Understanding the High-Temperature Deformation Behaviors in Additively Manufactured Al6061+TiC Composites via In Situ Neutron Diffraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Situ Neutron Diffraction
2.3. In Situ Neutron Data Analysis
3. Results and Discussion
3.1. Engineering Stress–Strain
3.2. Phase Stability and Lattice Strains
3.3. Phase-Specific Stress
3.4. Effects of TiC Particles on Dislocation Activity at 250 °C
4. Conclusions
- (1)
- Adding TiC significantly enhances yield strength, which increases from 66 MPa for Al6061 to 96 MPa for Al6061+2%TiC and further to 104 MPa for Al6061+5%TiC at 250 °C.
- (2)
- Unlike the two-stage elastic–plastic behavior observed in Al6061, Al6061+TiC composites exhibit three stages during compression: (1) the elastic deformation of both the Al and TiC phases; (2) the early yielding of the Al matrix triggered by local plastic deformation near TiC particles, and (3) the global plastic deformation of the Al matrix.
- (3)
- Minor chemical changes due to Mg2Si precipitation and the dissolution of Al into TiC were identified. These changes lead to fluctuations in the measured “phase stresses” during loading at 250 °C. The addition of TiC reduces the deviatoric stress carried by the Al matrix, delaying the yielding of the metal matrix and thereby enhancing the composite’s strength.
- (4)
- Peak intensity quantification revealed that in addition to the {111} slip plane typically activated at room temperature, the {101} slip system is also activated at 250 °C. The addition of TiC inhibits dislocation slip on the {111} plane more than on the {101} plane at 250 °C.
- (5)
- The peak width of different Al lattice planes shows an overall increasing trend in Al6061+TiC, contrasting with the overall decreasing trend in pure Al6061 at 250 °C. This difference arises because TiC particles pin dislocations in the Al matrix, promoting dislocation accumulation around TiC particles and thereby increasing dislocation density in Al6061+TiC.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hattori, C.; Almeida, G.; Gonçalves, R.; Santos, R.; Souza, R.; da Silva, W.; Cunali, J.; Couto, A. Microstructure and fatigue properties of extruded aluminum alloys 7046 and 7108 for automotive applications. J. Mater. Res. Technol. 2021, 14, 2970–2981. [Google Scholar] [CrossRef]
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing: Sawston, UK, 2002. [Google Scholar] [CrossRef]
- Lee, W.-S.; Tang, Z.-C. Relationship between mechanical properties and microstructural response of 6061-T6 aluminum alloy impacted at elevated temperatures. Mater. Des. 2014, 58, 116–124. [Google Scholar] [CrossRef]
- Rokni, M.; Zarei-Hanzaki, A.; Abedi, H. Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures. Mater. Sci. Eng. A 2011, 532, 593–600. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J. A Review of the friction and wear behavior of particle-reinforced aluminum matrix composites. Lubricants 2023, 11, 317. [Google Scholar] [CrossRef]
- Karabulut, Y.; Ünal, R. Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites: A review. J. Mater. Sci. 2022, 57, 19212–19242. [Google Scholar] [CrossRef]
- Chen, B.; Xi, X.; Tan, C.; Song, X. Recent progress in laser additive manufacturing of aluminum matrix composites. Curr. Opin. Chem. Eng. 2020, 28, 28–35. [Google Scholar] [CrossRef]
- Tang, S.; Ummethala, R.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G.; Wang, Z. Additive manufacturing of aluminum-based metal matrix composites—A review. Adv. Eng. Mater. 2021, 23, 2100053. [Google Scholar] [CrossRef]
- Li, J.-F.; Peng, Z.-W.; Li, C.-X.; Jia, Z.-Q.; Chen, W.-J.; Zheng, Z.-Q. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans. Nonferrous Met. Soc. China 2008, 18, 755–762. [Google Scholar] [CrossRef]
- Bardel, D.; Perez, M.; Nelias, D.; Deschamps, A.; Hutchinson, C.; Maisonnette, D.; Chaise, T.; Garnier, J.; Bourlier, F. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater. 2014, 62, 129–140. [Google Scholar] [CrossRef]
