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Abstract: This research paper presents an experimental, theoretical, and numerical study of the ther-
momechanical behavior of single-crystal and polycrystal copper under uniaxial stress compression
loading at varying rates of deformation. The thermomechanical theory is based on a thermodynami-
cally consistent framework for single-crystal face-centered cubic metals, and assumes that all plastic
power is partitioned between stored energy due to dislocation structure evolution (configurational)
and thermal (kinetic vibrational) energy. An expression for the Taylor–Quinney factor is proposed,
which is a simple function of effective temperature and is allowed by second-law restrictions. This
single-crystal model is used for the study of single- and polycrystal copper. New polycrystal thermo-
mechanical experimental results are presented at varying strain rates. The temperature evolution on
the surface of the polycrystal samples is measured using mounted thermocouples. Thermomechanical
numerical single- and polycrystal simulations were performed for all experimental conditions ranging
between 10−3 and 5 × 103 s−1. A Taylor homogenization model is used to represent polycrystal
behavior. The numerical simulations of all conditions compare reasonable well with experimental
results for both stress and temperature evolution. Given our lack of understanding of the mechanisms
responsible for the coupling of dislocation glide and atomic vibration, this implies that the proposed
theory is a reasonably accurate approximation of the single-crystal thermomechanics.

Keywords: dislocations; crystals; polycrystals; stress–strain; copper; Taylor–Quinney factor

1. Introduction

Some of the earliest studies on the conversion of mechanical work to heat in the plastic
deformation of metals were by [1,2]. Such energetic considerations are important in the
study of the dynamic response of metals in applications such as armor systems and crash
testing of vehicles. Study of the thermomechanics of metals has important implications
for studying phenomena such as phase transformations [3] and twinning [4], as well as for
metal forming and machining. The fraction of the plastic work on a metal that is converted
to heat is known as the Taylor–Quinney factor. The complement of this is called the stored
energy of cold work.

A common assumption for the fraction of plastic work converted to thermal energy
is that it is a constant equal to approximately 0.9, in accordance with the results in [1].
A constant value of 1.0 has also been chosen in the literature [5]. However, experimental
results for various pure metals and alloys indicate dependence of the Taylor–Quinney factor
on the strain and strain rate. For example, dynamic experiments using the Kolsky bar [6,7]
and the dislocation dynamics simulation in [8] indicate that the dislocation accumulation
pattern, along with the dislocation density, is important in determining the Taylor–Quinney
factor. Study of the thermomechanics of commercially pure titanium reveals that the
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dissipation of mechanical work as heat may strongly depend on the loading conditions [9].
At high strain rates (≈3000 s−1), the authors found that commercially pure titanium shows
a profusion of twinning in compression and dominant shear, but not in tension. This
corresponds to markedly higher values of the Taylor–Quinney factor for the compression
and shear load paths as compared to tension. Quasi-static and dynamic experiments on
pure iron [10], polycrystal tantalum [11], single-crystal tantalum [12], and both single-
crystal and polycrystal copper [13] provide further experimental evidence of the strain and
strain rate dependence of the Taylor–Quinney factor.

The study of crystal mechanics started with work that explicitly embedded the ge-
ometry of the slip systems of the material into the kinematical part of the model [14] and
by the multiplicative decomposition of the deformation gradient into elastic and plastic
parts [15–17]. The elastic part of the deformation gradient captures the distortion of the
lattice, while the plastic part of deformation gradient captures the transfer of mass along the
slip planes of the material. The rotational part of the elastic part of the deformation gradient
also contributes to the transfer of mass. The use of such kinematic assumptions has allowed
for study of phenomena such as strain localization [18], latent hardening and secondary
slip [19,20], and texture evolution [21–23], with the combination of these aspects of plastic
deformation studied in [24]. Certainly, dislocations behave very differently with crystal
atomic structure, which is reflected in the development of continuum crystal mechanics
theories [25–44]. Face-centered cubic materials are generally the best understood, with
dislocation interaction representing the dominant resistance to motion for most materials.
Body-centered cubic materials are very interesting in that the behavior of screw dislocations
dominates motion and due to questions about the role of kink–pair nucleation mechanisms
in the physics of dislocation motion [45]. Hexagonal close-packed materials differ substan-
tially with material type, as the c/a ratio and corresponding Burgers vector for different
slip systems change dramatically [46]. There are many physical factors which impact the
thermomechanical response of crystalline materials.

There have also been many important contributions to the development of thermody-
namically consistent theories for the description of thermomechanics in crystalline solids,
among which are [47–72]. As we develop theories for the description of inelastic processes
such as dislocation slip, deformation twinning, structural phase transformation, and dam-
age, accurate partitioning of the energy will provide a stronger physical basis. This forms
natural restrictions to our crystal mechanics formulations and provides greater quantitative
authority for physical interpretation of experimental results. This naturally affords the need
to draw in thermodynamics information from experiments and focused physics calculations.
More sophisticated boundary conditions are also necessary in order to document experi-
ments and for application to numerical simulations. Experimental design must then account
for the need to characterize thermal boundary conditions and transport properties of materi-
als. Certainly, experiments with higher deformation rate can be assumed to be adiabatic;
however, experimental diagnostics are also more limited at higher deformation rates.

This article provides a thermodynamically consistent crystal mechanics framework
for solving combined thermomechanical problems in the single and polycrystal mechanics
of metallic materials. The fundamental concepts that form the basis of this framework are
laid out in [73,74]. On the basis of this theory, a computational framework was developed
for polycrystalline isotropic materials and used in [75–77]. Further development led to a
material model for metal single crystals [78], which is the basis of the computation in this
work. The above provides a single-crystal model which captures the strain rate dependence
of the thermomechanical behavior. In this model, both the amount of plastic work and the
fraction of it converted to heat is dependent on the strain rate. The differential form of the
Taylor–Quinney factor is used in this work. The computational model for the polycrystal is
a Taylor model, in which the contribution of each individual grain is calculated using the
aforementioned single-crystal model. Welded thermocouple beads are used to study the
temperature evolution of the sample.
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Details of the nomenclature used in this work are provided in Table 1. A list of symbols
used in the presented theory is provided in Table 2.

Table 1. Nomenclature table.

Type of Quantity Description of Symbol Direct Notation Indicial Notation

Scalars Italicized small/cap letters without subscripts or superscripts a, b, c, A, B, C a, b, c, A, B, C

Matrices or Vectors
Bold upright letters, using capital letters for vectors in the
reference configuration and small letters for vectors in the current
configuration.

u, U ui, Ui

Second order tensors
Bold upright letters with underlines, with capital letters for objects
in the reference configuration and and small letters for objects in
the current configuration.

s, S sij, Sij

Fourth order tensors Blackboard bold capital letters. C Cijkl

Table 2. List of theory variable symbols.

