a frequency
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of 8 Hz, the cross-sectional area of the entire weld pool is smaller. As the frequency increases
beyond 12 Hz, noticeable cracks appear on the glass side and significant voids can be seen
at the weld seam.
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Figure 12. Schematic of beam overlap at different frequencies during welding.

The cross-sectional images of the weld seam after shear strength testing were observed
under a SEM, as shown in Figure 14. It is observed from the images that with increasing
frequency, there is a significant increase in aluminum alloy splattering around the weld
seam. Additionally, the morphology of adhered material on the aluminum alloy side
transitions from large chunks to finer fragments as the frequency increases. The reason
behind this observation is that increasing frequency subjects the glass to more frequent
energy impacts within the same volume. However, excessively high frequencies can lead
to significant accumulation of heat, contributing to increased internal stress and crack
formation within the glass.

Since frequency and power are closely related parameters that significantly impact the
energy input during welding, the relationship derived from one set of power parameters
may not necessarily apply to other power settings. To better analyze the influence of
frequency on welding and establish a more general rule, additional welding experiments
were conducted by varying the frequency at powers of 200 W and 300 W. The shear strength
versus frequency curve is shown in Figure 15. The maximum shear strength of 35.21 N
was achieved at a frequency of 10 Hz. The trend of shear strength change under different



Metals 2024, 14, 1001 13 of 22

power conditions is similar, with shear strength increasing initially and then decreasing as
frequency changes.
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Figure 14. Weld fracture images at different frequencies. (a,a1) Frequency 8 Hz. (b,b1) Frequency
10 Hz. (c,c1) Frequency 12 Hz. (d,d1) Frequency 14 Hz. (a–d) Metal side. (a1–d1) Glass side.

According to Formula (2), we can see that at a fixed laser power, the energy density
per pulse increases as the pulse frequency decreases. At a frequency of 8 Hz, the energy per
pulse is too high and the interval time is long. This leads to significant thermal cycling of
the glass, causing excessive stress and affecting welding quality. Meanwhile, the aluminum
alloy does not retain sufficient heat, resulting in inadequate melting due to the short
duration of heating. On the other hand, at a higher frequency of 14 Hz, although the energy
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per pulse is reduced, the high overlap of laser spots causes repeated welding, leading to
unstable welding quality and a significant drop in post-weld shear strength.

Pavg = Ep f (2)

where Pavg is the average power (W). Ep is the energy per pulse (J). f is the frequency (Hz).
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3.5. Influence of Pulse Width on the Welding Strength of Glass and Aluminum Alloy

Pulse width, or pulse duration, refers to the length of time a pulse lasts. In laser
welding, it can be understood as the duration the laser operates at maximum power. When
laser power, frequency, and speed are kept constant, increasing the pulse width allows
the welded material more time to absorb energy, thereby also affecting the amount of
energy absorbed. To investigate the impact of pulse width on welding, experiments were
conducted with pulse widths of 1.5 ms, 2.0 ms, 2.5 ms, and 3.0 ms, while keeping other
laser parameters constant at 200 W power, 10 Hz frequency, 0 mm defocus, and 1 mm/s
welding speed, as shown in Table 4, serial numbers 25–36.

During welding, it was found that with a pulse width of 1.5 ms, successful welding
could not be achieved; the welded samples were very brittle and almost had no shear
strength. Laser power primarily affects the energy output of the laser, while pulse width
influences the duration of laser exposure. Keeping the same power and welding speed,
increasing the pulse width extends the laser’s action time on the aluminum alloy and glass.
Welded samples with pulse widths of 2.0 ms, 2.5 ms, and 3.0 ms were embedded in resin,
then cut, ground, and polished. The weld cross-sections were observed under a SEM, as
shown in Figure 16. From the figure, it can be observed that as the frequency increases, the
change in penetration depth is minimal. However, there is a significant difference in the
weld seam cross-sectional morphology. When the pulse width is 1.5 ms, the cross-sectional
area of the molten pool is relatively small. As the pulse width increases to more than 3.0 ms,
noticeable cracks appear on the glass side, and there are prominent pores in the weld seam.

The welded samples were observed under an electron microscope to examine the
fracture surface, as shown in Figure 17. From the images, it can be observed that at a pulse
width of 2.0 ms, the fracture is neat and uniform, with no significant spatter around the
edges. At a pulse width of 2.5 ms, the weld seam’s width increases noticeably, and there
is a large area of spatter around the weld, due to the increased energy. At 3.0 ms, the
fracture becomes fragmented and no large spatter areas are present. This phenomenon
occurs because increasing the pulse width significantly raises the energy during welding
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and extends the welding time. This allows for a longer period of material flow between the
molten aluminum alloy and the softened glass. However, at 3.0 ms, the prolonged energy
input leads to excessive heating of the glass, which, having a lower thermal expansion
coefficient, accumulates too much heat, causing the glass to crack due to thermal stress.
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Figure 16. Images of welded fracture at different pulse widths. (a) Pulse width 1.5 ms. (b) Pulse
width 2.0 ms. (c) Pulse width 2.5 ms. (d) Pulse width 3.0 ms.
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Additional tests on shear force variation with pulse width were conducted at 200 W
and 300 W. It was found that the trend of shear force variation was the same at each power
level. The curve of shear force variation with pulse width is shown in Figure 18. The figure
indicates that as the pulse width increases, the shear force first increases and then decreases,
with the maximum shear force occurring at 2.5 ms.
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Figure 18. Curve of shear force variation with pulse width.