- Tsaknopoulos, K.; Walde, C.; Champagne, V.; Cote, D. Gas-atomized Al 6061 powder: Phase identification and evolution during thermal treatment. JOM 2019, 71, 435–443. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.; Zhu, Y.; Ma, E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007, 55, 5822–5832. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Nabaa, A.; Hojjatzadeh, S.M.H.; Young, Z.A.; Chen, L. Controlling process instability for defect lean metal additive manufacturing. Nat. Commun. 2022, 13, 1079. [Google Scholar] [CrossRef]
- Lin, T.-C.; Cao, C.; Sokoluk, M.; Jiang, L.; Wang, X.; Schoenung, J.M.; Lavernia, E.J.; Li, X. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun. 2019, 10, 4124. [Google Scholar] [CrossRef]
- Cao, C.; Yao, G.; Jiang, L.; Sokoluk, M.; Wang, X.; Ciston, J.; Javadi, A.; Guan, Z.; De Rosa, I.; Xie, W.; et al. Bulk ultrafine grained/nanocrystalline metals via slow cooling. Sci. Adv. 2019, 5, eaaw2398. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Yuan, J.; Nabaa, A.; Huang, J.; Chuang, C.A.; Chen, L.; Qu, M.; Yuan, J.; Nabaa, A.; Huang, J.; et al. Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction. Acta Mater. 2024, 271, 119875. [Google Scholar] [CrossRef]
- Kaftelen, H.; Ünlü, N.; Göller, G.; Öveçoğlu, M.L.; Henein, H. Comparative processing-structure–property studies of Al–Cu matrix composites reinforced with TiC particulates. Compos. Part A Appl. Sci. Manuf. 2011, 42, 812–824. [Google Scholar] [CrossRef]
- Sahoo, P.; Koczak, M. Microstructure-property relationships of in situ reacted TiC/AlCu metal matrix composites. Mater. Sci. Eng. A 1991, 131, 69–76. [Google Scholar] [CrossRef]
- Soltani, M.; Atrian, A. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique. Mater. Res. Express 2018, 5, 025026. [Google Scholar] [CrossRef]
- Song, M. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Met. Soc. China 2009, 19, 1400–1404. [Google Scholar] [CrossRef]
- Ganguly, P.; Poole, W.; Lloyd, D. Deformation and fracture characteristics of AA6061-Al2O3 particle reinforced metal matrix composites at elevated temperatures. Scr. Mater. 2001, 44, 1099–1105. [Google Scholar] [CrossRef]
- Park, B.G.; Crosky, A.G.; Hellier, A.K. Material characterisation and mechanical properties of Al2O3-Al metal matrix composites. J. Mater. Sci. 2001, 36, 2417–2426. [Google Scholar] [CrossRef]
- Li, X.; Ji, G.; Chen, Z.; Addad, A.; Wu, Y.; Wang, H.; Vleugels, J.; Van Humbeeck, J.; Kruth, J. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017, 129, 183–193. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Z.; Xiao, Z.; You, D.; Wong, K.; Akbarzadeh, A. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties. J. Mech. Work. Technol. 2020, 281, 116618. [Google Scholar] [CrossRef]
- Nardone, V.C.; Prewo, K.M. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Met. 1986, 20, 43–48. [Google Scholar] [CrossRef]
- Ramakrishnan, N. An analytical study on strengthening of particulate reinforced metal matrix composites. Acta Mater. 1996, 44, 69–77. [Google Scholar] [CrossRef]
- Clyne, T.W.; Withers, P.J. An Introduction to Metal Matrix Composites; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar] [CrossRef]
- Wanner, A.; Dunand, D.C. Synchrotron X-ray study of bulk lattice strains in externally loaded Cu-Mo composites. Met. Mater. Trans. A 2000, 31, 2949–2962. [Google Scholar] [CrossRef]
- Bacon, D.; Edwards, L.; Moffatt, J.; Fitzpatrick, M. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles. Acta Mater. 2011, 59, 3373–3383. [Google Scholar] [CrossRef]
- Zhang, J.-S. High Temperature Deformation and Fracture of Materials; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Stout, M.G.; Chen, S.R.; Kocks, U.F.; Schwartz, A.J.; MacEwen, S.R.; Beaudoin, A.J. Mechanisms Responsible for Texture Development in a 5182 Aluminum Alloy Deformed at Elevated Temperature; No. LA-UR-98-2646; CONF-981054-; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1998. [Google Scholar]