Variable Symbol Definition or Meaning

F, Fe, Fp Total, elastic, and plastic deformation gradients
L, Le, Lp Total, elastic, and plastic velocity gradients
γ̇α Resolved plastic strain rate on slip system α
sα, mα Unit slip direction vector and normal to slip system α
T Cauchy stress tensor
S Second Piola–Kirchhoff stress tensor
C Anisotropic fourth-order tensor of elastic constants
C11, C12, C44 Independent crystallographic moduli for fcc lattice
µ Shear modulus
W Jacobian matrix of stress versus strain
UK , SK Kinetic–vibrational (thermal) energy and entropy density
UC, SC Configurational energy and entropy density
UD, SD Dislocation energy and entropy
U1, S1 Residual configurational energy and entropy density
FC Configurational free energy density
eD Dislocation line energy
qC, qK Configurational and thermal fluxes
χ, χ0 Effective temperature and initial effective temperature
θ, T Thermal temperature (in units of energy and Kelvin)
ρα Dislocation density on slip system α
ρα

ss Steady-state dislocation density on slip system α
vα Mean dislocation velocity on slip system α
χss Steady-state effective temperature (in units of eD)
β Taylor–Quinney factor
cp Specific heat capacity
κα

ρ Dislocation storage rate
κχ Effective temperature increase rate
a Minimum separation between dislocations
b Burgers vector
t0 Atomic time scale
αT Stress scale parameter
τα Resolved shear stress on slip system α
sα Slip resistance due to dislocation interaction on slip system α
sl Intrinsic lattice resistance to dislocation motion
ρα Dislocation density corresponding to slip system α
lα Dislocation mean free path on slip system α
tα Dislocation depinning time on slip system α
TP Dislocation depinning barrier (in units of Kelvin)
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Table 2. Cont.

Variable Symbol Definition or Meaning

aαβ Dislocation interaction tensor
dαβ Slip interaction tensor
kc, knc Mean free path parameters

2. Materials and Methods
2.1. Theory

This section presents a coupled thermomechanical theory describing the physical
behavior of single crystals, which is applied here to face-centered cubic metals and copper
in particular.

2.1.1. Plasticity

Based on the theory developed in [15–17], it is assumed that the total deformation
gradient may be decomposed into elastic and plastic components.

F = FeFp. (1)

It is assumed that the body starts motion in the reference configuration. It is mapped
to the current configuration by the total deformation gradient. The plastic part of the
deformation gradient maps the reference configuration to the lattice configuration. The lat-
tice configuration is then mapped to the current configuration by the elastic deformation
gradient. The rate of change of plastic deformation in the metal is captured using the plastic
velocity gradient, which is a function of the orientations of the all the slip systems and the
slip rates on the corresponding slip systems:

Lp = Ḟp
(Fp)−1 = ∑

α

γ̇αsα ⊗mα, (2)

where sα is a unit vector parallel to the direction of slip on slip system α and mα is a
unit vector normal to the slip plane for slip system α. The symbol γ̇α is the rate of slip.
The quantities sα, mα and Lp all inhabit the lattice configuration.

The second Piola–Kirchhoff stress is used as a stress measure in this model, denoted
by the symbol S and defined by

S = J(Fe)−1T(Fe)−T , (3)

where T is the Cauchy stress and J = det F is the Jacobian of the total deformation gradient,
which is also equal to det Fe by the assumption of isochoric plastic deformation. The Cauchy
stress inhabits the current configuration, whereas the second Piola–Kirchhoff stress is
defined in the lattice configuration.

The stress response is provided by

S =
1
2
C : ((Fe)TFe − 1) = C : Ee, (4)

where C and Ee are quantities in the lattice configuration, C is the fourth-order elastic
stiffness tensor, and 1 is the second-order unit tensor. Because copper is a FCC metal, C has
only three independent components. These three elastic moduli describe the behavior of
a single crystal that has its <100> directions aligned with the x, y, and z directions of the
coordinate axis. The elastic stiffness tensor of a single crystal of any given orientation is cal-
culated by first computing the elasticity tensor of the reference orientation from knowledge
of the elastic moduli and then using appropriate tensor transformations to calculate the
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elasticity tensor for the given orientation. In this work, the temperature dependence of the
elastic moduli is accounted for by assuming a linear dependence on temperature as

Cc,ijkl(T) = Cc0,ijkl + mijklT, (5)

where C0,ijkl are the components of the stiffness tensor at 0K and T is the absolute tempera-
ture. Of importance to the theory is the resolved shear stress on slip system α, denoted by
τα (in the lattice configuration) and provided by

τα = (Fe)TFeS : (sα ⊗mα) ≈ S : (sα ⊗mα), (6)

where it is assumed that the elastic deformation in the material is small relative to the
plastic deformation. With this assumption, the volume density of plastic power, defined as
T : FeLp(Fe)−1, resolves to

T : FeLp(Fe)−1 = ∑
α

ταγ̇α. (7)

2.1.2. Thermomechanics

Here, we provide an outline of the crystal mechanics theory. The thermodynamic
basis of this work is found in [59,73,74]. After the development of these ideas into isotropic
plasticity theories in [75–77], a single-crystal version of this theory was presented in [78].
The basic assumption of the theory is that the energy of thermal vibrations is too small to
create new dislocations without an applied stress. As a result, it is justifiable to separate
the metal into two subsystems: a kinetic–vibrational subsystem, and a configurational
subsystem. The latter is characterized by the mean positions of the atoms (and defects) in the
metal crystal, while the former is characterized by the motion (vibration) of the atoms about
those mean positions. The total volume densities of the system’s energy and entropy are
denoted by the symbols Utot and Stot, respectively. The assumption described above allows
these symbols to be respectively decomposed as Utot = UK +UC and Stot = SK + SC, where
the letter K denotes quantities belonging to the kinetic–vibrational subsystem and the letter
C denotes quantities belonging to the configurational subsystem. As the configurational
subsystem is concerned with the positions of atoms and defects in the lattice, UC and SC
must depend on the current dislocation density. Denoting the dislocation density on slip
system α by ρα, we write

UC(SC, ρα) = UD(ρ
α) + U1(S1),

SC(UC, ρα) = SD(ρ
α) + S1(U1),

(8)

where the right-hand sides represent a division of the configurational subsystem into a
part dependent on the dislocation population and a part dependent on other sources of
imperfection, such as point defects. The following quantity is important in the theory

χ =
∂UC
∂SC

, (9)

where χ is known as the effective temperature. It characterizes the configurational subsys-
tem by quantifying the atomic disorder in the material relative to a perfect crystal.

In this setup, the local form of the first law of thermodynamics reads T : L = U̇C + U̇K,
where heating contributes to the evolution of UK. Explicitly accounting for heat production
and heat fluxes results in

T : L = U̇C + U̇K

= χṠC +∇ · qC +

(
∂UC
∂t

)
SC ,ρα

+ ∑
α

(
∂UC
∂ρα

)
SC

ρ̇α + θṠK +∇ · qK.
(10)
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Here,
qC = −κC∇χ,

qK = −κ∇θ,
(11)

are the effective and ordinary heat fluxes, respectively, with κC and κ as the corresponding
conductivities. The symbol θ = kBT denotes the ordinary temperature in energy units.

The symbol L denotes the velocity gradient, which may be separated into its elastic
and plastic components:

L = Le + FeLpFe−1. (12)

With this notation, we write (
∂UC
∂t

)
SC ,ρα

= T : Le. (13)

The left-hand side of Equation (13) represents the time rate of change of the internal
energy of the system when the configurational state is held constant. By definition, this is
the rate of change of the elastic part of the energy. Therefore, the remaining terms on the
right-hand side of Equation (10) must add to the plastic power. This is written as

T : FeLpFe−1 = χṠC − κC∇2χ + ∑
α

(
∂UC
∂ρα

)
SC

ρ̇α + θṠK − κ∇2θ. (14)

The second law of thermodynamics in the current context takes the following form

Ṡtot = ṠC + ṠK +∇ · qC
χ

+∇ · qK
θ
≥ 0. (15)

To investigate the consequences of the second law, it is multiplied by χ; quantity χṠC
in Equation (15) is eliminated using Equation (14) to obtain the following inequality

T : FeLpFe−1 −∑
α

(
∂UC
∂ρα

)
SC

ρ̇α

+(χ− θ)
(

ṠK −
κ

θ
∇2θ

)
+

κ

θ
(∇θ)2 +

κc

χ
(∇χ)2 ≥ 0.