The reason for the variation in shear force is that as the pulse width increases, both the
aluminum alloy and the glass receive more heat, resulting in longer melting and bonding
times. However, due to the significant difference in thermal expansion coefficients between
high borosilicate glass and aluminum alloy, once the threshold is exceeded and too much
energy accumulates on the surfaces of the glass and aluminum alloy, the glass may develop
internal cracks due to excessive stress. Therefore, an appropriate pulse width should be
chosen in the experiment.

4. Discussion

In previous sections, the effects of different laser process parameters on the welding
strength of samples and the changes in fracture morphology were discussed in detail. This
section explores the causes of shear fractures in welded samples by examining the 3D
morphology and elemental distribution of the weld fractures.

X-ray diffraction (XRD) is a technique used to analyze the crystal structure of materials,
typically employed for studying the lattice structure of crystals, and for qualitative and
quantitative crystallographic analysis. The main components of high borosilicate glass
are boron oxide and silicon dioxide, both of which are amorphous. When using XRD
for detection, a broad background rather than distinct diffraction peaks will be observed.
Figure 19 shows the X-ray diffraction patterns of fracture surfaces on the aluminum alloy
and high borosilicate glass sides. From the phase analysis results, it was found that the
glass-side fracture contains a small amount of Al, which is due to aluminum alloy splashes
peeling off and adhering to the glass during the shear test. The fracture on the aluminum
alloy side mainly consists of the Al phase, indicating no chemical changes occurred to form
new substances during welding. From the surface scan results of the fractures, it can be
seen that glass residues often remain on the aluminum alloy side of the fracture. However,
since the main components of glass are not suitable for XRD detection, no distinct glass
components were found in the XRD results of the aluminum alloy side fractures.

The principle of the confocal color electron microscope is to use a laser light source to
excite fluorescence within the sample and focus the confocal optical path at different depths
of the sample. The reflected data are then integrated to generate multi-depth images. Since
glass is highly transparent, using a confocal color electron microscope for 3D morphology
analysis of glass results in significant distortion. Therefore, this paper primarily analyzes
the 3D morphology of the fracture on the aluminum alloy side. The 3D contour analysis of
the fractures after shear strength testing of samples prepared with different laser process
parameters is shown in Figure 20.
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Figure 19. X-ray diffraction patterns of fracture surfaces on aluminum alloy and high borosilicate
glass sides. (a) Metal side. (b) Glass side.
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Figure 20. 3D morphology and contour curves of metal and glass side fractures after shear testing of
welded samples with different laser process parameters. (a) Laser power 150 W. Frequency 10 Hz.
(b) Laser power 300 W. Frequency 10 Hz. (c) Laser power 250 W. Frequency 8 Hz. (d) Laser power
250 W. Frequency 14 Hz.
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In Figure 20a, the 3D morphology and corresponding contour curves along the dashed
line of the metal side after shearing a welded sample with power 150 W, frequency 10 Hz,
defocus amount 0 mm, and welding speed 1 mm/s are shown. It can be observed that
the fracture area on the metal side is lower than the metal surface, with a depression
depth of about 40 µm and a fracture width of approximately 250 µm. Compared to the
3D morphology of fractures under other parameters, this fracture is narrower. When
the laser power is increased to 300 W, the fracture morphology, as shown in Figure 20b,
differs from other parameters in that the fracture area shows many protrusions without
depressions. Contour analysis reveals that the residual material is about 124 µm higher
than the metal surface, and the fracture width is approximately 900 µm, significantly
wider than under lower laser power. Additionally, many splashes slightly higher than the
aluminum alloy surface can be observed around the fracture, identified in previous studies
as aluminum alloy splashes. Figure 20c,d show the 3D morphology and corresponding
contour curves along the dashed line of the metal side after shearing welded samples with
power 250 W, defocus amount 0 mm, and pulse width 2.5 ms, with frequency changes.
When the frequency is 8 Hz, the fracture morphology is similar to that under lower power,
with the fracture area depressed below the aluminum alloy surface. However, under this
parameter, the depression is larger and wider due to the higher power and greater energy
at a single point. Increasing the frequency to 14 Hz, as shown in Figure 20b, changes the
3D morphology of the fracture from a single depression to a state of both depressions
and protrusions. The depression depth can reach up to 157 µm, significantly deeper than
under lower power, with protrusions mainly distributed on both sides of the fracture and
depressions concentrated in the central region.