- Casati, R.; Vedani, M. Metal matrix composites reinforced by nano-particles—A review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; Van Humbeeck, J.; Kruth, J. Selective laser melting to manufacture “in situ” metal matrix composites: A review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef]
- Yu, W.; Sing, S.; Chua, C.; Kuo, C.; Tian, X. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog. Mater. Sci. 2019, 104, 330–379. [Google Scholar] [CrossRef]
- Maurya, P.; Kota, N.; Gibmeier, J.; Wanner, A.; Roy, S. Review on study of internal load transfer in metal matrix composites using diffraction techniques. Mater. Sci. Eng. A 2022, 840, 142973. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Yuan, J.; Hojjatzadeh, S.M.H.; Clark, S.J.; Fezzaa, K.; Sun, T.; Chen, L. Controlling melt flow by nanoparticles to eliminate surface wave induced surface fluctuation. Addit. Manuf. 2022, 59, 130873. [Google Scholar] [CrossRef]
- Leung, C.L.A.; Marussi, S.; Atwood, R.C.; Towrie, M.; Withers, P.J.; Lee, P.D. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat. Commun. 2018, 9, 1355. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Nabaa, A.; Fezzaa, K.; Chen, L. Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing. Addit. Manuf. 2022, 60, 103242. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Dejene, N.D.; Lemu, H.G. Current status and challenges of powder bed fusion-based metal additive manufacturing: Literature review. Metals 2023, 13, 424. [Google Scholar] [CrossRef]
- Liu, T.; Kinzel, E.C.; Leu, M.C. In-situ lock-in thermographic measurement of powder layer thermal diffusivity and thickness in laser powder bed fusion. Addit. Manuf. 2023, 74, 103726. [Google Scholar] [CrossRef]
- Liu, T.; Lough, C.S.; Sehhat, H.; Ren, Y.M.; Christofides, P.D.; Kinzel, E.C.; Leu, M.C. In-situ infrared thermographic inspection for local powder layer thickness measurement in laser powder bed fusion. Addit. Manuf. 2022, 55, 102873. [Google Scholar] [CrossRef]
- Vallabh, C.K.P.; Zhao, X. Melt pool temperature measurement and monitoring during laser powder bed fusion based additive manufacturing via single-camera two-wavelength imaging pyrometry (STWIP). J. Manuf. Process. 2022, 79, 486–500. [Google Scholar] [CrossRef]
- König, H.-H.; Pettersson, N.H.; Durga, A.; Van Petegem, S.; Grolimund, D.; Chuang, A.C.; Guo, Q.; Chen, L.; Oikonomou, C.; Zhang, F.; et al. Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction. Acta Mater. 2023, 246, 118713. [Google Scholar] [CrossRef]
- Liu, J.; Wen, P. Metal vaporization and its influence during laser powder bed fusion process. Mater. Des. 2022, 215, 110505. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Clark, S.J.; Fezzaa, K.; Chen, L. Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing. Addit. Manuf. Lett. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Tourret, D.; Klemm-Toole, J.; Castellanos, A.E.; Rodgers, B.; Becker, G.; Saville, A.; Ellyson, B.; Johnson, C.; Milligan, B.; Copley, J.; et al. Morphological stability of solid-liquid interfaces under additive manufacturing conditions. Acta Mater. 2023, 250, 118858. [Google Scholar] [CrossRef]
- Sutton, A.T.; Kriewall, C.S.; Karnati, S.; Leu, M.C.; Newkirk, J.W.; Everhart, W.; Brown, B. Evolution of AISI 304L stainless steel part properties due to powder recycling in laser powder-bed fusion. Addit. Manuf. 2020, 36, 101439. [Google Scholar] [CrossRef]
- An, K.; Chen, Y.; Stoica, A.D. VULCAN: A “hammer” for high-temperature materials research. MRS Bull. 2019, 44, 878–885. [Google Scholar] [CrossRef]
- An, K. Data reduction and interactive visualization software for event mode neutron diffraction. In ORNL Report, ORNL-TM-2012; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012; p. 621. Available online: https://neutrons.ornl.gov/sites/default/files/VDRIVE%20manual_1.pdf (accessed on 1 July 2024).