(16)

The consequences of this inequality can be studied by applying the Coleman–Noll
procedure [79]. This procedure allows us to conclude that if a sum of independent terms sat-
isfies an inequality (such as Inequality (16)), each of the terms in the sum must individually
satisfy the inequality. Therefore, we write

T : FeLpFe−1 ≥ 0,

−∑
α

(
∂UC
∂ρα

)
SC

ρ̇α ≥ 0,

(χ− θ)
(

ṠK −
κ

θ
∇2θ

)
≥ 0,

κ

θ
(∇θ)2 ≥ 0,

κc

χ
(∇χ)2 ≥ 0.

(17)

The first of these inequalities is guaranteed by Equations (7) and (26). The last two
inequalities hold because of the nature of the quantities. The consequences of the third
inequality, discussed in detail in [76], are that the Taylor–Quinney factor must be a function
of the effective temperature; in addition, as the material approaches a state of maximal
disorder, all of the input work turns to thermal energy and the Taylor–Quinney factor
must tend to 1.0. Further development of the second inequality shows a derivative of
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the configurational free energy of the system. Application of the chain rule of calculus to
Equations (8) results in (

∂UC
∂ρα

)
SC

=
∂UD
∂ρα
− ∂U1

∂S1

∂SD
∂ρα

. (18)

The derivative ∂U1
∂S1

can be identified as the effective temperature of a part of the config-
urational subsystem. Because the configurational subsystem has an effective temperature
of χ, we have ∂U1

∂S1
= χ. Therefore, we may write(

∂UC
∂ρα

)
SC

=
∂UD
∂ρα
− χ

∂SD
∂ρα

=
∂(UD − χSD)

∂ρα
. (19)

Here, FC ≡ UD − χSD is the configurational free energy. This means that as the
dislocation density increases, the free energy tends to minimize and reaches a minimum
when ρ̇α = 0. Thus, the steady-state dislocation density minimizes the configurational
free energy.

2.1.3. Constitutive Model

Here, we provide details of the computational framework, which was developed
in [78] from the theory in [73] described in the previous section. We start from the Orowan
relation as

γ̇α = ραbvα, (20)

where ρα is the mean mobile dislocation density on slip system α, b is the magnitude of the
Burger’s vector, and vα is the mean dislocation velocity on slip system α.

In the physical picture of dislocation motion assumed in this work, the obstacles faced
by the dislocation on slip system α have a mean spacing of lα. The mean time required by
the dislocation to cross this distance is tα, meaning that the mean dislocation velocity is
vα = lα/tα. This expression for the velocity changes the Orowan relation as

γ̇α = ραblα/tα. (21)

This “depinning” of dislocations from obstacles is assumed to be stress-driven and
thermally activated. This is accounted for in the expression for the time scale tα as

tα = t0 exp

[
Tp

T

{
1−

(
τα − sl

sα

)p}q
]

. (22)

Here, t0 is approximately the inverse of the Debye frequency, T is the absolute temper-
ature, and Tp is a measure of the energy barrier to dislocation depinning. The actual energy
barrier is provided by kBTp, where kB is the Boltzmann constant. The symbol τα denotes
the resolved shear stress on slip system α, whereas sl is the intrinsic lattice resistance.
The symbol sα denotes the slip resistance due to dislocation interaction on slip system α,
and is expressed as

sα = αTµb
√

∑
β

aαβρβ, (23)



Metals 2024, 14, 1086 8 of 27

where αT is the Taylor factor, accounting for the uncertainty of microstructure and chemical
composition of the material. The symbol µ denotes the shear modulus, which may be
calculated from the elastic moduli C11, C12, and C44 using the following expression:

µ =

√
C44

(
C11 − C12

2

)
. (24)

The symbol aαβ is a tensor accounting for dislocation interaction. A similar dislocation
interaction tensor dαβ is used to determine the mean free path of the dislocation lα:

lα =
1√

∑β dαβρβ
. (25)

The parameters dαβ are interaction parameters. According to [80], they may be cal-
culated using aαβ, kinter, and kcopl, using the expressions dαβ = aαβ

k2
inter

for intersecting slip

systems and dαβ = aαβ

k2
copl

for self-interaction and coplanar slip systems. The constants kinter

and kcopl are described in [80], and are related to the inverse proportionality between
the mean free path length lα and the resolved shear stress on slip system α. Using these
expressions, we obtain the following expressions for the slip rate on slip system α as

γ̇α
|τα |>0 =

ραb

t0

√
∑β dαβρβ

exp

[
−

Tp

T

{
1−

(
τα − sl

sα

)p}q
]

sign(τα). (26)

Equation (26) is an Arrhenius-type expression. Physically, it corresponds to the idea
that dislocations in which atoms have higher kinetic energy (measured by temperature
T) have a higher probability of crossing the barrier to dislocation motion (measured
by Tp). Such flow rules have been used to study localization in polycrystals [81], tex-
ture evolution [82], and interface stability in metallic multilayered composites [83] and
bicrystals [34]. The effective temperature χ (with the initial value denoted by χ0) evolves
according to

χ̇

eD
=

κχ

µ

(
1− χ

χss

)
∑
β

τβγ̇β, (27)

where κχ is a dimensionless parameter. The fraction β = χ
χss

is the Taylor–Quinney factor,
and quantifies the fraction of the plastic work that is converted to kinetic vibrational energy.
The quantity χss is the steady-state effective temperature, which accounts for temperature
and strain rate dependence through the following equation:

χss = χss0

[
1 +

1
N ∑

α

(
|γ̇α|
γ̇0

)kBT/A
]

(28)

where χss0 is a material parameter, γ̇0 is a reference strain rate, A is an activation energy,
and N is the number of slip systems (N = 12 for FCC). The effect of the strain rate is
introduced in Equation (28) by raising a strain rate ratio to an exponent of the form kBT/A,
following similar choices made in [34,81–84]. The dislocation density (with the initial value
denoted by ρ0) evolves according to the equation

ρ̇α =
κα

ρ

a2
ταγ̇α

µ

(
1− ρα

ρα
ss

)
, (29)
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where a is a length scale characterizing the critical distance of dislocation interaction and
κα

ρ denotes a parameter for hardening the slip system, calculated according to

κα
ρ =

κ0
ρ

ν2
α

√
ρss −

√
ρα

√
ρss −

√
ρ0

, (30)

where κ0
ρ is a material hardening parameter and ρss is the steady-state dislocation density,

which is calculated from the effective temperature through the equation

ρss =
1
a2 exp

(
− 1

χ

)
. (31)

Equation (30) introduces a dependence of the hardening behavior of a slip system
on the dislocation density of that slip system. The steady-state dislocation density in
Equation (31) is also dependent on the deformation rate and temperature through the vari-
able χ. The nominal material hardening is captured by κ0

ρ. At the beginning of deformation,

the post-multiplying factor
√

ρss−
√

ρα
√

ρss−
√

ρ0
(varying between 0 and 1) equals 1 for all slip systems,

as ρα starts with the value ρ0 for all slip systems. It decreases as the deformation progresses
and dislocation density increases. Therefore, Equation (30) captures the idea that the nature
of the material associated with a slip system changes as the dislocation density on that slip
system increases. In accordance with [59,60], the parameter να is used to calculate κα

ρ as

να = ln
(

Tp

T

)
− ln

ln

 bρα

t0|γ̇α
0 |
√

∑β dαβρβ

, (32)

where γ̇α
0 is the total shear rate on slip system α.

