Potentials of Additive Manufacturing for Cutting Tools: A Review of Scientific and Industrial Applications
Abstract
:1. Introduction
2. Fundamentals of Additive Manufacturing
2.1. AM Process Variants
2.2. AM Market Relevance
2.3. Processable Materials Relevant to the Application in Cutting Tools
2.3.1. Materials for Tool Carriers
2.3.2. Materials for Tool Substrates
Material | AM Process | Alloy | Properties | Ref. |
---|---|---|---|---|
HSS | Conventional PM steel | ASP2030 (HS6-5-3-8, 1.3244) | H = 990 HV (heat-treated) | [105] |
PBF-LB | M50 (80MoCrV42-16, 1.3551) | H = 789 HV (as-built); H = 803 HV (heat-treated) | [107,109] | |
M2 (HS-6-5-2C, 1.3343) | H = 640 HV; Rm = 1300 MPa (as-built) | [106,108] | ||
ASP2030 (HS6-5-3-8, 1.3244) | H = 654–817 HV (as-built); H = 991 HV (heat-treated) | [110,113] | ||
DED | HS11-2-5-8 (S390PM) | H = 791–825 HV (as-built) | [114] | |
WC-Co | Conventional sintered | WC-10%Co | H = 1450–1590 HV (heat-treated) | [115] |
PBF-LB | WC-18%Co | H = 820–840 HV (as-built) | [116] | |
WC-17%Co | H = 584–663 HV (as-built); H = 900–1050 HV (heat-treated) | [112] [102] | ||
WC-12%Co | H = 863 HV (as-built); H = 1086–1106 HV (heat-treated) | [117] | ||
PBF-EB | WC-13%Co | H = 915–970 HV (as-built) | [118] | |
BJT | WC-12%Co | H = 1050–1306 HV (heat-treated) | [119,120,121,122] | |
WC-10%Co | H = 1119 HV (heat-treated) | [119] | ||
Slurry-based three-dimensional printing (3DP) | WC-10%Co | No information | [123] | |
Ceramics | Conventional sintered | ZTA | H = 1799 HV (heat-treated) | [124] |
VPP | ZTA | H = 1833 HV; σ = 779 MPa (heat-treated) | [124] | |
SiAlON | No information | [104] |
3. Potentials of Additive Manufacturing for Improved Tool Functionalities
3.1. Potentials for Improved Cooling and Cutting Fluid Supply
Tool Type | Workpiece Material | Ref. | Main Findings |
---|---|---|---|
Turning tool holder | CGI-450 | [158,159,160] | Integration of dual nozzle geometries for CO2-snow supply, design of a Ranque–Hilsch vortex tube for cold air generation, higher cooling rate |
CGI-250 | [161] | Improved wetting of cutting edge due to large amount of small outlet nozzles (diameter d = 0.25 mm); comparable cutting forces to conventional tool | |
Ti-6Al-4V | [162] | Combination of MQL and LN2 cooling in PBF-LB-manufactured grooving tool, increase in tool life and productivity due to improved and combined cooling of rake face and major and minor flank face | |
Ti-6Al-4V | [163] | Internally cooled turning tool holder with copper heat sink; combination of external cutting fluid supply and internal cooling reduced overall ecological impact | |
- | [164,165,166,167] | Grooving tool with combined cooling of rake face and major and minor flank face | |
Indexable milling tool | 42CrMo4 + QT | [168] | Single-row milling tool with rake face cooling as a combination of L-shaped and round nozzles; tool life increase of 67% |
Ti-6Al-4V | [169] | Single-row milling tool with combined cooling of rake and minor flank face with three round nozzles (diameter d = 1.5 mm); no tool life increase | |
Ti-6Al-4V | [170] | Life cycle assessment of single-row milling tool with rake face cooling as a combination of L-shaped and round nozzles; tool life increase of 45% | |
Ti-6Al-4V | [171] | Helical milling tool with individualized nozzle design (combination of L-shaped and elliptical nozzles directed on rake face); tool life increase of 27%, chip volume reduction of 25% | |
- | [172,173] | Side-milling cutter with increased tool life due to improved cooling and lubrication (two nozzles directed towards rake face) | |
Ti-6Al-4V | [174] | Single-row milling tool with cooling of major flank face with five round nozzles; 60% increase in tool life | |
- | [175] | Tool carrier (material: 1.4404) for PCD inserts with adapted circular channel design; no machining tests | |
Drilling tool | bone | [176,177] | Internally cooled bone drill (material: 1.4404) with conformal cooling, reduction of temperature in the cutting zone |
- | [178,179,180,181] | Indexable drill with triangular supply channels; reduced pressure losses and increase in conveyed volume flow | |
Threading tool | 42CrMo4 + QT | [105,182] | Thread cutting and forming tools from ASP2030 with adapted nozzle design (elliptical and triangular nozzles)—no significant improvement remained for tool life |
Form turning tool | Ti-6Al-4V | [183] | Form turning tool of WC-17%Co with internal cutting fluid supply on rake and flank face (round and elliptical nozzles) without any subsequent post-processing; no catastrophic failure in turning test |
3.2. Potentials for Improved Damping and Vibrational Behaviors
3.3. Potentials for Lightweight Design and Topology Optimization
3.4. Potentials for Functional Integration
4. Derived Research Needs for AM Cutting Tools
- Design of the internal cutting fluid supply: The geometrical design of AM cutting tools, particularly regarding the internal cutting fluid supply, often lacks a systematic methodology. CFD simulations can optimize the design for desired fluid flow [240,241]. However, achieving an optimal cutting fluid supply requires a deeper understanding of the relationships between heat generation and dissipation during machining, the cooling and lubrication effect of the supplied cutting fluid, and the resulting tool wear phenomena. Currently, there are no systematic design guidelines for optimizing a cutting fluid supply based on the cutting process, workpiece material, and process parameters while also considering the design possibilities of AM.
- Geometrical tool features: AM techniques such as PBF-LB and BJT allow for the processing of hard materials, such as cemented carbide, applicable for the cutting wedge. Research has primarily focused on developing the AM process rather than on exploring the additional potentials of AM regarding the integration of geometrical structures. These potentials can be harnessed for the individualized, process-specific designs of favorable tool micro-geometry, such as flank face modifications, complex chip-breaking geometries, and textured or porous structures that improve frictional conditions. Integrated channels for enhanced cooling or chip-breaking geometries that do not require subsequent post-processing are also possible. Compared to conventional pressing and sintering, AM offers highly flexible geometrical variations that allow for rapid development and designs tailored to specific machining conditions.
- AM for repair of cutting tools: The feasibility of tool repair has been demonstrated in DED processing of HSS for broaching tools [114]. However, the machining performance of such repaired tools remains unexplored. From a sustainability perspective, AM holds great potential for material savings and extending tool life. Thus far, the entire process chain for AM cutting tool repair has not been fully explored. Future developments could include continuous and automatic acquisitions of local tool wear on each cutting edge, preparation for repair (for example, grinding, blasting, or chemical ablation), AM repair, and post-processing of the cutting edge via grinding and coating.
- Functional integration of sensors and actuators: The manufacturing of complex geometries and new AM process variants allows the integration of electronics such as sensors and actuators [236]. This enables real-time monitoring and control of the cutting process. Compared to existing systems, AM offers advantages regarding the compactness of the integrated electronics, proximity of sensors and actuators to the region of interest, and ease of mounting. Further developments in self-sufficient energy supplies, such as energy harvesting and the printing of electronic components, could lead to a deeper understanding of the cutting process and enable online process control.
- Processable alloys for tool substrate and tool carriers: AM facilitates the processing of new alloys, enabling rapid alloy development. On the one hand, low-cost steel alloys with sufficient mechanical properties can reduce tool costs, especially for tool carriers. The PBF-LB manufacturing of tool carriers should allow their use in the as-build state without the need for heat treatment. On the other hand, in situ alloying or high-entropy alloys could lead to the development of new tool substrates, replacing rare and costly elements like cobalt [11]. AM offers the potential to process new alloy compositions that are not feasible with conventional sintering techniques. Thus, process-specific alloy designs for cutting tool substrates tailored to the process requirements, such as hardness, toughness, and high-temperature strength, are possible.
- Multi-material manufacturing: Multi-material processing is possible with various AM techniques. Combining different materials within a single geometry can offer favorable characteristics such as enhanced heat dissipation, damping behavior, and tool stiffness [242,243,244,245]. For example, a tough, vibration-absorbing core combined with a hard, wear-resistant outer skin could benefit milling tool carriers. Including thin heat-transmitting copper structures in the cutting wedge could enable sensor integration as well as controlled heat dissipation or heat input, either increasing or reducing the cooling of the cutting wedge during machining. This could help reduce alternating thermal loads in interrupted cutting, preventing thermal crack formation in brittle substrate materials [246].
- Increase in AM productivity and efficiency: Improvements in AM processes require innovations in process control and AM machine technology. For PBF-LB, these could include adapted scanning strategies, faster powder deposition, increased laser power, or an increased number of simultaneous lasers, as well as the intelligent use of available build volume [247,248,249,250]. Tool manufacturers aim to print AM tool carriers on conventional preforms, such as with HSK-taper [178,190,222]. This approach reduces build times, eliminates the need for referencing elements for subsequent subtractive post-processing, and limits the AM process to the geometrically complex volume area.
