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1. Introduction and Scope

Effective, sustainable, and selective methods for recovering or removing metals from
various media, such as mining leachates, recycling waste, industrial effluents, and natural
water, are necessary due to the increasing demand for metals and stringent environmental
constraints [1,2]. Separation of metal ions is an essential stage in recovery and removal
procedures [3,4].

Adsorption is considered an effective separation technique that offers excellent worka-
bility in process operation and design, and the sorbent can be reused after proper regener-
ation [5,6]. Adsorption methods for separating metal ions based on traditional sorbents
(inorganic clays/zeolites, activated carbon, and polymeric resins) face limitations in terms
of selectivity, efficiency, and cost-effectiveness [7].

Recently, advanced sorbents made from new and modified materials, including mod-
ified natural minerals [8,9], modified carbons/biochar [10,11], agricultural waste and
biosorbent [12,13], metal–organic frameworks (MOFs) [14], synthetic polymers [15], mag-
netic sorbents [16,17], hydrogels [18], and nanosorbents [19], are promising alternatives
for overcoming these challenges. These sorbents have a high surface area, tunable pore
structures, and functionalized surfaces, which improve their metal-ion adsorption capacity,
selectivity, and kinetics [20]. Various methodologies, including surface modification, hy-
bridization, and template-assisted synthesis, have been employed to develop advanced
sorbents [21]. The sorbents with incorporated functional groups, chelating agents, or ion-
imprinted polymers may exhibit improved affinity and selectivity toward specific metal
ions [22].

Metal-ion adsorption using advanced sorbents is significant in various fields. These
sorbents are particularly valuable in water treatment processes, where they are used to
remove heavy metals from industrial wastewater [23]. In hydrometallurgy, advanced
sorbents are essential in the recovery and purification of valuable metals, such as noble
metals [24] and rare earth elements [25], from leachates and process streams in mining
and metallurgical operations. Furthermore, the separation of actinides from radioactive
waste streams [26] has benefited from radiation-resistant sorbents [27]. Environmental
remediation also relies on sorbents to remove metal ions from soil [28] and groundwater [29].
In analytical chemistry, dispersive solid-phase microextraction (DSPME) is a promising
technique for the preconcentration and clean-up of trace metal ions in complex matrices [30].
The choice of sorbent in these applications depends on several factors: the metal ions of
interest, the composition of the aqueous matrix, and the adsorption characteristics (capacity,
selectivity, and reusability) [20].

To optimize metal-ion separation performances, it is essential to understand how the
physicochemical properties of both the sorbent and the metal ions influence the adsorption
mechanisms. The surface complexation model involves the formation of complexes be-
tween the functional groups on the sorbent surface and the metal ions driven by electrostatic
interactions, ion exchange, and chelation [31]. Other key processes are precipitation and
co-precipitation, where metal hydroxides or other insoluble metal compounds form on the
sorbent surface or within its porous structure [32]. Reduction and redox reactions can also

Metals 2024, 14, 1026. https://doi.org/10.3390/met14091026 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14091026
https://doi.org/10.3390/met14091026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-5694-7960
https://doi.org/10.3390/met14091026
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14091026?type=check_update&version=1


Metals 2024, 14, 1026 2 of 5

occur, with the sorbent surface catalyzing the reduction of metal ions to their zero-valent or
lower oxidation states [33]. Electrostatic interactions, which depend on the solution pH and
the point of zero charge of the sorbent, result in either attraction or repulsion between the
sorbent surface and metal ions [34]. Additionally, pore and intraparticle diffusion are criti-
cal for governing the transport of metal ions within the porous sorbent structure, thereby
affecting the adsorption kinetics and isotherms [35,36]. In general, understanding these
mechanisms is crucial for the design and optimization of sorbents and for the development
of predictive adsorption models.

This Special Issue on “Advanced Sorbents for Separation of Metal Ions” in Metals
brings together up-to-date research that addresses metal-ion separation challenges through
innovative sorbent materials and methodologies. A variety of advanced sorbents, in-
cluding polymeric materials, silica adsorbents, ion exchange resins, and biosorbents,
were investigated.

2. Contributions

The contributed articles in this issue explore novel or modified sorbents based on
wood ash, bone char, resins, silica, brown seaweed, eggshells, graphene, ionic liquids,
and methacrylate polymers, and discuss the adsorption processes in which these sorbents
were used.