The temperature then evolves according to the equation

Ṫ =
1

ρCp

(
β ∑

α

ταγ̇α + κ∇2θ

)
, (33)

where ρ is the mass density and Cp is the specific heat.

2.2. Computation

All of the simulations were performed using the FEM software ABAQUS/Standard
2023. The material model was specified by writing a UMAT subroutine. The problem
domain for all the simulations (single-crystal and polycrystal) was a right circular cylinder.
The axis of the cylinder was aligned with the z-axis for the single crystal simulations and
aligned with the y-axis for the polycrystal simulations. In both cases, the cylinder was
compressed at a constant true strain rate using the ABAQUS user subroutine DISP.

For the single-crystal simulations, the cylinder had a diameter of 6 mm and a height of 6
mm. The crystal was oriented so that the <123> direction of the crystal was initially parallel
to the z-axis (the axis along which compression was applied). This was to concentrate most
of the slip activity on a single slip plane. Because this asymmetry of sample orientation
with respect to the slip systems for copper will not produce an axisymmetric deformation
field, full three-dimensional simulations were performed. For single-crystal simulations,
the cylinders were compressed at true strain rates of 0.1 s−1, 2.0 s−1, 3000 s−1, and 4800 s−1.
The element C3D20T from the ABAQUS/Standard element library was chosen to mesh
the cylinder domain for the single crystal simulations. These are 20-noded hexahedral
thermomechanical elements that use quadratic shape functions. The mesh was comprised
of 5120 such elements, and is shown in Figure 1a. This mesh was the smallest element
size which would complete a simulation within a reasonable time. The temperature
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response from the single-crystal simulations was taken as the average of all free surface
node temperatures.

For polycrystal simulations, the cylinder had a height of 19.05 mm and diameter
of 12.7 mm. The cylinders were compressed at true strain rates of 10−3 s−1, 10−2 s−1,
10−1 s−1, and 100 s−1. A Taylor model was adopted for the polycrystal simulations. Each
element integration point of the Taylor model was assumed to be a composite of 500 ran-
domly oriented grains. All of the grains had distinct randomly distributed orientations,
simulating the aggregate response of a random collection of grains at each element inte-
gration point. The deformed polycrystal cylindrical samples remained cylindrical during
deformation, and there is nothing about the Taylor model representation of the polycrys-
talline material that would break the axisymmetry. Therefore, an axisymmetric model was
used to represent the experiments using two-fold symmetry on both the cylinder axis and
length. The behavior of each grain was governed by the same UMAT as that used in the
single-crystal simulations.

Figure 1. Meshes representing initial configurations: (a) single-crystal, sample size of 6mm diameter
and 6 mm length; (b) axisymmetric and half-length thermomechanical polycrystal mesh (sample size
of 12.7 mm diameter and 19.05 mm length), where the left edge is the axis of symmetry, the top edge
is the sample’s center, the bottom (tan) region corresponds to steel platens (9.34 mm height, 6.35 mm
width), the top (green) region corresponds to copper (9.525 mm height), and a thin (0.0127 mm) PTFE
layer is between the steel and copper; (c) axisymmetric and half-length thermal transient model.

A half-height axisymmetric model was used for the polycrystal simulations. The left
edge of the rectangular mesh shown in Figure 1b is the axis of symmetry. The top edge
of the mesh is the axial center of the sample. The mesh was divided into three regions
for each of the represented materials (the copper sample, PTFE film lubricant, and tool
steel compression platen). The green mesh region of the elements in Figure 1b represents
copper. The height of this region was 9.525 mm, with its bottom on the x axis. The width
of this region (as well as the other two) was 6.35 mm. The length and diameter of the
physical copper samples was 19.05 mm and 12.7 mm, respectively. Just below the copper is
a region of elements that is one element in height, representing the lubricating PTFE disk,
which is too thin to appear in the figure. The elements in this layer were all 0.0127 mm tall.
The remainder of the mesh below the PTFE layer represents the steel compression platens
with a height of 9.34 mm (the thickness of the physical steel compression platens). The layer
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of nodes at the bottom of the copper (top of the PTFE) region was restrained from motion
in the y direction, and the user-defined boundary condition was applied to the top of the
copper region. Note that the PTFE layer and steel compression platens were included in the
polycrystal simulation model for only the thermal transport part of the problem. Neither
material played a role in the mechanical part of the problem. Only the copper region of the
numerical model contributed to the calculation of the copper stress–strain curves.

A Taylor polycrystal model was used to represent the polycrystal copper material.
The element CAX8T was used to mesh the rectangular area shown in Figure 1b, with
100 elements representing both the copper and steel and 10 elements representing the
PTFE film. Doubling the number of elements did not lead to any noticeable difference in
results. These are axisymmetric and thermomechanical eight-node elements with quadratic
shape functions. The mesh consisted of 200 such elements. Every integration point in
the model was assumed to be a composite of 500 randomly-oriented grains. At every
integration point, the function encoding the material model for the single crystal was called
500 times with the same deformation gradient but different grain orientations. The output
of these 500 function calls was averaged and returned to ABAQUS as the output of the
computation at the integration point. Because the presence of both PTFE and steel in the
polycrystal simulations was for heat transport only, both were modeled as isotropic elastic
materials with extremely low stiffness, ensuring that they could expand freely with the
copper cylinder. Realistic thermal properties were used to represent both materials. Both
the copper/PTFE and PTFE/steel interface surfaces defined by connecting nodes were
forced to remain fixed in the y-direction.

Following mechanical deformation with the thermomechanical mesh shown in Figure 1b,
the cooling transient was simulated using a heat transfer model of the deformed sample
shown in Figure 1c. The DCAX8 element was used for this problem, which was initialized
for temperature at each node from the results of the thermomechanical problem for the
appropriate strain rate condition. This enabled evaluation of the thermal transport film
coefficient for the outer surface of the model to represent the thermal transport transient
measured experimentally for each condition. Note that the simulated temperature for both the
thermomechanical and heat transfer analyses was taken as the position of the thermocouple,
which is the node in the top right-hand corner of each of the two axisymmetric meshes.

2.2.1. Mechanical Tangent Operators

To calculate nodal forces and displacements with a user-defined constitutive model at
the end of time step n + 1, ABAQUS/Standard requires the the user to estimate the Cauchy
stress (T) and Jacobian matrix of the constitutive model WEP = ∂T

∂e . These quantities are
calculated using information from time step n, which is supplied to the user by ABAQUS.
In the following, a quantity with a subscript n refers to a quantity calculated in the previous
resolved time step, while subscript n + 1 refers to a quantity involved in the current
unresolved time step calculation. The relative deformation gradient Frel is defined as
Fn+1 = FrelFn. The symbol e = ln U, where U is the relative stretch portion of the polar
decomposition of the relative deformation gradient. By ABAQUS convention, T and e are
both defined as 6× 1 column vectors with the following forms:

T =



T11,n+1
T22,n+1
T33,n+1
T12,n+1
T13,n+1
T23,n+1

, e =



e11,n+1
e22,n+1
e33,n+1
e12,n+1
e13,n+1
e23,n+1

.