- Holistic economic–ecological assessment: Additional economic and ecological costs of AM can often be compensated in the use phase of the tool due to improved functionality and performance compared to conventionally manufactured tools [251,252]. However, evaluating the lifecycle costs of AM cutting tools across their entire lifecycle—from manufacturing to use—remains challenging. Optimization models can help identify ideal operating points for AM cutting tools with individualized designs, such as those optimized for the cutting fluid supply or damping characteristics. Verifying these improvements can increase the acceptance of AM cutting tools in industrial applications.
- Integrated process chain from AM to post-processing: Reliable and repeatable post-processing of the as-built tool is essential for all functional surfaces through various machining processes. To reduce individual setup efforts in the machine tool, clamping and referencing elements need to be considered during the design phase [253]. The process chain requires continuous referencing of the part in the AM machine as well as in the subsequent machining operation [254,255].
- Application of alternative AM processes: In addition to the established AM processes such as PBF, DED, BJT, and VPP, emerging AM techniques currently under research may become significant for the manufacturing of cutting tools. Tool steels have been successfully processed in low-cost FFF for tool carrier production [256]. Cold-spray AM, a solid-state powder deposition technique, shows potential for depositing steel alloys for tool carriers as well as WC-Co, ceramics, and metal–ceramic composites for tool substrates or coatings [257]. Due to its high deposition rates, flexibility in powder selection, and favorable compressive stress of the as-built part, its application in cutting tool fabrication is plausible [258,259]. However, further research is needed to identify suitable material compositions with optimal performance characteristics during machining and to evaluate the resulting tool properties, particularly in terms of wear resistance and strength.
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Precedence Research Pvt. Ltd. Machining Market—Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2032. Available online: https://www.precedenceresearch.com/machining-market (accessed on 25 June 2024).
- VDW—Verein Deutscher Werkzeugmaschinenfabriken. Marktbericht 2023: Die Deutsche Werkzeugmaschinenindustrie und Ihre Stellung im Weltmarkt, Frankfurt am Main; VDW: Frankfurt am Main, Germany, 2024. [Google Scholar]
- Klocke, F. Manufacturing Processes 1: Cutting; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9783642119798. [Google Scholar]
- Bergs, T.; Biermann, D. Digital Twins for Cutting Processes. CIRP Ann.—Manuf. Technol. 2022, 72, 541–567. [Google Scholar] [CrossRef]
- Denkena, B.; Abele, E.; Brecher, C.; Dittrich, M.-A.; Kara, S.; Mori, M. Energy efficient machine tools. CIRP Ann. 2020, 69, 646–667. [Google Scholar] [CrossRef]
- Rüppel, A.K.; Ay, M.; Biernat, B.; Kunze, I.; Landwehr, M.; Mann, S.; Pennekamp, J.; Rabe, P.; Sanders, M.P.; Scheurenberg, D.; et al. Model-Based Controlling Approaches for Manufacturing Processes. In Internet of Production; Brecher, C., Schuh, G., van der Aalst, W., Jarke, M., Piller, F.T., Padberg, M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 221–246. ISBN 978-3-031-44496-8. [Google Scholar]
- Derakhshandeh, M.R.; Eshraghi, M.J.; Razavi, M. Recent developments in the new generation of hard coatings applied on cemented carbide cutting tools. Int. J. Refract. Met. Hard Mater. 2023, 111, 106077. [Google Scholar] [CrossRef]
- Bleicher, F.; Biermann, D.; Drossel, W.-G.; Moehring, H.-C.; Altintas, Y. Sensor and actuator integrated tooling systems. CIRP Ann. 2023, 72, 673–696. [Google Scholar] [CrossRef]
- VDMA e.V. Präzisionswerkzeuge 2022: Hersteller Schaffen Produktionsplus in Schwierigen Zeiten; VDMA e.V.: Frankfurt am Main, Germany, 2023. [Google Scholar]
- Zhuang, K.; Fu, C.; Weng, J.; Hu, C. Cutting edge microgeometries in metal cutting: A review. Int. J. Adv. Manuf. Technol. 2021, 116, 2045–2092. [Google Scholar] [CrossRef]
- Rizzo, A.; Goel, S.; Grilli, M.L.; Iglesias, R.; Jaworska, L.; Lapkovskis, V.; Novak, P.; Postolnyi, B.O.; Valerini, D. The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials 2020, 13, 1377. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.F.C.; Silva, F.J.G. Recent Advances on Coated Milling Tool Technology—A Comprehensive Review. Coatings 2020, 10, 235. [Google Scholar] [CrossRef]
- Möhring, H.-C.; Wiederkehr, P.; Erkorkmaz, K.; Kakinuma, Y. Self-optimizing machining systems. CIRP Ann. 2020, 69, 740–763. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Traxel, K.D.; Lang, M.; Juhasz, M.; Eliaz, N.; Bose, S. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater. Today 2022, 52, 207–224. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Rab, S. Role of additive manufacturing applications towards environmental sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4, 312–322. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies, 3rd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Bhatia, A.; Sehgal, A.K. Additive manufacturing materials, methods and applications: A review. Mater. Today Proc. 2023, 81, 1060–1067. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Chen, X.; He, Y.; Cheng, L.; Huo, M.; Yin, J.; Hao, F.; Chen, S.; Wang, P.; et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R Rep. 2021, 145, 100596. [Google Scholar] [CrossRef]
- Wohlers Associates. Wohlers Report 2022: 3D Printing and Additive Manufacturing Global State of the Industry; Wohlers Associates: Fort Collins, CO, USA, 2022; ISBN 978-0-9913332-9-5. [Google Scholar]
- Espadinha-Cruz, P.; Neves, A.; Matos, F.; Godina, R. Development of a maturity model for additive manufacturing: A conceptual model proposal. Heliyon 2023, 9, e16099. [Google Scholar] [CrossRef]
- Mapal Dr. Kress KG. Lasersintern erweitert Fertigungsmöglichkeiten von Präzisionswerkzeugen. Diam. Bus. 2017, 60, 6–12. [Google Scholar]
- Kennametal Inc. RIQ™ Reamer: Electric Vehicle Stator Bore Tool. Available online: https://www.kennametal.com/us/en/products/metalworking-tools/holemaking/precision-hole-finishing/reaming/guide-pad-reaming/riq-reamer.html (accessed on 4 January 2023).
- Zelinski, P. 6 Cutting Tools for Machining Made Via 3D Printing. Available online: https://www.additivemanufacturing.media/articles/5-other-3d-printed-cutting-tools-for-machining (accessed on 1 July 2024).
- Omidvarkarjan, D.; Rosenbauer, R.; Klahn, C.; Meboldt, M. Implementation of Additive Manufacturing in Industry. In Springer Handbook of Additive Manufacturing; Pei, E., Bernard, A., Gu, D., Klahn, C., Monzón, M., Petersen, M., Sun, T., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 55–71. ISBN 978-3-031-20751-8. [Google Scholar]
- Ahuja, B.; Karg, M.; Schmidt, M. Additive manufacturing in production: Challenges and opportunities. In Proceedings of the Laser 3D Manufacturing II. SPIE LASE, San Francisco, CA, USA, 7 February 2015; Helvajian, H., Piqué, A., Wegener, M., Gu, B., Eds.; SPIE: San Francisco, CA, USA, 2015; p. 935304. [Google Scholar]
- Chen, L.; He, Y.; Yang, Y.; Niu, S.; Ren, H. The research status and development trend of additive manufacturing technology. Int. J. Adv. Manuf. Technol. 2017, 89, 3651–3660. [Google Scholar] [CrossRef]
- BMW. BMW Industrialisiert Den 3D-Druck: 3D-Druckbauteile für Kleinserien—Systematische Integration in Forschung und Entwicklung. Available online: https://additive.industrie.de/3d-druck-anwendungen/bmw-industrialisiert-den-3d-druck/ (accessed on 18 May 2023).
- Premium Aerotec GmbH. 3D-Druck: Serienbauteile für Airbus. Available online: https://additive.industrie.de/3d-druck/3d-druck-serienbauteile-fuer-airbus/ (accessed on 18 August 2024).
- Seibold, M. Additive Manufacturing for Serial Production of High-Performance Metal Parts. Mech. Eng. 2019, 141, 49–50. [Google Scholar] [CrossRef]
- DIN 8580; Fertigungsverfahren—Begriffe, Einteilung. Beuth Verlag GmbH: Berlin, Germany, 2020.
- DIN EN ISO/ASTM 52900; Additive Fertigung—Grundlagen—Terminologie. Beuth Verlag GmbH: Berlin, Germany, 2021.
- ASTM F2792-12; Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2013.
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Elwany, A.; Pei, Z.; Ma, C. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. 2020, 142, 090801. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, L.; Li, Z.; Wang, S.; Shi, J.; Tang, W.; Li, N.; Yang, J. The recent development of vat photopolymerization: A review. Addit. Manuf. 2021, 48, 102423. [Google Scholar] [CrossRef]
- Jiménez, M.; Romero, L.; Domínguez, I.A.; Del Espinosa, M.M.; Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity 2019, 2019, 9656938. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yadaiah, N.; Prakash, C.; Ramakrishna, S.; Dixit, S.; Gupta, L.R.; Buddhi, D. Laser powder bed fusion: A state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J. Mater. Res. Technol. 2022, 20, 2109–2172. [Google Scholar] [CrossRef]
- Sharma, S.; Sumant, O. Metal Additive Manufacturing Market Research, 2031, Allied Market Research. Available online: https://www.alliedmarketresearch.com/metal-additive-manufacturing-market-A25776 (accessed on 12 July 2023).
