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Abstract: For the application of Ti-6Al-4V alloys in urban air mobility, safety is very important, so
achieving excellent strength and toughness is essential to prevent fractures. Regarding toughness,
which is a combination of strength and ductility, it is necessary to derive the optimal heat treatment
conditions for this combination of Ti-6Al-4V alloy and further understand its microstructure and
fracture characteristics. For this purpose, this study investigated the microstructure in terms of grain
size, plate thickness, and element distribution, as well as mechanical properties, including phase
hardness and tensile properties, of Ti-6Al-4V alloy subjected to solution treatment and aging (STA)
heat treatment under various aging conditions. As a result, this study suggests that solution treatment
followed by aging at 630 ◦C for 480 min can achieve approximately 26% higher toughness than the
just-solution treatment process. This is because there is little difference in hardness between the
equiaxed α and basketweave structures, and β plates, which contain an excessive V between α plates,
function like fibers and delay fracture.

Keywords: Ti-6Al-4V alloy; heat treatment; microstructure; strength; toughness

1. Introduction

In recent years, the urban air mobility (UAM) market has rapidly emerged as a next-
generation transportation solution that solves the urgent issue of urban traffic congestion
and provides efficient transportation [1,2]. One of the most critical problems to be solved
in the development of UAM is safety [2,3]. This requires not only having systems to avoid
collisions with other aircraft and obstacles during flight [3], but also ensuring that the mate-
rials composing the aircraft possess high strength while maintaining high ductility [4,5].
Specifically, toughness represents the total amount of energy that a material can absorb
during the deformation process, and is a mechanical property that is an appropriate balance
between strength, which is the material’s ability to withstand deformation, and ductility,
which is the ability to maintain a load without breaking [6]. In other words, applying
high-strength and high-toughness materials to UAM can prevent sudden structural failures
from external impacts or excessive loads, thus enhancing durability and safety. However,
because strength and ductility are generally in a trade-off relationship in most metals [6,7],
it is still difficult to obtain a high-toughness alloy, which has both excellent strength and
ductility [8].

The Ti-6Al-4V (Ti64) alloy is one of the representative lightweight alloys used in
aircraft and boasts excellent properties such as strength, corrosion resistance, and high-
temperature properties [9–12]. To improve strength, solution treatment and aging (STA)
heat treatment is commonly used, which involves two cycles of heat treatment consisting
of solution treatment (ST) and aging (A) [12,13]. When performing the STA heat treatment

Metals 2024, 14, 985. https://doi.org/10.3390/met14090985 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met14090985
https://doi.org/10.3390/met14090985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-2126-4473
https://orcid.org/0000-0002-1537-4326
https://orcid.org/0000-0002-8428-2118
https://doi.org/10.3390/met14090985
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met14090985?type=check_update&version=2


Metals 2024, 14, 985 2 of 17

below the β-transus temperature, a microstructure consisting of equiaxed α and trans-
formed β, known as a duplex microstructure, is observed [14–17]. Numerous studies have
been conducted regarding the microstructural property changes under various ST and A
conditions. S. Huang et al. [18] found that higher ST temperatures lead to greater concen-
tration variations in V and Al in transformed β compared to equiaxed α. Y.C. Lin et al. [19]
found that coarsened secondary α and equiaxed α combined to form new curved lamellar
α, while N. Kherrouba et al. [20] suggested a relationship between the precipitation of
secondary α and partial V diffusion in transformed β. Regarding the mechanical properties
under various STA conditions, T. Morita et al. [21], S. Tanka et al. [22], and A. Ajiz et al. [23]
observed microstructures and mechanical properties under different aging conditions after
quenching at 930 ◦C for 60 s, and found that aging within the range of 530–580 ◦C has
the highest tensile strength. S.T. Oh et al. [24] noted that a higher amount of retained β

after ST results in a pronounced TRIP effect during aging, with the best combination of
tensile properties observed at 550 ◦C for 300 s. Y. Vahidshad et al. [25] reported that ST
at 950 ◦C followed by aging at 500 ◦C was the condition with the highest tensile strength
with Ti3Al. G. Perumal et al. [26] investigated the mechanical properties and wear char-
acteristics under various STA conditions, revealing that a fine lamellar structure exhibits
high hardness, strength, and low wear rate. However, these studies [21–26] did not analyze
from the perspective of changes in toughness, which is the combination of strength and
elongation, according to STA conditions. Recently, with regard to Ti64 STA heat treatment
and toughness, Q. Zhu et al. [27] and R.N. Elshaer et al. [28] reported that air cooling in ST
or water cooling and aging in ST showed higher toughness. However, these studies [27,28]
lack sufficient explanation regarding the microstructural features for enhancing toughness
and their correlation with fractographies under different STA conditions.