Here, we show the method of deriving the fourth-rank tensor WEP = ∂T
∂e . The 6× 6

matrix required by ABAQUS can then be calculated using the following formula:
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WEP =



W1111 W1122 W1133 (W1112 + W1121)/2 (W1113 + W1131)/2 (W1123 + W1132)/2
W2211 W2222 W2233 (W2212 + W2221)/2 (W2213 + W2231)/2 (W2223 + W2232)/2
W3311 W3322 W3333 (W3312 + W3321)/2 (W3313 + W3331)/2 (W3323 + W3332)/2
W1211 W1222 W1233 (W1212 + W1221)/2 (W1213 + W1231)/2 (W1223 + W1232)/2
W1311 W1322 W1333 (W1312 + W1321)/2 (W1313 + W1331)/2 (W1323 + W1332)/2
W2311 W2322 W2333 (W2312 + W2321)/2 (W2313 + W2331)/2 (W2323 + W2332)/2

. (34)

We follow the Jacobian derivation method provided in [85]. We make the assump-
tion that the incremental stretch is small, which is justified because the time steps taken
by ABAQUS are reasonably small. This allows us to make the following mathematical
simplification: e = ln U ≈ U− 1 =⇒ δe = δU. To derive the material Jacobian, we note
that the Cauchy stress can be written in terms of the second Piola–Kirchhoff stress S:

Tn+1 =
1

det Fe
n+1

[
Fe

n+1Se
n+1FeT

n+1

]
.

Taking a derivative of this expression with respect to e and introducing the tensors
X = ∂Fe

∂e and Q = ∂S
∂e , we obtain the following equation:

Wijkl =
1

det Fe

[
XimklSmnFeT

nj + Fe
imQmnkl FeT

nj + Fe
imSmnXjnkl − Fe

imSmnFeT
nj (Xpqkl Fe−1

qp )
]
. (35)

Using the small stretch assumption made above, we write X ≈ ∂Fe

∂U and Q ≈ ∂S
∂U .

The following steps, taken from [85], are used to compute the tangent modulus WEP. This
symbol is written in blackboard bold font to emphasize that it is a fourth-order tensor and
that its components are to be used to construct the actual 6 × 6 matrix (using Equation (34))
that is passed back to ABAQUS.

1. Compute the fourth-rank tensor L:

Lijkl = FeT
ik,nUlm,n+1Fe

mj,n + FeT
im,nUmk,n+1Fe

ij,n. (36)

2. Compute the elastic stiffness tensor (Cc denotes the elastic stiffness tensor in the
crystal frame). To calculate the elastic stiffness tensor for the current grain orienta-
tion, the rotation tensor from the reference orientation to the current orientation is
denoted by Q, and is used to calculate the elastic stiffness tensor using the expression
Cijkl = QipQjqQkrQlsCc,pqrs.

3. Use the quantities from steps 1 and 2 to calculate the fourth-rank tensor D:

Dijkl =
1
2

CijmnLmnkl . (37)

4. For each slip system α, use the Schmid tensor Sα = sα⊗mα to compute the fourth-rank
tensors Gα and Jα and the second-rank tensor Bα:

Gα
mnkl = LmpklSα

pn + LpnklSα
pm, (38)

Jα
ijkl =

1
2

CijmnGα
mnkl , (39)

Bα
ij =

1
2

∆t
∂γ̇α

n
∂τα

(
Sα

ij + Sα
ji

)
. (40)
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5. Compute the fourth-rank tensorsK andQ, which requires summing over all slip systems:

Kijkl = Iijkl + ∑
α

Cα
ijB

α
kl , (41)

Qijkl = K−1
ijmn

(
Dmnkl −∑

α

γ̇∆tJα
mnkl

)
. (42)

6. Compute the following quantities:

Rα
ij = Bα

klQklij,

Xijkl = Rik

(
Fe

lj(tn)− Fe
lp(tn)∑

α

γ̇α∆tSα
pj

)
− RimUmnFe

np(tn)∑
α

Rα
klS

α
pj.

(43)

The Rik appearing in the computation of X represents the rotation components of the
relative deformation gradient.

7. As the final step, compute the Jacobian for the mechanical behavior of the material:

Wijkl =
1

det Fe

[
XimklSmnFe

jn + Fe
imQmnkl Fe

jn + Fe
imSmnXjnkl − Fe

imSmnFe
jn(Xpqkl Fe−1

qp )
]
. (44)

2.2.2. Thermal Tangent Operators

ABAQUS/Standard forms the tangent matrix for the thermal transport problem using
certain quantities provided by the user. The calculation methodology for these quantities is
shown in this section. Several derivatives are important in these calculations. The first of
these is the variation of γ̇α with respect to τα:

∂γ̇α

∂τα
=

pqραlαbTp

sαt0T
exp

[
−

Tp

T

(
1−

(
τα − sl

sα

)p)q
]
×[(

1−
(

τα − sl
sα

)p)q−1
][(

τα − sl
sα

)p−1
]

.

(45)

The above must be multiplied by the sign of τα. The derivative of γ̇α with respect to
the temperature is provided by

∂γ̇α

∂T
=

ραlαb
t0

Tp

T2 exp

[
−

Tp

T

(
1−

(
τα − sl

sα

)p)q
]
×[(

1−
(

τα − sl
sα

)p)q
]

.

(46)

Using these derivatives we can calculate the following four quantities, which are
required by ABAQUS for calculating the tangent operators connected to the thermal part
of the thermomechanical problem:

• rpl : The portion of the mechanical work done on the material that is transformed to
heat. It is calculated here as a portion of the plastic work done on the material. It is
calculated as β ∑α ταγ̇α, where β is the Taylor–Quinney factor, α denotes the index for
one of 12 slip systems in the metal, τα is the resolved shear stress on slip system α,
and γ̇α is the slip rate on the same slip system.

• The variation of the Cauchy stress with respect to temperature: In this work, we
assume that the thermal variation of the Cauchy stress arises from the thermal variation
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of the elastic moduli of the single crystal. This expression is derived from the definition
of the second Piola–Kirchhoff stress:

∂T
∂T

=
1

det Fe Fe ∂S
∂T

FeT , (47)

∂Sij

∂T
= QipQjqQksQlrmpqrsEe

kl . (48)

The temperature dependence of the elastic moduli, and consequently of the Cauchy
stress, is obtained from Equation (5).

• The variation of rpl with respect to temperature:

rpl = β ∑
α

ταγ̇α

∂rpl

∂T
= β ∑

α

[
∂τα

∂T
γ̇α + τα ∂γ̇α

∂T

]
,

(49)

∂τα

∂T
=

∂S
∂T

: (sα ⊗mα). (50)

• The variation of rpl with respect to the strain:

∂rpl

∂Eij
≈

∂rpl

∂Uij

= β ∑
α

[
∂τα

∂Uij
γ̇α + τα ∂γ̇α

∂Uij

]
,

(51)

∂τα

∂Uij
=

∂S
∂Uij

: (sα ⊗mα). (52)

The derivatives of S and γ̇α with respect to U are denoted by the symbols Q and J,
respectively, and appear in the derivation of the mechanical Jacobian.

2.2.3. Mechanical and Thermal Quantities for the Taylor Polycrystal Model

The quantities described in Sections 2.2.1 and 2.2.2 are those calculated for describing
the behavior of single crystals. For the Taylor polycrystal, these quantities are calculated
for each of 500 grain orientations assigned to each integration point of the Taylor model
aggregate. Each of the 500 calculations assumes the deformation gradient assigned to the
integration point by ABAQUS. From the UMAT of the Taylor model, the mean of these
500 quantities is returned to the ABAQUS global equation solver:

• Cauchy stress.
• Tangent stiffness moduli in Equation (34).
• Rate of thermal energy generated.
• Derivative of the Cauchy stress with respect to the temperature.
• Derivative of the rate of thermal energy generation with respect to the temperature.
• Derivative of the rate of thermal energy generation with respect to the strain.