- Gebhardt, A.; Kessler, J.; Schwarz, A. Produktgestaltung für die Additive Fertigung; Hanser: München, Germany, 2019; ISBN 978-3-446-45285-5. [Google Scholar]
- Praveena, B.A.; Lokesh, N.; Buradi, A.; Santhosh, N.; Praveena, B.L.; Vignesh, R. A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential. Mater. Today Proc. 2022, 52, 1309–1313. [Google Scholar] [CrossRef]
- Laureijs, R.E.; Roca, J.B.; Narra, S.P.; Montgomery, C.; Beuth, J.L.; Fuchs, E.R.H. Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes. J. Manuf. Sci. Eng. 2017, 139, 081010. [Google Scholar] [CrossRef]
- Ingarao, G.; Priarone, P.C. A comparative assessment of energy demand and life cycle costs for additive- and subtractive-based manufacturing approaches. J. Manuf. Process. 2020, 56, 1219–1229. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Grigoriev, S.N.; Volosova, M.A.; Melnik, Y.A.; Laskin, A.; Kotoban, D.V.; Okunkova, A.A. On productivity of laser additive manufacturing. J. Mater. Process. Technol. 2018, 261, 213–232. [Google Scholar] [CrossRef]
- Kose, H.; Jin, M.; Peng, T. Quality and productivity trade-off in powder-bed additive manufacturing. Prog. Addit. Manuf. 2020, 5, 199–210. [Google Scholar] [CrossRef]
- Pinkerton, A.J. [INVITED] Lasers in additive manufacturing. Opt. Laser Technol. 2016, 78, 25–32. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Pusateri, V.; Hauschild, M.Z.; Kara, S.; Goulas, C.; Olsen, S.I. Quantitative sustainability assessment of metal additive manufacturing: A systematic review. CIRP J. Manuf. Sci. Technol. 2024, 49, 95–110. [Google Scholar] [CrossRef]
- Weller, C.; Kleer, R.; Piller, F.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Lachmayer, R.; Rettschlag, K.; Kaierle, S. Konstruktion für die Additive Fertigung 2019; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-61148-7. [Google Scholar]
- Poprawe, R.; Hinke, C.; Meiners, W.; Schrage, J.; Bremen, S.; Merkt, S. SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design. In Advances in Production Technology; Brecher, C., Ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-12303-5. [Google Scholar]
- Hopkinson, N.; Dicknes, P. Analysis of rapid manufacturing—Using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 31–39. [Google Scholar] [CrossRef]
- Schmidt, M.; Merklein, M.; Bourell, D.; Dimitrov, D.; Hausotte, T.; Wegener, K.; Overmeyer, L.; Vollertsen, F.; Levy, G.N. Laser based additive manufacturing in industry and academia. CIRP Ann. 2017, 66, 561–583. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Çalışkan, H.; Kurşuncu, B.; Kurbanoğlu, C.; Güven, Ş.Y. Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 2013, 45, 473–479. [Google Scholar] [CrossRef]
- Bleck, W.; Moeller, E. Handbuch Stahl: Auswahl, Verarbeitung, Anwendung; Hanser: München, Germany, 2018; ISBN 9783446449619. [Google Scholar]
- Vock, S.; Klöden, B.; Kirchner, A.; Weißgärber, T.; Kieback, B. Powders for powder bed fusion: A review. Prog. Addit. Manuf. 2019, 4, 383–397. [Google Scholar] [CrossRef]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Manakari, V.; Parande, G.; Gupta, M. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals 2017, 7, 2. [Google Scholar] [CrossRef]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y. Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments. Virtual Phys. Prototyp. 2020, 15, 359–370. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Beuth, J.; Harrysson, O.; Lewandowski, J.J. Overview of Materials Qualification Needs for Metal Additive Manufacturing. JOM 2016, 68, 747–764. [Google Scholar] [CrossRef]
- Delgado, J.; Ciurana, J.; Serenó, L. Comparison of forming manufacturing processes and selective laser melting technology based on the mechanical properties of products. Virtual Phys. Prototyp. 2011, 6, 167–178. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive manufacturing of steels: A review of achievements and challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG. Werkstoffdatenblatt-Thermodur 2344 Superclean/Thermodur 2344 EFS; Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG.: Lüdenscheid, Germany, 2016. [Google Scholar]
- Wang, J.; Liu, S.; Fang, Y.; He, Z. A short review on selective laser melting of H13 steel. Int. J. Adv. Manuf. Technol. 2020, 108, 2453–2466. [Google Scholar] [CrossRef]
- Wu, L.; Das, S.; Gridin, W.; Leuders, S.; Kahlert, M.; Vollmer, M.; Niendorf, T. Hot Work Tool Steel Processed by Laser Powder Bed Fusion: A Review on Most Relevant Influencing Factors. Adv. Eng. Mater. 2021, 23, 2100049. [Google Scholar] [CrossRef]
- Megahed, S.; Koch, R.; Schleifenbaum, J.H. Laser Powder Bed Fusion Tool Repair: Statistical Analysis of 1.2343/H11 Tool Steel Process Parameters and Microstructural Analysis of the Repair Interface. J. Manuf. Mater. Process. 2022, 6, 139. [Google Scholar] [CrossRef]
- Casati, R.; Coduri, M.; Lecis, N.; Andrianopoli, C.; Vedani, M. Microstructure and mechanical behavior of hot-work tool steels processed by Selective Laser Melting. Mater. Charact. 2018, 137, 50–57. [Google Scholar] [CrossRef]
- Simson, T.; Koch, J.; Rosenthal, J.; Kepka, M.; Zetek, M.; Zetková, I.; Wolf, G.; Tomčík, P.; Kulhánek, J. Mechanical Properties of 18Ni-300 maraging steel manufactured by LPBF. Procedia Struct. Integr. 2019, 17, 843–849. [Google Scholar] [CrossRef]
- Kučerová, L.; Zetková, I.; Jandová, A.; Bystrianský, M. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater. Sci. Eng. A 2019, 750, 70–80. [Google Scholar] [CrossRef]
- Cheruvathur, S.; Lass, E.A.; Campbell, C.E. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure. JOM 2016, 68, 930–942. [Google Scholar] [CrossRef]
- Zumofen, L.; Kirchheim, A.; Dennig, H.-J. Laser powder bed fusion of 30CrNiMo8 steel for quenching and tempering: Examination of the processability and mechanical properties. Prog. Addit. Manuf. 2020, 5, 75–81. [Google Scholar] [CrossRef]
- Schmitt, M.; Kamps, T.; Siglmüller, F.; Winkler, J.; Schlick, G.; Seidel, C.; Tobie, T.; Stahl, K.; Reinhart, G. Laser-based powder bed fusion of 16MnCr5 and resulting material properties. Addit. Manuf. 2020, 35, 101372. [Google Scholar] [CrossRef]
- Bartels, D.; Novotny, T.; Mohr, A.; van Soest, F.; Hentschel, O.; Merklein, C.; Schmidt, M. PBF-LB/M of Low-Alloyed Steels: Bainite-like Microstructures despite High Cooling Rates. Materials 2022, 15, 6171. [Google Scholar] [CrossRef] [PubMed]
- Krell, J.; Röttger, A.; Geenen, K.; Theisen, W. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J. Mater. Process. Technol. 2018, 255, 679–688. [Google Scholar] [CrossRef]
- Hantke, N.; Großwendt, F.; Strauch, A.; Fechte-Heinen, R.; Röttger, A.; Theisen, W.; Weber, S.; Sehrt, J.T. Processability of a Hot Work Tool Steel Powder Mixture in Laser-Based Powder Bed Fusion. Materials 2022, 15, 2658. [Google Scholar] [CrossRef]
- Mertens, R.; Dadbakhsh, S.; van Humbeeck, J.; Kruth, J.-P. Application of base plate preheating during selective laser melting. Procedia CIRP 2018, 74, 5–11. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Vogelpoth, A.; Saewe, J.; Krull, H.-G.; Richert, S.; Weiland, P.; Nerzak, T.; Eibl, F.; Pastors, F. Additive Manufacturing of Tool Steels. Steel Res. Int. 2023, 94, 2200372. [Google Scholar] [CrossRef]
- Bryson, W.E. Heat Treatment, Selection, and Application of Tool Steels, 2nd ed.; Hanser: München, Germany, 2009; ISBN 9783446419414. [Google Scholar]
- Cunha, Â.; Marques, A.; Silva, M.R.; Bartolomeu, F.; Silva, F.S.; Gasik, M.; Trindade, B.; Carvalho, Ó. Laser powder bed fusion of the steels used in the plastic injection mould industry: A review of the influence of processing parameters on the final properties. Int. J. Adv. Manuf. Technol. 2022, 121, 4255–4287. [Google Scholar] [CrossRef]
- Mazur, M.; Brincat, P.; Leary, M.; Brandt, M. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int. J. Adv. Manuf. Technol. 2017, 93, 881–900. [Google Scholar] [CrossRef]
- Qin, S.; Bo, Y.; Herzog, S.; Hallstedt, B.; Kaletsch, A.; Broeckmann, C. Influence of Process Parameters on Porosity and Hot Cracking of AISI H13 Fabricated by Laser Powder Bed Fusion. Powders 2022, 1, 184–193. [Google Scholar] [CrossRef]
- He, Y.; Zhong, M.; Beuth, J.; Webler, B. A study of microstructure and cracking behavior of H13 tool steel produced by laser powder bed fusion using single-tracks, multi-track pads, and 3D cubes. J. Mater. Process. Technol. 2020, 286, 116802. [Google Scholar] [CrossRef]
- Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; van Humbeeck, J. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. Phys. Procedia 2016, 83, 882–890. [Google Scholar] [CrossRef]
- Kreß, M.; Bartels, D.; Schmidt, M.; Merklein, M. Material Characterization of Hybrid Components Manufactured by Laser-Based Directed Energy Deposition on Sheet Metal Substrates. Key Eng. Mater. 2022, 926, 80–89. [Google Scholar] [CrossRef]
- Bartels, D.; Fallqvist, M.; Heise, M.; Vetter, J.; Schmidt, M.; Krakhmalev, P. Development of a novel wear-resistant WC-reinforced coating based on the case-hardening steel Bainidur AM for the substitution of carburizing heat treatments. J. Mater. Res. Technol. 2023, 26, 186–198. [Google Scholar] [CrossRef]
- Bartels, D.; Hentschela, O.; Dauera, J.; Burgmayra, W.; Schmidt, M. Processing of low-alloyed case-hardening steel Bainidur AM by means of DED-LB/M. In Proceedings of the Lasers in Manufacturing Conference 2021, Virtually, 21–24 June 2021. [Google Scholar]
- ISCAR Ltd. New Product Announcement—Expanding the Range of HELI2000 with Lightweight Milling Cutters; ISCAR Ltd.: Migdal Tefen, Israel, 2023. [Google Scholar]
- Stokes, N. Lightweight CoroMill® 390 Produced Using Additive Manufacturing Reduces Vibration in Long-Overhang Milling: Sandvik Coromant. Available online: https://www.sandvik.coromant.com/en-gb/press/lightweight-coromill-390-additive-manufacturing (accessed on 25 May 2023).