As in the aforementioned studies, there still remains a lack of research on STA heat-
treated Ti64 to achieve a high combination of strength and elongation, especially regarding
the correlation between microstructural characteristics and fractographies. Moreover, the
hardness of each phase at the micro-scale changes due to phase transformation, grain size,
and redistribution of elements within the phase during STA, which ultimately affects the
macro-scale tensile properties due to the interaction of each phase under tensile loading [29].
Therefore, in this study, microstructural characteristics such as size and thickness of the
phase and V distribution were precisely controlled by changing the aging temperature and
time during STA heat treatment, and the phase hardness, strength, elongation and modulus
of toughness were compared for each heat treatment condition. Consequently, we propose
that aging at 630 ◦C for 480 min is the optimal heat treatment condition for a high modulus
of toughness with proper strength.

2. Materials and Experimental Procedures
2.1. Material and Heat Treatment Conditions

In this study, a rod-shaped Ti-6Al-4V alloy (∅70 mm × 2000 mm) fabricated via a
vacuum arc remelting (VAR) process by KPC Metal Co., Ltd. (Gyeongsan, Republic of
Korea), served as a starting material. The chemical composition of the alloy is obtained
using inductively coupled plasma optical emission spectroscopy (ICP-OES, Optima 7300DV,
PerkinElmer, Hopkinton, MA, USA) analysis, which is presented in Table 1. Additionally,
the as-received sample is a fully equiaxed microstructure, which consists with equiaxed α

and β in Figure 1.

Table 1. Chemical composition (wt.%) of Ti-6Al-4V used in this study.

Ti Al V Fe O N C H

Balance 6.56 4.15 0.19 0.19 0.021 0.027 0.003
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Then, the same samples were mechanically grinded and polished using a 1 µm diamond 
suspension, followed by an oxide suspension (OP-S solution), and etched using Kroll’s 
reagent (5 mL HF and 10 mL HNO3 in 85 mL distilled H2O) for OM and SEM analysis. 
Grain size and plate thickness were also measured at 7 points in OM images, and at 9 
plates in SEM microstructures, respectively. Additionally, the distribution of Al and V in 
the STA heat-treated samples was analyzed using electron probe micro-analysis (EPMA, 
JXA-8500F, JEOL, Tokyo, Japan) for line scanning across the duplex phases. 

Figure 1. Optical microstructure (OM) of initial state of Ti64 used in this study.

Samples for heat treatment were machined to dimensions of 10 × 10 × 55 (mm3). The
samples were solution-treated at 950 ◦C for 1 h followed by water quenching (WQ) and
aging at temperatures ranging from 480 to 630 ◦C for durations ranging from 1 min to
480 min, then followed by air cooling (AC), as illustrated in Figure 2. All the heat treatments
were performed in a quartz furnace under vacuum (6 × 10−5 torr).
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Figure 2. Conditions of solution treatment and aging (STA) heat treatment procedures.

2.2. Characterization

The hardness of all STA samples before and after aging was measured using a micro-
Vickers hardness tester (HM–210B, Mitutoyo, Japan) with a load of 1 kgf on a machined
10 × 10 × 5 (mm3) area (Figure 3a). Then, in the hardness profile according to the various
aging condition, which is, in detail, described in Section 3.1, we chose 4 conditions to
analyze further microstructural and mechanical properties; these conditions are solution
treatment (ST) and 3 aging conditions at 480 ◦C for 1 min (A_480-1), 530 ◦C for 120 min
(A_530-120) and 630 ◦C for 480 min (A_630-480).