2.3. Experiment
2.3.1. Single-Crystal Experiments

Stress–strain and temperature evolution data were respectively taken from Figures 2b and 5a
of [13] for comparison to the single-crystal simulations.

The samples in these experiments were copper right-circular cylinders with diameter
6 mm and height 4–6 mm. They were machined from stock cylinders which had the <123>
direction of the single crystal oriented parallel to the axis of the cylinder. The reason for
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this alignment was to concentrate the plastic slip, at least at the onset of plastic flow, onto a
single slip system.

The single-crystal samples were then compressed in the quasi-static regime using an
MTS system (Eden Prairie, MN, USA) under displacement control and in the dynamic
regime using Kolsky bars of diameter 12.7 mm made of C300 maraging steel. For the
quasi-static regime, the temperature of the sample was measured by recording thermal
images of the sample as it was being compressed using a thermal imaging camera. For the
dynamic regime, thermal detection was carried out using a liquid nitrogen-cooled MCT
(mercury–cadmium–telluride) detector. This detector measures temperatures over an area
of 100 µm × 100 µm.

To minimize issues related to surface roughness and surface oxidation, the samples
were thermally conditioned by preheating to 200 ◦C for 1 min to ensure that all samples
had similar surface conditions.

2.3.2. Polycrystal Experiments

The polycrystal experiments consisted of uniaxial stress compression tests in which
the stress, strain, and temperature evolution of the sample were measured simultaneously.
Temperature measurements were taken using thermocouples (J type) welded to the outside
center of the sample. The samples were right-circular cylinders machined from half-inch
round bar stock of OFHC polycrystalline copper. The slenderness ratio of all the samples
was equal to or less than 1.5. As such, the lengths of the samples were less than or equal
to 0.75 inches (19.05 mm) and their diameters were 0.5 inches (12.7 mm). After machining,
the samples were annealed in an Argon-flushed furnace by holding the samples at 800 ◦C for
1 hour and allowing the samples to cool naturally in the same furnace. Thermocouple beads
were welded onto the annealed samples using a thermocouple spot welder. Displacement of
the sample height reduction was measured using an MTS extensometer mounted directly to
the radial surface of cylindrical high-strength steel compression platens 6 inches in diameter
and 2 inches thick. These experiments were conducted using a high-capacity Instron servo-
hydraulic test system with displacement control on the extensometer to impose a constant
true strain rate on the sample for the duration of the experiment. The flat ends of the sample
were lubricated for the duration of the compression test by inserting circular pieces of PTFE
film of thickness 0.0127 mm and diameter 0.5 inches (the same as the samples).

2.4. Material Parameter Evaluation

The starting point for material parameter evaluation was the list provided in Table 2
of [78]. However, the provided material parameters cannot be used as-is, since the current
model differs from [78] in Equations (22) and (28). The list of material parameters used here
is provided in Table 3. All parameters are used for both single- and polycrystal calculation
except where different polycrystal values are provided in parentheses. The elastic con-
stants C11,0, C12,0, and C44,0 characterize FCC Copper at 0 K. As mentioned in describing
Equation (5), it is assumed that the elastic moduli decrease linearly with the temperature.
These variation parameters are m11, m12, and m44. These elastic moduli and their tempera-
ture variation parameters were estimated from [86]. For a given temperature T, the three
elastic moduli are provided by

C11(T) = C11,0 + m11T,

C12(T) = C12,0 + m12T,

C44(T) = C44,0 + m44T.

(53)

Using these elastic constants, the elastic stiffness tensor at a temperature T of the
single-crystal orientation used as reference is

Cc,ijkl = C11(T) if i = j = k = l,

otherwise, Cc,ijkl = C12(T)δijδkl + C44(T)(δikδjl + δilδkj).
(54)
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The values of the matrix entries aαβ used in Equation (23) depend on relative ori-
entations of the slip normals and slip directions of the slip system corresponding to α
and β:

• aαα = aself: Captures the interaction of a dislocation with other dislocations in the
same slip system.

• aαβ = acopl, if mα = mβ and sα 6= sβ: This corresponds to the dislocation interactions
that lead to the formation of dipoles.

• aαβ = ahirth, if mα 6= mβ and sα ⊥ sβ: This corresponds to the formation of a Hirth lock.
• aαβ = acolli, if mα 6= mβ and sα = sβ: This corresponds to collinear interactions

between dislocations.
• aαβ = agliss, if mα 6= mβ and sα 6= sβ: This corresponds to the formation of a glissile junction.
• aαβ = alomer for other configurations of slip normals and slip directions: Corresponds

to the formation of a Lomer lock.

Table 3. List of material parameters for single-crystal simulations. For the polycrystal simulations,
all values are the same except for those quantities in parentheses. The symbol ρ0 denotes the initial
dislocation density on each slip system.

Material Parameter Symbol Value

ρ 8960 Kg/m3

Cp 380 J/Kg-K
KT 394 W/m-K

C11,0 179,500 MPa
C12,0 126,400 MPa
C44,0 82,500 MPa
m11 −36.3 MPa/K
m12 −16.4 MPa/K
m44 −25.7 MPa/K
αT 2.75 (2.0)
b 2.57× 10−7 mm
ρ0 1× 105 mm−2 (2× 105 mm−2)
χ0 0.20 (0.19)

χss,0 0.25 (0.115)
aself 0.122
acopl 0.122
ahirth 0.070
acolli 0.625
agliss 0.137
alomer 0.122

eD 1.0
t0 1× 10−12 s
Tp 40,800 K
kB 1.38× 10−23 J/K
a 10b

κ0
ρ 60 (68)

κχ 3.3 (4.3)
γ̇0 105 s−1

kcopl 15
kinter 200

A 17.1× 10−19 J
sl 0 MPa
p 0.33
q 1.66

The values aself, acopl, ahirth, acolli, agliss, and alomer were calculated from the DD
(Dislocation Dynamics) simulations in [37,87,88]. According to [80], the parameters dαβ

needed in Equation (25) can be calculated using aαβ, kinter and kcopl, using the expressions
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dαβ = aαβ

k2
inter

for intersecting slip systems and dαβ = aαβ

k2
copl

for self-interaction and coplanar

slip systems. The same approach is followed in the present work.
The material parameter A introduced in this work is an energy barrier term, and

controls the temperature and rate sensitivity of χss. Because the slip rate on any slip system
is usually less than the reference slip rate γ̇0, a lower value of A corresponds to a higher
value of χss. Because χ is a measure of the disorder of the system, a higher value of χss
corresponds to a higher value of the saturation stress of the material. Therefore, a lower
value of A corresponds to a strong material. The symbol χ0 denotes the initial value of χ.

Saturation flow stress increases with strain rate [81,84]. The state variable χ is a measure
of the configurational disorder in the system. Therefore, its saturation value χss should
decrease with temperature. From [84], it is apparent that saturation flow stress decreases as
temperature increases. For a FCC material, the saturation flow stress is strongly controlled by
the saturation dislocation density. The dislocation content is a measure of the configurational
disorder of a system. Therefore, based on experimental data on the saturation value of flow
stress, we can make inferences about the saturation value of the configurational disorder of
the system. This notion is captured by Equation (28) for variation of χss.

Several of the material parameters in this work are different from the material parameters
in [78] such as κχ, κ0

ρ, kcopl, kinter, and αT. Differences in the first two quantities are related to
differences in the effective temperature and dislocation evolution equations. The remaining
three may be related to manufacturing differences in the materials being simulated.

Both PTFE and tool steel were used in the polycrystal simulations and represented for
thermal transport characteristics only. For PTFE, ρ = 2200 Kg/m3, KT = 0.25 W/m-K, and
Cp = 1500 J/Kg-K; For steel, ρ = 7850 Kg/m3, KT = 45 W/m-K, and Cp = 420 J/Kg-K.