- Shoji Aota, L.; Bajaj, P.; Zschommler Sandim, H.R.; Aimé Jägle, E. Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders. Materials 2020, 13, 3922. [Google Scholar] [CrossRef]
- Mosallanejad, M.H.; Niroumand, B.; Aversa, A.; Saboori, A. In-situ alloying in laser-based additive manufacturing processes: A critical review. J. Alloys Compd. 2021, 872, 159567. [Google Scholar] [CrossRef]
- Narvan, M.; Ghasemi, A.; Fereiduni, E.; Elbestawi, M. Laser powder bed fusion of functionally graded bi-materials: Role of VC on functionalizing AISI H13 tool steel. Mater. Des. 2021, 201, 109503. [Google Scholar] [CrossRef]
- Köhler, M.L.; Norda, M.; Herzog, S.; Kaletsch, A.; Petzoldt, F.; Broeckmann, C. Towards carbide-rich tool steels in PBF-LB/M: TiC additivation of AISI H13. Addit. Manuf. Lett. 2023, 6, 100143. [Google Scholar] [CrossRef]
- Pannitz, O.; Großwendt, F.; Lüddecke, A.; Kwade, A.; Röttger, A.; Sehrt, J.T. Improved Process Efficiency in Laser-Based Powder Bed Fusion of Nanoparticle Coated Maraging Tool Steel Powder. Materials 2021, 14, 3465. [Google Scholar] [CrossRef]
- Bareth, T.; Binder, M.; Kindermann, P.; Stapff, V.; Rieser, A.; Seidel, C. Implementation of a multi-material mechanism in a laser-based powder bed fusion (PBF-LB) machine. Procedia CIRP 2022, 107, 558–563. [Google Scholar] [CrossRef]
- Diniță, A.; Neacșa, A.; Portoacă, A.I.; Tănase, M.; Ilinca, C.N.; Ramadan, I.N. Additive Manufacturing Post-Processing Treatments, a Review with Emphasis on Mechanical Characteristics. Materials 2023, 16, 4610. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lee, Y.J.; Bai, Y.; Zhang, J. Post-Processing Techniques for Metal-Based Additive Manufacturing: Towards Precision Fabrication, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; ISBN 9781003272601. [Google Scholar]
- Kelliger, T.; Meurer, M.; Bergs, T. Performance Evaluation of Additively Manufactured and Hybrid Indexable Milling Tools in Machining of AISI4140+QT and Ti-6Al-4V. J. Eng. Gas Turbines Power 2024, 146, 031013. [Google Scholar] [CrossRef]
- Schwanekamp, T. Pulverbettbasiertes Laserstrahlschmelzen von Hartmetallen zur Additiven Herstellung von Zerspanwerkzeugen. Doctoral Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2021. [Google Scholar]
- Yang, Y.; Zhang, C.; Wang, D.; Nie, L.; Wellmann, D.; Tian, Y. Additive manufacturing of WC-Co hardmetals: A review. Int. J. Adv. Manuf. Technol. 2020, 108, 1653–1673. [Google Scholar] [CrossRef]
- Weigold, M.; Scherer, T.; Schmidt, E.; Schwentenwein, M.; Prochaska, T. Additive Fertigung keramischer Schneidstoffe. WT Werkstattstech. Online 2020, 10, 2–6. [Google Scholar] [CrossRef]
- Kelliger, T.; Meurer, M.; Bergs, T. Additiv gefertigte Gewindewerkzeuge aus HSS/Additively manufactured threading tools made from HSS. WT Werkstattstech. Online 2023, 113, 242–248. [Google Scholar] [CrossRef]
- Kempen, K.; Vrancken, B.; Buls, S.; Thijs, L.; van Humbeeck, J.; Kruth, J.-P. Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating. J. Manuf. Sci. Eng. 2014, 136, 061026. [Google Scholar] [CrossRef]
- Kunz, J.; Saewe, J.; Herzog, J.; Kaletsch, A.; Schleifenbaum, J.H.; Broeckmann, C. Mechanical Properties of High-Speed Steel AISI M50 Produced by Laser Powder Bed Fusion. Steel Res. Int. 2020, 91, 1900562. [Google Scholar] [CrossRef]
- Zumofen, L.; Beck, C.; Kirchheim, A.; Dennig, H.-J. Quality Related Effects of the Preheating Temperature on Laser Melted High Carbon Content Steels. In Industrializing Additive Manufacturing—Proceedings of Additive Manufacturing in Products and Applications—AMPA2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 210–219. [Google Scholar] [CrossRef]
- Saewe, J.; Gayer, C.; Vogelpoth, A.; Schleifenbaum, J.H. Feasability Investigation for Laser Powder Bed Fusion of High-Speed Steel AISI M50 with Base Preheating System. Berg Huettenmaenn Monatsh 2019, 164, 101–107. [Google Scholar] [CrossRef]
- Saewe, J. Untersuchungen der Verarbeitbarkeit des Schnellarbeitsstahls HS6-5-3-8 Mittels Laser Powder Bed Fusion. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2022. [Google Scholar]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; van Humbeeck, J.; Kruth, J.-P. Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef]
- Fries, S.; Genilke, S.; Wilms, M.B.; Seimann, M.; Weisheit, A.; Kaletsch, A.; Bergs, T.; Schleifenbaum, J.H.; Broeckmann, C. Laser-Based Additive Manufacturing of WC–Co with High-Temperature Powder Bed Preheating. Steel Res. Int. 2020, 91, 1900511. [Google Scholar] [CrossRef]
- Kelliger, T.; Meurer, M.; Bergs, T. Orthogonal cutting with additively manufactured grooving inserts made from HS6-5-3-8 high-speed steel. In Proceedings of the Esaform Conference on Material Forming 2023—Materials Research Proceedings, Kraków, Poland, 19–21 April 2023; Volume 28, pp. 1235–1244. [Google Scholar] [CrossRef]
- Koruba, P.; Kędzia, J.; Dziedzic, R.; Reiner, J. Processability of High-Speed Steel by Coaxial Laser Wire Deposition Technology for Additive Remanufacturing of Cutting Tool. Appl. Sci. 2023, 13, 11232. [Google Scholar] [CrossRef]
- Grote, K.-H.; Hefazi, H. Springer Handbook of Mechanical Engineering; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-47034-0. [Google Scholar]
- Schwanekamp, T.; Reuber, M. Parameter study on laser beam melting of WC-Co at 800 °C pre-heating temperature. In Proceedings of the International Conference on Additive Technologies, Maribor, Slovenia, 10–11 October 2018. [Google Scholar]
- Fries, S. Gefüge und Festigkeit Eines Laserbasiert Additiv Hergestellten Hartmetalls. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2024. [Google Scholar]
- Konyashin, I.; Hinners, H.; Ries, B.; Kirchner, A.; Klöden, B.; Kieback, B.; Nilen, R.; Sidorenko, D. Additive manufacturing of WC-13%Co by selective electron beam melting: Achievements and challenges. Int. J. Refract. Met. Hard Mater. 2019, 84, 105028. [Google Scholar] [CrossRef]
- Wolfe, T.; Shah, R.; Prough, K.; Trasorras, J.L. Coarse cemented carbide produced via binder jetting 3D printing. Int. J. Refract. Met. Hard Mater. 2023, 110, 106016. [Google Scholar] [CrossRef]
- Enneti, R.K.; Prough, K.C.; Wolfe, T.A.; Klein, A.; Studley, N.; Trasorras, J.L. Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int. J. Refract. Met. Hard Mater. 2018, 71, 28–35. [Google Scholar] [CrossRef]
- Mariani, M.; Goncharov, I.; Mariani, D.; de Gaudenzi, G.P.; Popovich, A.; Lecis, N.; Vedani, M. Mechanical and microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing. Int. J. Refract. Met. Hard Mater. 2021, 100, 105639. [Google Scholar] [CrossRef]
- Wolfe, T.A.; Shah, R.M.; Prough, K.C.; Trasorras, J.L. Binder jetting 3D printed cemented carbide: Mechanical and wear properties of medium and coarse grades. Int. J. Refract. Met. Hard Mater. 2023, 113, 106197. [Google Scholar] [CrossRef]
- Kernan, B.D.; Sachs, E.M.; Oliveira, M.A.; Cima, M.J. Three-dimensional printing of tungsten carbide–10wt% cobalt using a cobalt oxide precursor. Int. J. Refract. Met. Hard Mater. 2007, 25, 82–94. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Xu, Y.; Lin, L.; Li, Y.; Wu, S. Cutting performance and wear mechanism of zirconia toughened alumina ceramic cutting tools formed by vat photopolymerization-based 3D printing. Ceram. Int. 2023, 49, 23238–23247. [Google Scholar] [CrossRef]
- Schwanekamp, T.; Gussone, J.; Reuber, M. Impact of laser irradiation on microstructure and phase development of tungsten carbide—Cobalt. Procedia CIRP 2020, 94, 239–242. [Google Scholar] [CrossRef]
- Reuber, M.; Schwanekamp, T. Additive Herstellung von Zerspanwerkzeugen aus WC-Co-Hartmetall. Ind. 4.0 Manag. 2016, 32, 12–16. [Google Scholar]
- Fortunato, A.; Valli, G.; Liverani, E.; Ascari, A. Additive Manufacturing of WC-Co Cutting Tools for Gear Production. Lasers Manuf. Mater. Process. 2019, 6, 247–262. [Google Scholar] [CrossRef]