Then, the microstructures of 4 conditions (ST, A_480-1, A_530-120, A_630-480) were
analyzed using X-ray diffraction (XRD, X’pert–Pro MPD, PANalytical, Marvern, UK), opti-
cal microscopy (OM, HRM-300, Huvitz, Houston, TX, USA) and field-emission scanning
electron microscopy (FE-SEM, NNS-450, FEI, Hilsboro, OR, USA). The XRD was analyzed
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with the Cu Kα radiation source in the 2θ range of 30–90◦ at a scan speed of 0.02◦ min−1.
Then, the same samples were mechanically grinded and polished using a 1 µm diamond
suspension, followed by an oxide suspension (OP-S solution), and etched using Kroll’s
reagent (5 mL HF and 10 mL HNO3 in 85 mL distilled H2O) for OM and SEM analysis.
Grain size and plate thickness were also measured at 7 points in OM images, and at 9 plates
in SEM microstructures, respectively. Additionally, the distribution of Al and V in the STA
heat-treated samples was analyzed using electron probe micro-analysis (EPMA, JXA-8500F,
JEOL, Tokyo, Japan) for line scanning across the duplex phases.
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Figure 3. (a) is a diagram indicating the sampling locations from the heat-treated specimen for
microstructural and mechanical property analysis and (b) presents the sample dimensions for the
tensile test conducted in this study.

The hardness of each phase in the duplex structure under various aging conditions
was measured using a micro-Vickers hardness tester with a 0.05 kgf load. The hardness
value for each structure represents an average of 5 measurements. Tensile tests were
conducted 3 times using a universal testing machine (5982, Instron, Norwood, MA, USA)
at room temperature with a test speed of 0.001/s. The tensile samples were prepared
as proportional specimens in compliance with the ASTM E8/E8M [30]. The machining
location of tensile samples is shown in Figure 3a, and the sample dimensions are provided
in Figure 3b. Following the tensile test, fractographies were analyzed using SEM.

3. Results and Discussion
3.1. Hardness Profile

The hardness profile before and after STA heat treatment is presented in Figure 4.
In Figure 4, the Ti64 alloy before heat treatment is indicated as the ‘initial’ alloy. After
ST, the hardness of the initial alloy increases significantly to 366.7 (±7.4) Hv. In several
studies, this increase in hardness is attributed to the transformation of the β to α′ during
quenching [13,21–23]. Subsequent short-term aging (1 min) further elevates the hardness of
the Ti-6Al-4V alloy slightly. The hardness of STA samples increases with increasing aging
time, until it reaches a maximum (peak hardness), after which it begins to decrease. The
highest hardness, measured at 393.6 (±3.9) Hv, is achieved at the sample aged at 530 ◦C for
120 min. Moreover, the holding time required for an STA sample to reach peak hardness
decreases with an increasing holding temperature. At 630 ◦C aging, the peak hardness
of 372.4 (±5.97) Hv is observed in the sample aged for 2 min, after which it decreases.
The sample aged at 630 ◦C for 480 min has 351.27 (±3.26) Hv, which is the lowest value
after STA.

Therefore, in the hardness profiles among the solution treatment and several ag-
ing conditions, we chose four conditions, which are the solution treatment (ST) and
three conditions of aging (A_480-1, A_530-120, A_630-480). A_480-1 is the short aging
step representing the case of holding at the lowest temperature (480 ◦C) for the shortest
time (1 min); A_530-120 corresponds to holding at 530 ◦C for 120 min, which is the highest
hardness value; and 630–480 represents holding at the highest temperature (630 ◦C) for the
longest duration (480 min), which is the lowest hardness value in all aging conditions.
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mechanical properties.

3.2. Microstructure Model

Before discussing the microstructure, we proposed the microstructure model that
changes during STA, schematically shown in Figure 5, which is based on several
studies [13–28]. We illustrated that the α′ phase is a granite-like pattern that has black dots
on a gray background, the α phase is light gray, and the β phase is dark gray. The red dot
is the V element, and the black dot is Ti3Al, which is a representative precipitated phase in
α during aging [11,13]. The initial Ti64, which consists of equiaxed α and β in Figure 5a,
changes its microstructure during STA heat treatment as follows: While holding sufficient
time in ST, the microstructure consists of more than half of β and α (Figure 5b), and V is
diffused into β at the temperature [13,18]. During rapid cooling by water, β is transformed
into α′, a type of martensite phase, and V is supersaturated in α′ because diffusion from β

to α is impossible due to the fast cooling rate (Figure 5b) [11,13].
During aging, the secondary step, α′ is transformed into the plate-like α and β by

redistributing the V element into β [11–13,20]. According to X. Shi et al. [31], when the
amount of interfacial area between α and β plates is larger, the resistance of dislocation
movement increases, so the alloys become harder and more difficult to deform. Also, Ti3Al,
which is the hard phase, can be precipitated in α during aging [9,11,32]. So, we expected
that for Ti64 to have the highest strength, the microstructure should be composed of the
sufficiently fine α, β plates and Ti3Al phase, as shown in Figure 5c. The Ti3Al phase fraction
during aging is approximately 2%, calculated using the JMatPro ver.7.0. [33]. If the aging
temperature and time are increased, the α and β plates with high V may become coarse,
leading to the potential dissolution of Ti3Al. This can result in a decrease in hardness and
strength while increasing ductility. However, if this change is moderate, toughness may be
maximized, as illustrated in Figure 5d.