- Toby, B.H. EXPGUI, a graphical user interface forGSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General structure analysis system (GSAS). In Los Alamos National Laboratory Report LAUR; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004; pp. 86–748. Available online: https://www.scirp.org/reference/referencespapers?referenceid=105526 (accessed on 1 July 2024).
- Shi, N.; Bourke, M.A.M.; Roberts, J.A.; Allison, J.E. Phase-stress partition during uniaxial tensile loading of a TiC-particulate-reinforced Al composite. Metall. Mater. Trans. A 1997, 28, 2741–2753. [Google Scholar] [CrossRef]
- Yu, D.; Huang, L.; Chen, Y.; Komolwit, P.; An, K. Real-time in situ neutron diffraction investigation of phase-specific load sharing in a cold-rolled TRIP sheet steel. JOM 2018, 70, 1576–1586. [Google Scholar] [CrossRef]
- Chen, Y.; Cernatescu, I.; Venkatesh, V.; Stoica, A.D.; An, K. On the residual stress relaxation in Inconel 718 superalloys at high temperature by real-time neutron diffraction. Mater. Des. 2023, 232, 112135. [Google Scholar] [CrossRef]
- Gruber, B.; Weißensteiner, I.; Kremmer, T.; Grabner, F.; Falkinger, G.; Schökel, A.; Spieckermann, F.; Schäublin, R.; Uggowitzer, P.J.; Pogatscher, S. Mechanism of low temperature deformation in aluminium alloys. Mater. Sci. Eng. A 2020, 795, 139935. [Google Scholar] [CrossRef]
Element | Al | Mg | Si | Cu | Cr | Fe | Ti | Mn | Zn | Other |
---|---|---|---|---|---|---|---|---|---|---|
Weight percentage | Balance | 0.86 | 0.55 | 0.27 | 0.1 | 0.09 | 0.01 | <0.01 | <0.01 | <0.15 |
Laser Power | Beam Diameter | Exposure Time | Point Distance | Hatching Spacing |
---|---|---|---|---|
200 W | 70 µm | 200 µs | 80 μm | 80 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, M.; Yu, D.; Chen, L.; An, K.; Chen, Y. Understanding the High-Temperature Deformation Behaviors in Additively Manufactured Al6061+TiC Composites via In Situ Neutron Diffraction. Metals 2024, 14, 1064. https://doi.org/10.3390/met14091064
Qu M, Yu D, Chen L, An K, Chen Y. Understanding the High-Temperature Deformation Behaviors in Additively Manufactured Al6061+TiC Composites via In Situ Neutron Diffraction. Metals. 2024; 14(9):1064. https://doi.org/10.3390/met14091064
Chicago/Turabian StyleQu, Minglei, Dunji Yu, Lianyi Chen, Ke An, and Yan Chen. 2024. "Understanding the High-Temperature Deformation Behaviors in Additively Manufactured Al6061+TiC Composites via In Situ Neutron Diffraction" Metals 14, no. 9: 1064. https://doi.org/10.3390/met14091064
APA StyleQu, M., Yu, D., Chen, L., An, K., & Chen, Y. (2024). Understanding the High-Temperature Deformation Behaviors in Additively Manufactured Al6061+TiC Composites via In Situ Neutron Diffraction. Metals, 14(9), 1064. https://doi.org/10.3390/met14091064