Liu et al. presented novel silica-based adsorbents impregnated with crown ethers that
demonstrate high selectivity for strontium (Sr) ions in concentrated nitric acid solutions.
These adsorbents exhibit improved stability and reduced organic leakage, addressing the
significant limitation of crown ethers in acidic environments. This study introduced new
materials and provided insights into the adsorption mechanisms, paving the way for their
application in nuclear waste management.

Smičiklas et al. evaluated the use of wood ash and bone char for manganese (Mn)
removal from acid mine drainage (AMD). Their research revealed that wood ash is highly
effective due to its neutralization capacity, whereas bone char shows rapid and efficient Mn
separation with minimal interference from other ions. This study emphasizes the potential
of using waste materials in sustainable AMD treatment processes.

Hansen et al. investigated copper (Cu) biosorption using brown seaweed. Their
work identified optimal conditions for maximum copper uptake and efficient biosorbent
regeneration, highlighting the potential of seaweed as a cost-effective and environmentally
friendly sorbent for copper removal from wastewater.

Marković et al. explored the use of raw eggshells in copper ion biosorption. This study
analyzed the process parameters, equilibrium, kinetics, and thermodynamics, demonstrat-
ing that eggshells are effective, low-cost adsorbents for copper removal. The research also
optimizes the biosorption process using Response Surface Methodology (RSM).

Mikeli et al. focused on the recovery of scandium (Sc) from titanium industry waste
using ion-exchange resins. Their findings indicate that certain resins are highly efficient
in extracting scandium without significantly affecting the chloride solution, making this
process feasible for industrial applications.

Slavković-Beškoski et al. introduced a novel dispersive solid-phase microextraction
method using a poly(HDDA)/graphene sorbent for rare earth element (REE) analysis in
coal fly ash leachate. The proposed method provides a fast, sensitive, and efficient method
for REE determination, demonstrating significant potential for environmental monitoring
and resource recovery.

Castillo et al. investigated the ability of an ionic liquid, R4NCy, to extract multiple
metal ions from aqueous solutions. The results show high extraction efficiencies for copper,
iron, zinc, and manganese, suggesting the applicability of ionic liquids in pre-treatment
processes to remove metal impurities from industrial solutions.

Djokić et al. examined the impact of impurities from e-waste electrorefining on
the copper extraction processes. Their optimization of the process parameters revealed
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strategies to enhance copper recovery while minimizing the co-extraction of other metals,
contributing to more efficient e-waste recycling methods.

Cerrillo-Gonzalez et al. summarized an overview of electrodialysis (ED) for metal
recovery from wastewater. This review discusses the fundamentals, operational features,
and key factors affecting ED performance, highlighting its potential in selective metal
recovery and the promotion of a circular economy.

Nastasović et al. reviewed the role of methacrylate-based polymeric sorbents in
metal recovery from aqueous solutions. This review emphasizes the versatility, efficiency,
and regeneration potential of these sorbents, highlighting their applicability in various
environmental and industrial processes.

3. Conclusions and Outlook

The articles in this Special Issue demonstrate significant advancements in the de-
velopment and application of advanced sorbents for metal-ion separation. From novel
silica-based adsorbents and ion-exchange resins to sustainable biosorbents and innovative
polymeric materials, the contributions highlight diverse approaches to metal separation.
These articles offer prospective options for resource recovery and environmental remedi-
ation by shedding light on the synthesis of sorbent materials, elucidating their structure,
adsorption mechanism, effectiveness, and process optimization.

Future studies should concentrate on scaling up these sorbent applications, improving
their selectivity and efficiency, and incorporating them into encompassing process systems
to meet increasing demands for metals and the requirements of environmentally friendly
waste management solutions.
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Modeling Adsorption Isotherms. Sci. World J. 2014, 2014, 930879. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/anie.202214453
https://www.ncbi.nlm.nih.gov/pubmed/36409274
https://doi.org/10.1021/acs.est.4c00974
https://doi.org/10.3390/molecules26237101
https://doi.org/10.1016/j.jclepro.2020.124427
https://doi.org/10.3390/agronomy10081113
https://doi.org/10.3390/molecules26195913
https://doi.org/10.1016/j.jfca.2024.106636
https://doi.org/10.1007/s11270-024-07322-y
https://doi.org/10.1016/j.envadv.2021.100056
https://doi.org/10.3390/w15020222
https://doi.org/10.1007/s13201-022-01827-9
https://doi.org/10.1080/10643389.2023.2221157
https://doi.org/10.1155/2014/930879

	Introduction and Scope 
	Contributions 
	Conclusions and Outlook 
	References