- Schwanekamp, T.; Reuber, M. Additive Manufacturing of application optimized tungsten carbide precision tools. In Proceedings of the International Conference on Additive Technologies, Nürnberg, Germany, 29–30 November 2016. [Google Scholar]
- Schwanekamp, T.; Reuber, M. Final Report—Generative Herstellung Anwendungsoptimierter Präzisionswerkzeuge aus Hartverbundwerkstoffen (PräziGen), Reporting Period: 01.05.2015–30.04.2018. 2018. Available online: https://fantasio.rz.uni-frankfurt.de/ubks/Record/HEB493211993 (accessed on 18 August 2024).
- Polte, J.; Polte, M.; Lahoda, C.; Hocke, T.; Uhlmann, E. Additive manufacturing of precision cemented carbide parts. In Proceedings of the Euspen’s 21st International Conference & Exhibition, Copenhagen, Copenhagen, Denmark, 7–10 June 2021. [Google Scholar]
- Uhlmann, E.; Bergmann, A.; Gridin, W. Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting. Procedia CIRP 2015, 35, 8–15. [Google Scholar] [CrossRef]
- Brookes, K.J. 3D-printing style additive manufacturing for commercial hardmetals. Met. Powder Rep. 2015, 70, 137–140. [Google Scholar] [CrossRef]
- Padmakumar, M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers Manuf. Mater. Process. 2020, 7, 338–371. [Google Scholar] [CrossRef]
- Zelinski, P. Cutting Tool Maker Succeeding with 3D Printed Carbide for Oil/Gas and Other Applications. Available online: https://www.additivemanufacturing.media/articles/cutting-tool-maker-succeeding-with-3d-printed-carbide-for-oilgas-and-other-applications (accessed on 18 August 2024).
- Aramian, A.; Razavi, N.; Sadeghian, Z.; Berto, F. A review of additive manufacturing of cermets. Addit. Manuf. 2020, 33, 101130. [Google Scholar] [CrossRef]
- Hagedorn, Y. Laser additive manufacturing of ceramic components. In Laser Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–180. ISBN 9780081004333. [Google Scholar]
- Rasaki, S.A.; Xiong, D.; Xiong, S.; Su, F.; Idrees, M.; Chen, Z. Photopolymerization-based additive manufacturing of ceramics: A systematic review. J. Adv. Ceram. 2021, 10, 442–471. [Google Scholar] [CrossRef]
- Grossin, D.; Montón, A.; Navarrete-Segado, P.; Özmen, E.; Urruth, G.; Maury, F.; Maury, D.; Frances, C.; Tourbin, M.; Lenormand, P.; et al. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering/melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites. Open Ceram. 2021, 5, 100073. [Google Scholar] [CrossRef]
- Mansfield, B.; Torres, S.; Yu, T.; Wu, D. A Review on Additive Manufacturing of Ceramics. In Proceedings of the ASME 14th International Manufacturing Science and Engineering Conference—2019, Erie, PA, USA, 10–14 June 2019; The American Society of Mechanical Engineers: New York, NY, USA, 2019. ISBN 978-0-7918-5874-5. [Google Scholar]
- Traxel, K.D.; Bandyopadhyay, A. First Demonstration of Additive Manufacturing of Cutting Tools using Directed Energy Deposition System: Stellite™-Based Cutting Tools. Addit. Manuf. 2019, 25, 460–468. [Google Scholar] [CrossRef]
- VBN Components AB. Vibenite® 480—3D-gedrucktes Hybridkarbid. Available online: https://www.maschinenmarkt.vogel.de/vibenite-480-3d-gedrucktes-hybridkarbid-a-920063/ (accessed on 10 July 2023).
- Smith, G.T. Cutting Tool Technology: Industrial Handbook, 1st ed.; Springer: Guildford, UK; Surrey, UK, 2008; ISBN 9781848002043. [Google Scholar]
- Suda, S.; Wakabayashi, T.; Inasaki, I.; Yokota, H. Multifunctional Application of a Synthetic Ester to Machine Tool Lubrication Based on MQL Machining Lubricants. CIRP Ann. 2004, 53, 61–64. [Google Scholar] [CrossRef]
- Denkena, B.; Tönshoff, H.K. Spanen: Grundlagen; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-19771-0. [Google Scholar]
- Trent, E.M.; Wright, P. Metal Cutting, 4th ed.; Butterworth-Heinemann: Boston, MA, USA, 2000; ISBN 9780080511450. [Google Scholar]
- VDI Verein Deutscher Ingenieure e.V. Bearbeitungsmedien für die Umformung und Zerspanung—Kühlschmierstoffe, Umformschmierstoffe, Minimalmengenschmierstoffe, Multifunktionsöle: Blatt 1; Beuth Verlag GmbH: Berlin, Germany, 2020; (VDI 3397). [Google Scholar]
- Astakhov, V.P.; Godlevski, V. 3—Delivery of metalworking fluids in the machining zone. In Metalworking Fluids (MWFs) for Cutting and Grinding; Elsevier: Amsterdam, The Netherlands, 2012; pp. 79–134. [Google Scholar] [CrossRef]
- Sangermann, H. Hochdruck-Kühlschmierstoffzufuhr in der Zerspanung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2013. [Google Scholar]
- Cayli, T. Surface Anomalies in Turning of Difficult-to-Cut Materials with High-Pressure Coolant Supply. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017. [Google Scholar]
- Astakhov, V.P. 5—High-pressure supply of metalworking fluids. In Metalworking Fluids (MWFs) for Cutting and Grinding; Elsevier: Amsterdam, The Netherlands, 2012; pp. 201–290. [Google Scholar] [CrossRef]
- Lakner, T. High-Pressure Cutting Fluid Supply in Milling. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2021. [Google Scholar]
- Kugaevskii, S.; Pizhenkov, E.; Gamberg, A. The effectiveness of additive SLM-technologies in the manufacture of cutting tools. Mater. Today Proc. 2019, 19, 1977–1981. [Google Scholar] [CrossRef]
- Machado, A.R.; Wallbank, J.; Pashby, I.R.; Ezugwu, E.O. Tool performance and chip control when machining Ti6Al4V and Inconel 901 using high pressure coolant supply. Mach. Sci. Technol. 1998, 2, 1–12. [Google Scholar] [CrossRef]
- Denkena, B.; Krödel, A.; Ellersiek, L. Influence of metal working fluid on chip formation and mechanical loads in orthogonal cutting. Int. J. Adv. Manuf. Technol. 2021, 118, 3005–3013. [Google Scholar] [CrossRef]
- Machado, A.; Wallbank, J. The Effects of a High-Pressure Coolant Jet on Machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1994, 208, 29–38. [Google Scholar] [CrossRef]
- Sharma, V.S.; Dogra, M.; Suri, N.M. Cooling techniques for improved productivity in turning. Int. J. Mach. Tools Manuf. 2009, 49, 435–453. [Google Scholar] [CrossRef]
- Ezugwu, E.O.; Bonney, J. Effect of high-pressure coolant supply when machining nickel-base, Inconel 718, alloy with coated carbide tools. J. Mater. Process. Technol. 2004, 153–154, 1045–1050. [Google Scholar] [CrossRef]
- Heep, T. Funktionsintegriertes Drehwerkzeug zur Effizienzsteigerung Kryogener Kohlendioxidkühlung. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2019. [Google Scholar]
- Heep, T.; Bickert, C.; Abele, E. Application of Carbon Dioxide Snow in Machining of CGI using an Additively Manufactured Turning Tool. J. Manuf. Mater. Process. 2019, 3, 15. [Google Scholar] [CrossRef]
- Abele, E.; Heep, T.; Feßler, P. Laseradditiv gefertigter Drehhalter für die prozesssichere CO2-Schneestrahlkühlung—Einsatzverhalten von beschichtetem Hartmetall beim Drehen von Vermicularguss. Diam. Bus. 2017, 60, 66–73. [Google Scholar]
- Abele, E.; Heep, T.; Kniekamp, M.; Feßler, P. Mittels SLM-Technologie hergestellte Zerspanungswerkzeuge—Potenziale und Grenzen. Pulvermetall. Wiss. Und Prax. 2016, 32, 141–161. [Google Scholar]
- Lubkowitz, V.; Reothia, N.; Zanger, F. Enhancement of Groove Turning Performance by Additively Manufactured Tool Holders with Internal Cooling Channels and Combined Cooling Strategies. MIC Procedia—SSRN J. 2021, 50–55. [Google Scholar] [CrossRef]
- Ward, H.; Burger, M.; Chang, Y.-J.; Fürstmann, P.; Neugebauer, S.; Radebach, A.; Sproesser, G.; Pittner, A.; Rethmeier, M.; Uhlmann, E.; et al. Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks. J. Clean. Prod. 2016, 163, 154–165. [Google Scholar] [CrossRef]
- Karl-Heinz Arnold GmbH. Klemmhalter mit Innenkühlung: Hybride Fertigung für Präzisionswerkzeuge; mav: Florence, SC, USA, 2022; p. 88. [Google Scholar]
- Rosswag GmbH. Standard-Werkzeug—Additiv Gefertigt. Available online: https://www.additive-fertigung.com/bericht/allgemeines_3270/standard_werkzeug_additiv_gefertigt-2018-10-30 (accessed on 20 May 2023).