Therefore, we propose the two models for the strongest case and the toughest mi-
crostructures, as shown in Figure 5c,d. Figure 5c, which is predicted to have the highest
hardness and strength, consists of equiaxed α, plate-like α and β with concentrated V, and
some Ti3Al. Figure 5d represents the example with the highest ductility and toughness,
with a microstructure consisting of equiaxed α, coarse α and β plates and the highest V
concentration in the β plate.
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during solution treatment ((b) ST) and aging heat treatment (c,d). In the diagram, (c) corresponds to
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a granite-like pattern, α phase is light gray, and β phase is dark gray. V element is shown as a red dot
and Ti3Al is a black dot.

3.3. Microstructure Characterization
3.3.1. X-ray Diffraction and Phase Evolution

Figure 6 displays the XRD results for ST and several aging conditions (A_480-1, A_530-
120, A_630-480). Peaks in XRD patterns were indexed with reference to the Inorganic
Crystal Structure Database (ICSD) cards for α-Ti (ICSD 01-089-5009), β-Ti (ICSD 01-089-
4913) and Ti3Al (ICSD 03-065-4565) phases. The ST sample predominantly exhibits α/α′

peaks in the entire theta range. In the magnified images of 37 to 42.5◦ and 75 to 85◦, some
separated, inflected and shifted peaks are observed near the closet peak of the α phase
peaks. Here, α is the primary α formed during isothermal holding in the solution treatment.
α′ is formed by rapid cooling; due to the residual stress caused by the quenching process, it
exhibits a slightly shifted peak compared to α [32]. Additionally, the ST sample shows a
(211) β peak, suggesting the presence of retained β. This could be because a small amount
of β that has not yet been transformed into α′ is retained due to rapid cooling. Therefore,
the ST sample contains α′, α and retained β phases.

During aging, as studied by Morita et al. [21] and other studies [22–25], α is precipi-
tated in α′, so α′ is decomposed to widmanstätten α + β, and subjected to a longer aging
process, and Ti3Al can be precipitated. Ti3Al peaks are similar to α, but due to the lattice
distortion, the peaks are also shifted, and the peak information is in the Ti3Al ICSD card.
The A_480-1 condition comprises α and β peaks, with more β peaks detected than in the
ST condition, and there are some retained α′ peaks in the magnified area. Regarding this
phenomenon, we calculated the evolution of phase fraction according to the holding time at
each aging temperature after solution treatment at 950 ◦C (Figure 7a); this was based on the
time–temperature–transformation (TTT) diagram (Figure 7b) using JMatPro ver. 7.0. [33].
According to the graph, in the case of aging at 480 ◦C for 1 min, the transformation of α′ into
α starts, but does not reach the equilibrium fraction of α. Regarding Ti3Al precipitation in
this condition, as shown in the Ti3Al curve of the TTT diagram, 0.1% precipitation can occur
when held for more than 35 min at 480 ◦C. However, because of the short holding time of
only 1 min, Ti3Al was not observed in A_480-1. A_530-120 exhibits peaks corresponding
to α, β and Ti3Al. In Figure 7a, it can be observed that holding at 530 ◦C for more than
90 min completes the precipitation of α from α′. Also, regarding Ti3Al precipitation, in
Figure 7a,b, 0.1% Ti3Al is precipitated for more than 15 min; so, holding at 530 ◦C for
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120 min allows for A_530-120 to be sufficiently precipitated in that phase, and the fraction
is about 2%. Therefore, in the XRD results of A_530-120, the α, β and Ti3Al peaks without
α′ observed are valid results. A_630-480, which has the largest aging degree, consists of
α and β, but without Ti3Al peaks. As shown in the 630 ◦C curve in Figure 7a, the higher
the aging temperature, the faster the precipitation and transformation onset, as well as
the transformation rate. At 630 ◦C, the precipitation of α from α′ is completed within just
10 min. Furthermore, it can be confirmed from Figure 7a and b that even after holding for
103 at 630 ◦C, the precipitation of Ti3Al does not occur. So, in this study, for A_630-480, only
the α and β peaks exist.
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630 ◦C for 480 min (A_630-480), including peaks for each phase, α′ is dotted line.
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3.3.2. Microstructure