Figures 21 and 22 shows the EDS (Energy Dispersive X-ray Spectroscopy) surface
scan results of the metal and glass side fractures. From the figure, it can be observed that
the splatter consists mainly of Al elements, indicating that the metal matrix melts and
splatters under laser action. The splatter not only remains on the metal side fracture but
also adheres to the glass side. Conversely, the adherent material at the aluminum alloy
fracture is primarily glass.
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Figure 21. EDS surface scan analysis of fracture on metal side. (a) Surface morphology of the metal
side. (b) EDS spectrum of element Al. (c) EDS spectrum of element O. (d) EDS spectrum of element Si.
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Figure 22. EDS surface scan analysis of fracture on glass side. (a) Surface morphology of the glass
side. (b) EDS spectrum of element Al. (c) EDS spectrum of element O. (d) EDS spectrum of element Si.

The material distribution at the weld seam cross-section is shown in Figure 23. Results
from EDS spectroscopy testing in the figure indicate that a small amount of glass component
is prominently observed in the middle and bottom of the fusion zone, suggesting effective
mixing of glass with the aluminum alloy in the molten pool. Additionally, minor cracks
appear on the glass side above the fusion zone, caused by stress, which is also a primary
reason for fracture occurring on the glass side during shear strength testing.

Combining the three-dimensional morphology of the fracture surfaces from shear
strength testing and the comparison of elemental distributions, three types of fracture
locations can be summarized: fracture on the metal side, fracture at the interface between
metal and glass, and fracture within the glass. Due to the thermal expansion coefficient of
the aluminum alloy oxide film being approximately three times that of high borosilicate
glass, and with the greater disparity in thermal expansion coefficients at high temperatures,
both the glass and metal oxide films experience tensile stresses due to mutual contraction
during the cooling phase following the brief action of pulsed laser irradiation.

When the laser power and pulse width are low, the energy supplied by the laser to
the weld seam is insufficient. The aluminum alloy melts under the influence of the laser,
splashing towards both sides of the fracture, whereas the glass side, due to inadequate
energy, fails to soften sufficiently to mix timely with the aluminum alloy, resulting ultimately
in the formation of voids in the weld seam area. As this area is slightly closer to the metal
side, the fracture surface on the metal side after shear testing exhibits concavity, as shown
in Figure 24.

When the laser power and pulse width are relatively high, the increased energy results
in higher temperatures on the glass side. Upon cooling, significant stress develops on
the glass side, leading to the formation of cracks in the glass, as depicted in Figure 25.
During shear strength testing, cracks on the glass side tend to fail first, resulting in fractures
occurring on the glass side, with substantial glass adhering to the aluminum alloy side, as
shown in Figure 25.
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Figure 25. A schematic diagram of the welding process illustrates the fracture surface on the glass side.

When the laser power and pulse width are both reasonably adjusted, increasing the
frequency appropriately can enhance the insulation time during welding, thereby reducing
stress on the glass. Under these optimal welding parameters, the fracture occurs at the
interface between the aluminum alloy and the glass. At this position, the shear strength
test results also show higher values, indicating an ideal fracture location. However, if the
frequency is excessively increased, the accumulation of energy on the glass side during
welding can lead to higher stress levels.
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5. Conclusions

This study utilized laser remelting surface treatment on aluminum alloy surfaces to
investigate the effects of four process parameters—defocus amount, laser power, frequency,
and pulse width—on the welding outcome. The main conclusions are listed in the following
description:

(1) With the continuous increase in defocusing amount, the shear force test results first
increase and then decrease. The welding effect is optimal when the defocusing amount
is 0 mm;

(2) As the power increases, the fracture becomes noticeably wider, and the amount of
spatter increases significantly. It can also be observed that with the increase in power,
the adhesion on the aluminum alloy side gradually increases, while the adhesion on
the glass side gradually decreases. The shear force increases with laser power initially
but decreases afterward;

(3) As the frequency increases, the morphology of the adhesive on the fracture of the
aluminum alloy side gradually changes from large blocks to finer fragments. The in-
crease in frequency causes the glass to be subjected to more energy impacts within the
same volume, and excessively high frequency leads to significant heat accumulation.
These two factors together result in an increase in the internal stress and number of
cracks within the glass;

(4) Increasing the pulse width can significantly enhance the energy during welding, and
a higher pulse width allows for longer welding times, which helps to extend the
duration of material flow between the molten aluminum alloy and the softened glass.
However, when the pulse width is too large, the prolonged duration of energy input
causes the aluminum alloy to melt more thoroughly and blend more completely with
the glass. However, due to the excessive heat received by the glass and its low thermal
expansion coefficient, excessive heat accumulation can cause damage and cracking of
the glass.
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