- Graf, G.; Schlecht, P.; Donisi, S. Abstechhalter und Herstellverfahren. WO 2015/110132 A1, 30 July 2015. [Google Scholar]
- Urma AG Werkzeugfabrik. Serien-Drehwerkzeug mit innenliegenden Kanalstrukturen. Maschinenbau Schweiz 2019, 11, 14–15. [Google Scholar]
- Lakner, T.; Bergs, T.; Döbbeler, B. Additively manufactured milling tool with focused cutting fluid supply. Procedia CIRP 2019, 81, 464–469. [Google Scholar] [CrossRef]
- Lakner, T.; Bergs, T.; Schraknepper, D. A Novel Test Bench to Investigate the Effects of the Tool Rotation on Cutting Fluid Jets to Improve the Tool Design via Additive Manufacturing. Procedia CIRP 2020, 91, 9–14. [Google Scholar] [CrossRef]
- Kelliger, T.; Meurer, M.; Bergs, T. Life Cycle Assessment of Additively Manufactured Indexable Milling Tools with Adapted Cutting Fluid Supply. Procedia CIRP 2024, 122, 671–676. [Google Scholar] [CrossRef]
- Kelliger, T.; Meurer, M.; Bergs, T. Efficient Cutting Fluid Supply in Additively Manufactured Indexable Helical Milling Tools for Roughing of Ti-6Al-4V. MIC Procedia—SSRN J. 2023, 25–32. [Google Scholar] [CrossRef]
- Donisi, S.; Graf, G. Scheibenfräser und Herstellverfahren. EP 3 186 024 B1, 5 July 2017. [Google Scholar]
- Rosswag GmbH. Additiv Gefertigter Scheibenfräser. Available online: https://www.zerspanungstechnik.com/bericht/scheibenfraeser/additiv_gefertigter_scheibenfraeser-2019-11-28 (accessed on 20 May 2023).
- Ceratizit, S.A. Additively Manufactured MaxiMill—211-DC Indexable Insert Milling System with Optimum Coolant Supply. Available online: https://cuttingtools.ceratizit.com/int/en/machining-know-how/milling/product-overview/maximill-211-dc.html?referrer=direct (accessed on 25 July 2024).
- Matos, F.; Coelho, H.; Emadinia, O.; Amaral, R.; Silva, T.; Gonçalves, N.; Marouvo, J.; Figueiredo, D.; de Jesus, A.; Reis, A. Additively manufactured milling tools for enhanced efficiency in cutting applications. Procedia Struct. Integr. 2024, 53, 270–277. [Google Scholar] [CrossRef]
- Denkena, B.; Grove, T.; Kulmala, T. Geschlossenes Kühlsystem vermeidet Osteonekrose; WB Werkstatt + Betrieb: Malleray, Switzerland, 2016. [Google Scholar]
- toolcraft AG. Einen Kühlen Kopf Bewahren: 3D-Gedruckter Bohrer Verbessert Operationsverfahren. Available online: https://www.toolcraft.de/case-studies/knochenbohrer/ (accessed on 18 May 2023).
- Zäh, M.; Seidel, C.; Sellmer, D. Technologie Report 08—Additive Fertigung; MAPAL Präzisionswerkzeuge Dr. Kress KG: Aalen, Germany, 2018. [Google Scholar]
- Doris. Mapal Setzt auf Additive Fertigung für Schneidplattenbohrer der QTD-Serie. Available online: https://3druck.com/pressemeldungen/mapal-setzt-auf-additive-fertigung-fuer-schneidplattenbohrer-der-qtd-serie-3636310/ (accessed on 1 July 2024).
- Tyczyński, P.; Siemiątkowski, Z.; Ruck, M. Drill Base Body Fabricated with Additive Manufacturing Technology: Structure, Strength, and Reliability. J. Mach. Constr. Maint. 2019, 113, 59–65. [Google Scholar] [CrossRef]
- Mapal Dr. Kress KG. Bohren—Schneidplattenbohrer QTD: Konventionell und Additiv Gefertigt; Mapal Dr. Kress KG: Aalen, Germany, 2020. [Google Scholar]
- Kelliger, T.; Prätzsch, N. Final Report: IGF-Vorhaben Nr. 21581 N—Steigerung der Werkzeugstandzeit und Prozesssicherheit Durch Additiv Gefertigte, Funktionsangepasste Gewindewerkzeuge aus Schnellarbeitsstahl (AddBo). 2024. Available online: https://publications.rwth-aachen.de/record/991630 (accessed on 18 August 2024).
- Seyam, M.; Koshy, P.; Elbestawi, M. Laser powder bed fusion of WC-Co form turning tools with integrated cooling features: Design, printing, and test machining of Ti6Al4V. CIRP Ann. 2024, 73, 65–68. [Google Scholar] [CrossRef]
- Kelliger, T.; Liu, H.; Schraknepper, D.; Bergs, T. Investigations on the Impact of Additively Manufactured Coolant Channels and Outlet Nozzles on Free Jet and Jet Forces in High-Pressure Cutting Fluid Supply. MIC Procedia—SSRN J. 2021, 41–49. [Google Scholar] [CrossRef]
- Karl-Heinz Arnold GmbH. Florett Statt Bazooka; WB Werkstatt + Betrieb: Malleray, Switzerland, 2021; pp. 24–26. [Google Scholar]
- ISCAR Ltd. 3D Printing Enables Better Coolant Delivery in Milling Operations. Available online: https://www.moldmakingtechnology.com/articles/3d-printing-enables-better-coolant-delivery-in-milling-operations (accessed on 6 July 2023).
- Neher Group. Produktinformation—Additive Fertigung: Das Fertigungsverfahren für die Zukunft; Neher Group: Ostrach, Germany, 2020. [Google Scholar]
- Hartmetall-Werkzeugfabrik Paul Horn GmbH. Gedruckte Kühlmittel-Aufsätze. Available online: https://www.phorn.de/aktuelles/detailansicht/gedruckte-kuehlmittel-aufsaetze/ (accessed on 19 August 2020).
- Hartmetall-Werkzeugfabrik Paul Horn GmbH. Neuheiten 2019; Vulkan-Verlag GmbH: Essen, Germany, 2019; p. 129. [Google Scholar]
- Seco Tools GmbH. 3D-Druck Ermöglicht Neue Geometrien und optimierte Kühlmittelführung. Available online: https://industrieanzeiger.industrie.de/technik/fertigung/3d-druck-ermoeglicht-neue-geometrien-und-optimierte-kuehlmittelfuehrung/#slider-intro-1 (accessed on 10 July 2023).