Figure 8a–d present the OM images of ST and several aging conditions (A_480-
1, A_530-120, A_630-480). Each sample exhibits a duplex microstructure consisting of
equiaxed α (αE), represented by a bright phase, α′ and/or a basketweave structure, which
is relatively dark and resembles an intertwined structure [11,12]. According to the image
analyzer, the amount of equiaxed α in the ST is approximately 30%, similar to that in other
samples. The appearance of α′ and/or basketweave structures is not significantly different
when observed using OM.
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(b) A_480-1, (c) A_530-120, and (d) A_630-480; the area; the dotted line in ST represents α′, and the
dotted line in the aged samples represents α′ and/or basketweave structure.

Therefore, in the duplex microstructure, especially α′, and/or a basketweave structure,
were observed at high magnification using SEM, as shown in Figure 9a–h. Figure 9b,d,f,h
are magnified from Figure 9a,c,e,g, respectively. In Figure 9b, transformed β in the ST
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sample consists of intertwined, very fine (average 50 nm thickness) acicular α′ and some
nano-sized, retained β βre between α′. During aging, the growth in equiaxed α and the
transformation of α′ into α and β occur [11]. Figure 9d demonstrates that A_480-1 exhibits
both a basketweave structure with fine α and β plates, and a much finer α′. Similar to
the XRD result and JMatPro calculation (Figures 6 and 7), for the extreme early aging
condition 480-1, the transformation of α′ into α and β basketweave structures begins, but
this condition is insufficient to complete the transformation. In the case of A_530-120 shown
in Figure 9f, α′ is fully transformed into α and β plates, which is also confirmed in the XRD
result in Figure 6. Ti3Al is too small to be clearly distinguished from the surroundings in
Figure 9f, but because of the XRD results (Figure 6) and regarding Lütjering [11], in A_530-
120, Ti3Al clearly exists in the α phase, both of equiaxed α and α plates, with a coherently
elliptical shape. A_630-480 in Figure 9h has much coarser α and β plates than those of
A_530-120 because of the higher growth rate of each plate under the higher temperature
and longer aging duration. Also, Ti3Al does not precipitate under A_630-480; this was not
detected in XRD (Figure 6).
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Figure 9. SEM microstructures of duplex microstructure (a,c,e,g) and enlarged α′ and/or basketweave
structure (b,d,f,h) in the area marked in red box; (a,b) are ST, (c,d) are A_480-1, (e,f) are A_530-120,
and (g,h) are A_630-480.
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Average grain size and plate thickness from Figures 8 and 9 were measured and the
results are shown in Figure 10. The average grain size increases by 15% with increasing
aging temperature and time after ST. During aging, α′ in ST is transformed into α + β,
and the plates become coarser at the higher aging condition. As shown in Figure 5, when
the aging temperature is increased, the rate of the α′-to-α + β transformation accelerates.
Moreover, according to J. Chen et al. [34], at the higher temperature, the growth rate of
transformed plates significantly increases. When aged at the 630–480 condition, the longest
holding time at the highest temperature in this study, the thickest α plate is exhibited,
which is more than five times thicker than ST. This growth in grain size and plate thickness
during STA shows a similar trend, as shown in Figure 5b–d.
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3.3.3. Element Redistribution

Figure 11a–d present the line mapping results of EPMA for Al and V composition
across the duplex phases under various STA conditions. Al is one of the α-stabilizing
elements, and V is one of the β-stabilizing elements [11,18]. Therefore, V tends to exist more
in the β phase rather than in the α phase. In the case of equiaxed α, the Al concentration
in Figure 11a–d ranges from 5.5 to 6 wt.%, similar to the average element composition.
However, the V content in equiaxed α (αE) is low, at 2 to 2.5%, which is significantly lower
than the average V content of 4.15 wt.% for the material. In addition, when comparing the
Al and V concentrations in equiaxed α after aging, there is little difference in concentration
even if the aging temperature and time increase.