2.5. Free Surface Heat Transfer Coefficient Parameter Evaluation

The film coefficient for air governing the transport of heat across the curved surface of
the cylinder is assumed to be equal to 10.0 W/m2-K for the single crystal simulations. This is
consistent with prior computational results for room-temperature experiments conducted in
air. There is uncertainty in the value of the film coefficient, as seen in [77], which uses a value
of 3.0 W/m2-K, and [89], which shows a wide range of values for the film coefficient (up to
13.0 W/m2-K). For the polycrystal experiments presented here, each sample was deformed to
the target strain at a constant true strain rate and held under load while measuring the thermal
transient cooling. This allowed for determination of the film coefficient for the conditions of
these experiments. A value of 0.18 W/m2-K was determined to be suitable using results from
the 0.1 s−1 experiments, as demonstrated in Figure 2.

Figure 2. Temperature transient results used to determine a numerical film coefficient for the air–
solid interface of 0.18 W/m2-K. The temperature measured by the thermocouples and simulated
temperature are taken from the center surface node.
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3. Results

A comparison of the experimental and simulation stress–strain curves for single-crystal
compression is shown in Figure 3a, demonstrating reasonable agreement between simulation
and experiment. There is divergence between the simulation and experimental results for
the two lower deformation rates at large strain values. Because the deformed sample shapes
were not reported in [13], it is difficult to diagnose the observed softening response. As
the simulations suggest strong sample distortion with deformation, it is possible that strong
shear localization occurred in the experiments but was not captured by the mesh used in the
simulations. Similarly, for the polycrystal case, Figure 4a shows a reasonable representation
of the experimental stress–strain curves by the simulations. However, the deformation rate
sensitivity of the material in the simulations is too strong in comparison with the experiments.

(a) (b)

(c) (d)

Figure 3. Comparison of experiment and simulation for single-crystal copper. Solid lines represent
experiments and dashed lines represent simulations. Plastic work densities are calculated as the
area under the stress–strain curve. The simulation temperature change was taken from the center
surface node. (a) Single crystal stress–strain; (b) 0.1 s−1 and 2.0 s−1 temperature change; (c) 3000 s−1

temperature change; (d) 4000 s−1 and 5800 s−1 temperature changes.
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(a) (b)

Figure 4. Comparison of polycrystal experiment and simulation results: (a) stress-strain curve
for polycrystal copper and (b) temperature evolution for polycrystal copper. The experimental
temperature was measured by thermocouples, while the simulated temperature was taken from the
center surface node.

As expected, the single-crystal temperature curves in Figure 3b–d show high depen-
dence of the temperature evolution behavior on the strain rate. The images corresponding
to the two higher strain rate simulations (3000 s−1 and 4800 s−1) are shown in Figure 3c,d
respectively. The polycrystal temperature curves in Figure 4b for the simulations show
a reasonably accurate prediction of the thermocouple-measured temperature evolution
in the experiments. However, a variation in the curvature of each result can be seen as a
function of evolved strain. There is qualitative agreement in the strain rate sensitivity of
the thermal behavior of the model, and it is again in reasonably good agreement with the
experimental results. The difference in the character of the simulation and experimental
temperature evolution curves suggests that some uncertainty remains in the temperature
measurement as well as in our physical understanding of this thermodynamic process.
Nonetheless, order-of-magnitude agreement can be seen with the simple theory used here.

The deformed shapes of the domains of the single crystal simulations for the four
different strain rates are shown in Figure 5 (showing von Mises stress) and Figure 6
(showing absolute temperature). The deformed shape of the domain and contour plots
for the von Mises stress and temperature show the anisotropy and heterogeneity of the
deformation. Anisotropy is shown by the cross-section of the cylindrical domain, which has
transformed from a circular to an elliptical shape. Heterogeneity is shown by the shearing
visible in the deformed shape domains, made clearer by the patterns of the contour plots.

The predicted evolution of the Taylor–Quinney factor for both single-crystal models
(Figure 7a) and polycrystal models (Figure 7b) demonstrates mild influence of the strain rate.
There is clearly a strain effect on the Taylor–Quinney factor, with the Taylor–Quinney factor
increasing with strain as expected. A trend appears with respect to the strain rate, however,
where the Taylor–Quinney factor is lower for higher strain rates at the beginning of the
simulation. With deformation, the evolution of the Taylor–Quinney factor for the higher
strain rates catches up to and then exceeds the values for lower strain rates. The evolution
of χ and χss can be seen in Figure 7c,d, respectively.
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(a) (b)

(c) (d)

Figure 5. Deformed shapes of single-crystal simulations, showing the von Mises stress for different
strain rates: (a), ε̇ = 0.1 s−1; (b) ε̇ = 2 s−1; (c) ε̇ = 3000 s−1; (d) ε̇ = 4800 s−1. All images were
taken at an axial compressive strain of 0.35. The von Mises stress, also known as equivalent stress, is
defined as σVM =

√
3/2T′ : T′.

(a) (b)

(c) (d)

Figure 6. Deformed shapes of single-crystal simulations showing the temperature for different strain
rates: (a) ε̇ = 0.1 s−1; (b) ε̇ = 2 s−1; (c) ε̇ = 3000 s−1; (d) ε̇ = 4800 s−1. The initial temperature for all
simulations was 295 K. All images were taken at an axial compressive strain of 0.35.
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(a) (b)

(c) (d)

Figure 7. Evolution of Taylor-Quinney state variables for single and polycrystal simulations: (a) single-
crystal Taylor-Quinney factor; (b) polycrystal Taylor-Quinney factor; (c) polycrystal effective temper-
ature; (d) polycrystal steady-state effective temperature.

4. Discussion

The finite deformation theory presented here has demonstrated some success in repre-
senting the experimental results. It represents dislocation interactions which are specific to the
interacting slip system dislocations for face-centered cubic materials, an approach motivated
by the study of these interactions with discrete dislocation dynamics and molecular dynamics
calculations [36–38,43,80,87,88]. This is represented by a tensorial interaction within the classi-
cal Taylor expression for interaction resistance to glide. The evolution of material state in this
thermodynmaic theory is also driven by plastic power, as opposed to simply the kinematic
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quantity of plastic slip or plastic strain rate [59–62,73,75,76]. The partitioning of plastic power
into configurational and kinetic–vibrational categories affords the opportunity to suggest the
coupling between plastic power and the proportion going to increasing the temperature of
the material. Especially for high deformation rate loading conditions, the change in material
temperature during deformation cannot be ignored; our physical mechanistic understanding
of this process is quite weak. It follows that the Taylor–Quinney factor expression used
here is only suggested by thermodynamics restrictions as one of the most simple admissible
approaches. While such an expression is not void of physical insight, it represents a simple
expression given the complexity of dislocation mechanics and the partitioning of energy in
such material systems. Certainly, atomistic tools are an important avenue for gaining more
physical insight into thermodynamics and physics of dislocation motion. There is also a
possibility of comparing the results from the current theory with molecular dynamics sim-
ulation results, considering the advanced potential of recent developments [90]. However,
such a direct comparison is difficult, as there is a large difference between the high strain rates
typically necessary for MD calculations and the significantly lower strain rates of achievable
polycrystal experiments and simulations. The metadynamics method developed by [91,92]
may also be able to sample the potential energy landscape much more efficiently and extend
the feasible strain rate regime down by many orders of magnitude. The continuum model in
this work uses an Arrhenius-type flow rule based on thermal activation, and is not currently
formulated for phonon drag regimes of dislocation velocity, though this could certainly be
added as required [40]. As a result, the mechanical response of the continuum model is
expected to match that of molecular dynamics simulation for face-centered cubic materials.
The possibility of agreement of the thermal response is less certain; this flow rule physically
describes the mechanical behavior of mobile dislocations but not their thermal coupling, as
the exact physical basis of this coupling is not understood. However, there is much physical
insight to be gained by controlled atomistic studies of this process, given the wealth of results
which have already been produced.