- Schleicher, S. Method for Producing a Cutting Tool, and Cutting Tool. US 10,576,545 B2, 3 March 2020. [Google Scholar]
- Ach, E.; Gey, C. Machining Tool and Method for Manufacturing a Machining Tool. US 2015/0298222 A1, 22 October 2015. [Google Scholar]
- Bermingham, M.J.; Palanisamy, S.; Morr, D.; Andrews, R.; Dargusch, M.S. Advantages of milling and drilling Ti-6Al-4V components with high-pressure coolant. Int. J. Adv. Manuf. Technol. 2014, 72, 77–88. [Google Scholar] [CrossRef]
- Palanisamy, S.; Townsend, D.; Scherrer, M.; Andrews, R.; Dargusch, M.S. High Pressure Coolant Application in Milling Titanium. Mater. Sci. Forum 2009, 618–619, 89–92. [Google Scholar] [CrossRef]
- Yue, C.; Gao, H.; Liu, X.; Liang, S.Y.; Wang, L. A review of chatter vibration research in milling. Chin. J. Aeronaut. 2019, 32, 215–242. [Google Scholar] [CrossRef]
- Brecher, C.; Weck, M. Werkzeugmaschinen Fertigungssysteme 2; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-46566-0. [Google Scholar]
- Baz, A.M.S. Active and Passive Vibration Damping; John Wiley & Sons Inc: Hoboken, NJ, USA, 2018; ISBN 9781118537589. [Google Scholar]
- Ehlers, T.; Oel, M.; Tatzko, S.; Kleyman, G.; Niedermeyer, J.; Wallaschek, J.; Lachmayer, R. Design Guidelines for Additive Manufactured Particle Dampers: A Review. Procedia CIRP 2023, 119, 891–896. [Google Scholar] [CrossRef]
- Ehlers, T.; Lachmayer, R. Design of Particle Dampers for Laser Powder Bed Fusion. Appl. Sci. 2022, 12, 2237. [Google Scholar] [CrossRef]
- Rosa, F.; Manzoni, S.; Casati, R. Damping behavior of 316L lattice structures produced by Selective Laser Melting. Mater. Des. 2018, 160, 1010–1018. [Google Scholar] [CrossRef]
- Göransson, P. Acoustic and vibrational damping in porous solids. Philos. Trans. A Math. Phys. Eng. Sci. 2006, 364, 89–108. [Google Scholar] [CrossRef]
- Vogel, F.A.; Berger, S.; Özkaya, E.; Biermann, D. Vibration Suppression in Turning TiAl6V4 Using Additively Manufactured Tool Holders with Specially Structured, Particle Filled Hollow Elements. Procedia Manuf. 2019, 40, 32–37. [Google Scholar] [CrossRef]
- Vogel, F.; Baumann, J.; Jaquet, S.; Biermann, D. Particle Damped Tool Holders Enable Higher Stability Limits when Milling EN AW-7075. MIC Procedia—SSRN J. 2023, 77–84. [Google Scholar] [CrossRef]
- Vogel, F.; Berger, S.; Biermann, D. Gesteigerte Prozessstabilität bei der Fräsbearbeitung von Al7075 durch den Einsatz partikelgefüllter HSK63-Werkzeugaufnahmen. Unter Span 2019, 21, 1–8. [Google Scholar]
- Vogel, F.; Berger, S.; Özkaya, E.; Biermann, D. Additiver Werkzeugaufbau zur Verbesserten Prozessdynamik bei der Drehbearbeitung von TiAl6V4. Available online: https://werkstoffzeitschrift.de/additiver-werkzeugaufbau-zur-verbesserten-prozessdynamik-bei-der-drehbearbeitung-von-tial6v4/ (accessed on 20 July 2020).
- Vogel, F.; Özkaya, E.; Biermann, D. Additiver Werkzeugaufbau zur Dämpfung von Prozessschwingungen. VDI-Z Integr. Produktion 2018, 1, 42–45. [Google Scholar]
- Oeking, S. An Innovative Design of Additively Manufactured Anti-Vibration Tools. In Proceeding of the MIC2023—Machining Innovations Conference for Aerospace Industry, Garbsen, Germany, 29–30 November 2023; IFW—Institute of Production Engineering and Machine Tools, Ed.; 2023. [Google Scholar]
- Stoyanov, P. Cutting Tool Made by Additive Manufacturing. U.S. 9,975,182 B2, 22 May 2018. [Google Scholar]
- Avdovic, P.; Graichen, A.; Rehme, O.; Schäfer, M. Component Having a Filled Cavity, Use of Said Component, and Method for Producing Same. WO 2012/084688 AI, 12 December 2011. [Google Scholar]
- Christ, M. Maschinenbauteil mit Generatives Verfahren Hergestellt. EP 3 403 744 A1, 21 November 2018. [Google Scholar]
- Hanzl, P.; Zetková, I. Benefits of a New Approach to Designing Milling Cutter Using Metal Additive Manufacturing. Manuf. Technol. 2019, 19, 385–390. [Google Scholar] [CrossRef]
- Häusler, A.; Werkle, K.T.; Maier, W.; Möhring, H.-C. Design of Lightweight Cutting Tools. Int. J. Autom. Technol. 2020, 14, 326–335. [Google Scholar] [CrossRef]
- Abele, E.; Scherer, T.; Schmidt, E. Strukturoptimierte Zerspanungswerkzeuge: CAE-Prozesskette zur Gestaltung additiv gefertigter Werkzeuggrundkörper. WT Werkstattstech. Online 2018, 108, 435–440. [Google Scholar] [CrossRef]
- Scherer, T. Beanspruchungs- und Fertigungsgerechte Gestaltung Additiv Gefertigter Zerspanwerkzeuge. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2020. [Google Scholar]
- Hanzl, P.; Zetek, M.; Rulc, V.; Purš, H.; Zetková, I. Finite Element Analysis of a Lightweight Milling Cutter for Metal Additive Manufacturing. Manuf. Technol. 2019, 19, 753–758. [Google Scholar] [CrossRef]
- Hanzl, P.; Zetková, I.; Zetek, M. Comparison of lightweight and solid milling cutter capabilities. Manuf. Technol. 2020, 20, 23–26. [Google Scholar] [CrossRef]
- Uhlmann, E.; Polte, J.; Kochan, J.; Neuwald, T. Leichte Hochleistungswerkzeuge Dank Additiver Fertigung; Fräsen & Bohren: Baar, Switzerland, 2020; pp. 24–26. [Google Scholar]
- Uhlmann, E.; Peukert, B.; Thom, S.; Prasol, L.; Fürstmann, P.; Sammler, F.; Richarz, S. Solutions for Sustainable Machining. J. Manuf. Sci. Eng. 2017, 139, 051009. [Google Scholar] [CrossRef]
- Fürstmann, P.G. Einsatzverhalten und Leistungsbedarfe Unterschiedlicher Kühlkonzepte beim Außen-Längs-Runddrehen. Ph.D. Thesis, TU Berlin, Berlin, Germany, 2018. [Google Scholar]
- Guski, V.; Wegert, R.; Schmauder, S.; Möhring, H.-C. Correlation between subsurface properties, the thermo-mechanical process conditions and machining parameters using the CEL simulation method. Procedia CIRP 2022, 108, 19–24. [Google Scholar] [CrossRef]
- Ceratizit Group. Hochleistungswerkzeuge für E-Motoren Produktion von Ceratizit. Available online: https://mav.industrie.de/additive-fertigung/hochleistungswerkzeuge-fuer-e-motoren-produktion/ (accessed on 5 July 2023).
- Krödel, A.; Bookheimer, A.; Semniski, L. 3D Printed tools for E-Mobility. In Proceedings of the Aachen Conference on Machining 2022, Aachen, Germany, 21 September 2022. [Google Scholar]
- Mapal Dr. Kress KG. Neuheiten 2020: Produktneuheiten; Mapal Dr. Kress KG: Aalen, Germany, 2020. [Google Scholar]
- Sellmer, D. Potenziale der additiven Fertigung aus Sicht eines Werkzeugherstellers. Lightweight Des. 2016, 9, 32–37. [Google Scholar] [CrossRef]
- Teufelhart, S. Belastungsoptimiertes Design von Gitterstrukturen für die Additive Fertigung nach dem Bionischen Prinzip der kraftflussgerechten Gestaltung. Ph.D. Thesis, Technische Universität München, München, Germany, 2016. [Google Scholar]
- Kappmeyer, G. Verfahren zur Herstellung eines Zerspanwerkzeugs, das einen Werkzeuggrundkörper Aufweist, Welcher Mittels eines Generativen Fertigungsverfahrens zu der Fertigen Form des Werkzeughalters Gebracht Wird. EP 1864748 B1, 5 August 2009. [Google Scholar]
- Mapal Dr. Kress KG. Anwendungsorientierte Hydrodehnspannfutter; VDI-Z Special Werkzeuge + Fertigungstechnik: Düsseldorf, Germany, 2018; pp. 36–38. [Google Scholar]
- Durst, R. Hybride Fertigung diamantbestückter Hochleistungswerkzeuge. In Proceedings of the mav Innovationsforum Böblingen, Böblingen, Germany, 22 March 2017. [Google Scholar]
- Gühring, K.G. Barrierefreie Konstruktion: Werkzeuglösungen mit Additiv Gefertigtem Spanleitdeckel. Available online: https://mav.industrie.de/werkzeuge/barrierefreie-konstruktion/ (accessed on 17 July 2023).
- Fink, S.M. Integrated Sensor Technology: The Next Step in Additive Manufacturing: Press Release from September 20, 2023. Available online: https://www.ilt.fraunhofer.de/en/press/press-releases/2023/9-20-integrated-sensor-technology-formnext.html (accessed on 18 August 2024).
- Rehberger, M.; Noll, M.-C. DMS-Sensoren aus dem 3D-Druck mit Low-Power-Funk-Telemetrie. Elektron. Prax. 2020, 17, 46–47. [Google Scholar]
- Mayer, D.; Stoffregen, H.A.; Heuss, O.; Pöllmann, J.; Abele, E.; Melz, T. Additive Manufacturing of Active Struts for Piezoelectric Shunt Damping. In Proceedings of the ICAST2014: 25nd International Conference on Adaptive Structures and Technologies, The Hague, The Netherlands, 6–8 October 2014. [Google Scholar]
- Hyer, H.C.; Carver, K.; List III, F.A.; Petrie, C.M. Embedding thermocouples in SS316 with laser powder bed fusion. Smart Mater. Struct. 2023, 32, 02LT01. [Google Scholar] [CrossRef]
- Binder, M.; Kirchbichler, L.; Seidel, C.; Anstaett, C.; Schlick, G.; Reinhart, G. Design Concepts for the Integration of Electronic Components into Metal Laser-based Powder Bed Fusion Parts. Procedia CIRP 2019, 81, 992–997. [Google Scholar] [CrossRef]
- Im Jung, D.; Lee, M.S.; Lee, J.; Sung, H.; Choe, J.; Son, H.J.; Yun, J.; Kim, K.; Kim, M.; Lee, S.W.; et al. Embedding sensors using selective laser melting for self-cognitive metal parts. Addit. Manuf. 2020, 33, 101151. [Google Scholar] [CrossRef]
- Binder, M.; Dirnhofer, C.; Kindermann, P.; Horn, M.; Schmitt, M.; Anstaett, C.; Schlick, G.; Seidel, C.; Reinhart, G. Procedure and Validation of the Implementation of Automated Sensor Integration Kinematics in an LPBF System. Procedia CIRP 2020, 93, 1304–1309. [Google Scholar] [CrossRef]
- Singer, C.; Schmitt, M.; Schlick, G.; Schilp, J. Multi-material additive manufacturing of thermocouples by laser-based powder bed fusion. Procedia CIRP 2022, 112, 346–351. [Google Scholar] [CrossRef]
- Dzogbewu, T.C.; de Beer, D. Powder Bed Fusion of Multimaterials. J. Manuf. Mater. Process. 2023, 7, 15. [Google Scholar] [CrossRef]
- Guimarães, B.; Fernandes, C.M.; Figueiredo, D.; Carvalho, O.; Miranda, G.; Silva, F.S. Multi-material laser powder bed fusion of embedded thermocouples in WC-Co cutting tools. J. Manuf. Process. 2024, 118, 163–172. [Google Scholar] [CrossRef]
- Baumann, A.; Oezkaya, E.; Schnabel, D.; Biermann, D.; Eberhard, P. Cutting-fluid flow with chip evacuation during deep-hole drilling with twist drills. Eur. J. Mech. B Fluids 2021, 89, 473–484. [Google Scholar] [CrossRef]
- Biermann, D.; Oezkaya, E. CFD simulation for internal coolant channel design of tapping tools to reduce tool wear. CIRP Ann. 2017, 66, 109–112. [Google Scholar] [CrossRef]
- Wei, C.; Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 2021, 16, 347–371. [Google Scholar] [CrossRef]
- Wei, C.; Li, L.; Zhang, X.; Chueh, Y.-H. 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. —Manuf. Technol. 2018, 67, 245–248. [Google Scholar] [CrossRef]
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 2022, 6, 4. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Bhatia, S.M.; Pandey, P.C.; Shan, H.S. Failure of cemented carbide tools in intermittent cutting. Precis. Eng. 1979, 1, 148–152. [Google Scholar] [CrossRef]
- Baumers, M.; Dickens, P.; Tuck, C.; Hague, R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016, 102, 193–201. [Google Scholar] [CrossRef]
- Tenbrock, C. Large-Format Machine for Multi-Scanner Laser Powder Bed Fusion. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2022. [Google Scholar]
- Schleifenbaum, J.H. Verfahren und Maschine zur Individualisierten Produktion mit High Power Selective Laser Melting. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2012. [Google Scholar]
- Thomas, D.S.; Gilbert, S.W. Costs and Cost Effectiveness of Additive Manufacturing. NIST Spec. Publ. 2014, 1176, 12. [Google Scholar]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Jayawardane, H.; Davies, I.J.; Gamage, J.R.; John, M.; Biswas, W.K. Sustainability perspectives—A review of additive and subtractive manufacturing. Sustain. Manuf. Serv. Econ. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Loyda, A.; Arizmendi, M.; Ruiz de Galarreta, S.; Rodriguez-Florez, N.; Jimenez, A. Meeting high precision requirements of additively manufactured components through hybrid manufacturing. CIRP J. Manuf. Sci. Technol. 2023, 40, 199–212. [Google Scholar] [CrossRef]
- Maslo, S.; Wollbrink, M.; Arntz, K.; Degen, F.; Zimmer, D. Development of a substrate unit for LPBF to increase automatization in manufacturing process chains. In Proceedings of the Special Interest Group Meeting on Advancing Precision in Additive Manufacturing; euspen: Bedford, UK, 2019; ISBN 9780995775152. [Google Scholar]
- Wollbrink, M.; Maslo, S.; Zimmer, D.; Abbas, K.; Arntz, K.; Bergs, T. Clamping and substrate plate system for continuous additive build-up and post-processing of metal parts. Procedia CIRP 2020, 93, 108–113. [Google Scholar] [CrossRef]
- Markforged. Case Study: Opening up New Revenue Streams with Additive Manufacturing; Markforged: Waltham, MA, USA, 2020. [Google Scholar]
- Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T. Cold spraying—A materials perspective. Acta Mater. 2016, 116, 382–407. [Google Scholar] [CrossRef]
- Wen, X.; Gong, Y.; Wang, C. Experimental research on micro mill-grinding AISI 1045 steel with a cold spraying compound micro cutting tool. J. Mech. Sci. Technol. 2018, 32, 5863–5874. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Thirumalaikumarasamy, D.; Sonar, T.; Deepak, S.; Vignesh, P.; Anbarasu, M. An overview of cold spray coating in additive manufacturing, component repairing and other engineering applications. J. Mech. Behav. Mater. 2022, 31, 514–534. [Google Scholar] [CrossRef]
AM Process | Advantages | Disadvantages |
---|---|---|
VPP | High geometrical complexity and accuracy; processing of metal and ceramic (composite) materials | Limited material range; green part only (sintering needed, undesired shrinkage) |
PBF | Manufacturing of dense metallic parts. Depending on the material, no need for additional heat treatment. High geometrical complexity and accuracy | Limited part size; melting process introduces residual stress; low build rate; processing of weldable materials only; high production costs |
BJT | Processing of metal and ceramic (composite) materials; low production costs; high scalability; no support structures needed | Low density; green part only (sintering needed, undesired shrinkage) |
DED | High build rate; manufacturing of dense metal parts; large build volume; high material utilization; possibility of functional graded materials | Limited geometrical accuracy and complexity; melting process introduces residual stress; processing of weldable materials only |
Steel Material | As-Built Properties | Ref. |
---|---|---|
X40CrMoV5-1 (H13, 1.2344) Conventional, heat-treated cast material | H = 540–615 HV; Rm = 1430 MPa | [66] |
X40CrMoV5-1 (H13, 1.2344) | H = 706–894 HV; Rm = 835–1236 MPa | [67,68] |
X37CrMoV5-1 (H11, 1.2343) | H = 506 HV | [69,70] |
X3NiCoMoTi18-9-5 (18Ni-300, 1.2709) | H = 333–341 HV; Rm = 1056–1096 MPa | [71,72] |
X5CrNiCuNb17-4-4 (17-4 PH, 1.4548) | H = 258 HV | [73] |
30CrNiMo8 (AISI 4340, 1.6580) | Rm = 1009–1016 MPa | [74] |
16MnCr5 (AISI 5115, 1.7131) | H = 330 HV; Rm = 1050 MPa | [75] |
18MnCrMoV4-8-7 (1.7980) | H = 405 HV | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelliger, T.; Meurer, M.; Bergs, T. Potentials of Additive Manufacturing for Cutting Tools: A Review of Scientific and Industrial Applications. Metals 2024, 14, 982. https://doi.org/10.3390/met14090982
Kelliger T, Meurer M, Bergs T. Potentials of Additive Manufacturing for Cutting Tools: A Review of Scientific and Industrial Applications. Metals. 2024; 14(9):982. https://doi.org/10.3390/met14090982
Chicago/Turabian StyleKelliger, Tobias, Markus Meurer, and Thomas Bergs. 2024. "Potentials of Additive Manufacturing for Cutting Tools: A Review of Scientific and Industrial Applications" Metals 14, no. 9: 982. https://doi.org/10.3390/met14090982
APA StyleKelliger, T., Meurer, M., & Bergs, T. (2024). Potentials of Additive Manufacturing for Cutting Tools: A Review of Scientific and Industrial Applications. Metals, 14(9), 982. https://doi.org/10.3390/met14090982