From the polycrystal temperature evolution curves in Figure 4b, we see qualitative
agreement in the strain rate behavior between experiment and simulation. The differences
in curvature between the curves raise questions about the estimation of the thermal power
generated in the model and the thermal energy lost to the surroundings through the
boundary. It is also reasonable to expect that deformation may bring about changes in the
thermocouple contact with the sample, as the bead weld area on the sample is deforming as
well. Again, this highlights the challenges associated with measuring temperature for large
deformation conditions, especially for high deformation rates. For the Taylor polycrystal
model, the thermal power at an element integration point was calculated by averaging over
the thermal power generation of all 500 single-crystal orientations active at the element
integration point. What is missed in this simple homogenization approach is intergranular
interactions with deformation and corresponding inhomogeneous deformation field at
the single-crystal and lower length scales. This is thought to produce a greater degree of
local plastic deformation, which may be missed by homogenization. On the other hand,
the Taylor homogenization technique is known to be an upper bound for stress response.
However, as the single-crystal and polycrystal stress–strain response is well represented,
the homogenized energy should be consistent with that imposed experimentally. Then,
the question is to what extent the local inhomogeneous deformation alters the energy
partitioning process. Although the present results reasonably represent the experimental
data, they do not address questions of the role this may play in the thermodynamic process
and observations of temperature change. This has practical implication for how to approach
these questions, as combined thermomechanics calculations are costly and performing
sample-sized simulations (even very small samples) with realistic microstructures would
be quite resource challenging even for advanced computational architectures.

The calculation of the single-crystal Taylor–Quinney factor for Figure 7a was per-
formed by taking the average of the Taylor–Quinney factor of all the integration points in
the 3D cylindrical model. This was necessary due to the highly anisotropic nature of the
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deformation field, as shown in Figures 5 and 6. This is also consistent with the experiments
due to using the entire field of thermal imaging [13]. For the polycrystal model, the deforma-
tion field is uniform, and as such the Taylor–Quinney factor was determined by averaging
over all 500 crystals at the integration point nearest to the top right-hand corner node, which
corresponded to the thermocouple location on the experimental samples. The polycrystal
Taylor–Quinney factor evolution is provided in Figure 7b. In general, the Taylor–Quinney
factor increases with deformation; however, the actual values in Figure 7a,b show that
there is not much change in the predicted value over the considered range of deformations.
It is, however, interesting to note that the difference in magnitude of the Taylor–Quinney
factor between the single-crystal and polycrystal predictions is larger for the polycrystal
by a factor of two. As mentioned earlier, the orientation of the single crystal was chosen
to ensure that something close to single slip could be achieved. This produced a flow
stress of 200 MPa at a strain of −0.4, in comparison with 300 MPa for the polycrystal
samples for a strain rate of 0.1 s−1 for both datasets. The polycrystal temperature predic-
tion for that strain rate represents the experimental curves rather well. The single-crystal
prediction of temperature for that strain rate is approximately half of the experimental
magnitude, indicating that perhaps the predicted single-crystal Taylor–Quinney factor is
too low. The single-crystal temperature significantly overpredicts that of the experiment
for a strain rate of 2.0 s−1. It should be noted that the boundary conditions for the single-
crystal experiments were not reported by [13], and consequently those employed here for
modeling these results may not be quite correct.

Although mechanical size effects are becoming more prominent features in advanced
crystal mechanics theories, this was not considered in the present work. As already
discussed, coupled thermomechanics problems have an implicit size effect which appears in
the thermal transport component of the problem. Mechanical size effects may be introduced
in various ways. Size effects related to plasticity may be introduced by calculating the
dislocation density at an element integration point from the plastic part of the deformation
gradient. This would necessarily require calculation of the gradient of the plastic part of
the deformation gradient, and would introduce a size effect into the continuum model.
Size effects related to the elastic part of the response can be introduced by assuming the
material to be a micromorphic continuum. These are additional valid elements of physics
which may contribute to this thermomechanical problem, and should be pursued; however,
as alluded to already, adding more length scales to this study would also add substantial
computational expense, and must be done with specific physics questions in mind. Given
our significant remaining questions about the thermomechanical response of materials and
partitioning of mechanical power, we consider it premature to include mechanical size
effects at the present time, as there are higher-priority outstanding questions.

The results presented here suggest that there remains some uncertainty in the accurate
measurement of temperature for the loading conditions considered here. As demonstrated
in Figure 4b, the temperature evolution curves demonstrate differences in character between
the different strain rate conditions. While there is good repeatability between the duplicate
experiments at the same loading conditions, the curvature of the curves (with the exception
of the 0.1 s−1 conditions, which compare well with the simulations) are not understood at
present. It is also clearly important to quantify the thermal boundary conditions, which
remains an opportunity for further development. This will again require close examination
in the future. This is clearly an area for opportunity, as measured temperature is a critical
state variable in this area of study.

5. Conclusions

We have presented an integrated study of the thermomechanical behavior of copper
which includes new theoretical, computational, and experimental results. The primary vari-
able of interest in this work is the strain rate (or time, in the context of thermal transport),
which spanned the range from 10−3 to 5× 103 s−1. All conditions were initially at room
temperature. The theory and corresponding thermomechanical simulations demonstrated
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reasonably good agreement with the experimental results for both stress and temperature
evolution, given the simplicity of the model and that there is much that we do not yet
understand about the coupled thermomechanics of plastic deformation, mechanistic en-
ergy partitioning, and thermal energy conversion. The theory is formulated with large
deformation kinematics, is thermodynamically consistent, and accounts for plastic power
partitioning to stored energy of cold work within the dislocation structure and thermal
energy of the material system. The theory accounts for advanced dislocation interaction
via the continuum theory and plastic power driving structural evolution, rather than kine-
matical quantities such as slip rate. The dislocation interaction energy is not yet directly
represented, instead being implicitly represented through material hardening as a result
of dislocation interactions. Configurations of dislocation structure development such as
dislocation subcells are not yet directly represented in this theory.

The single-crystal results presented here using experiments found in the literature [13]
are a very important component in developing an understanding of polycrystalline ther-
momechanical behavior. The deformation fields at the single-crystal length scale within
polycrystalline aggregates are more complex, and there does not yet exist a good way to
experimentally quantify the influence of multiple grain boundary types on the deforma-
tion behavior of individual single crystals. More coupled diagnostic thermomechanical
experiments performed on single crystals are needed.

The theory presented here has been used against the presented polycrystalline dataset
by employing the Taylor model to homogenize the response of a representative set of 500
crystals of annealed copper with random initial crystallographic orientations. In such a
treatment, each grain experiences the same imposed deformation gradient for each time
step. However, depending upon its crystallographic orientation with respect the problem
boundary conditions, each grain responds in a different way kinetically. The homogenized
result for the simulations is then the numerical average kinetic response of each crystal,
as done here, although weighted averages can also be taken. This is a reasonable first
step with this new theory, and the numerical results provide a reasonable representation.
Of course, intergranular interactions are an important part of the deformation response of
polycrystalline metallic materials, and this remains an important question to explore.
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