The α′ phase observed in the ST (Figure 11a) contains approximately 5.5 to 6 wt.%
of V and 4 to 4.5 wt.% of Al. Because α′ is transformed from β, and due to the fast
cooling of WQ (approximately 100 ◦C/s), it was difficult for the V distribution during
cooling, so the V concentration in α′ (average 5.5 wt.%) is higher than the average V
concentration of the material (4.15 wt.%). The gradient of V concentration in α′ phase
is 0.8 wt.%, which is calculated as the difference between the maximum and minimum
values of V concentration (Vα′

Max − Vα
Min). During the aging, α′ is transformed into α and

β phases and V is redistributed to the β plate [20]. According to Kherrouba et al. [20],
as the holding temperature and time are increased, the V concentration in the β plate
is increased. Therefore, as shown in Figure 11b–d, when the aging condition increases
the temperature and time from A_480-1 to A_630-480, the redistributed amount of V to
the β plate is larger, so the difference in V concentration in the basketweave structure,
Vb

Max − Vb
Min, is increased. The maximum difference in the basketweave structure of A_630-

480 (Figure 11d) is 1.98 wt.%, which is about twice higher than the value of α′ of ST. The
changes in V composition in β plates according to the aging condition show a similar trend,
as shown in Figure 5a–d, which can affect the mechanical properties.
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3.4. Mechanical Properties
3.4.1. Change in Phase Hardness

Figure 12 presents the average Vickers hardness results for equiaxed α and α′ and/or
basketweave structure in the duplex microstructure. Regarding the change in the hardness
value of equiaxed α, the difference between ST and aging conditions is not very large. But
in the case of aging at A_530-120, the hardness is the highest, which is attributed to Ti3Al
precipitation. In a similar study, it was found that when Ti3Al is precipitated, the hardness
is increased because of the higher resistance of dislocation movement at the precipitated
phase [11,35,36].
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The hardness of α′ in ST is higher than that of equiaxed α. This is because of the
presence of the fine acicular plate of about 50 nm in size, with high dislocation density
formed by WQ [30]. The hardness of α′ or the basketweave structure of A_480-1 showed a
similar hardness with α′ of ST due to insufficient transformation time. The basketweave
structure of A_530-120 is the hardest, not only because the transformation from α′ to fine α

+ β is completed, but also because of the presence of Ti3Al [35,36]. In other words, in the
case of A_530-120, many α/β grain boundaries and precipitated phases blocked dislocation
movement. Conversely, the basketweave structure in A_630-480 has the lowest hardness
value due to the large size of α and β plates and the absence of Ti3Al. Regarding the plate
thickness and mechanical properties, it is known that when the plate thickness is coarse,
the amount of α/β boundary becomes smaller, making it easier to move dislocations, and
hardness is decreased [31]. For this reason, in this study, the basketweave structure with
the coarsest α plate of A_630-480 showed the lowest hardness value compared to other
conditions. Consequently, in the case of A_630-480, the hardness values of the equiaxed
α and the basketweave structure are the most similar. This similar hardness of phases
in A_630-480 allows for relatively uniform deformation under tensile loading and can
suppress stress localization, which can have a positive effect on the tensile behavior.

3.4.2. Tensile Properties

Figure 13a shows the engineering stress–strain curves obtained during the tensile
test and Figure 13b shows the yield strength, elongation and modulus of toughness for
each STA condition obtained from the curves; the specific values are in Table 2. Compared
with ST, all of the aged samples reveal higher yield strength and elongation due to the
transformation of α′ into α and β. A_530-120 has the highest yield strength and slightly
higher elongation than ST, not only because of the transformation from α′ to fine α + β [21],
but also because of precipitated Ti3Al [35,36]. A_630-480 has a 6.84% higher yield strength
than ST and the yield strength is similar with A_530-120. In addition, A_630-480 has the
highest elongation, and its value is 19.10%, which is 21.66% higher than ST, and 16.46%
higher than A_530-120. This is because A_630-480 has coarse α and β plates as well as none
of the Ti3Al phase, so it has the least obstacles to dislocation movement, making it easier
for dislocation movement [31,37].

Also, the area under the stress–strain curve of Figure 13a indicates the modulus of
toughness according to the combination of strength and elongation, and refers to the energy
required to fracture a material. As can be seen in Figure 13b and Table 2, the modulus of
toughness for aged samples is higher than that of ST. Among the several aging conditions,
A_630-480 has the maximum modulus of toughness, which is 26.18% higher than that
of ST, and 13.70% higher than that of A_530-120. The microstructure of A_630-480 has a
basketweave structure with coarse plates, so the amount of α/β interface is the smallest;
therefore, the resistance of dislocation movement is relatively easy. As can be seen in
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Figure 12, because the hardness values of equiaxed alpha and basketweave in the duplex
microstructure are similar, it is also believed that during the tensile test, stress was not
concentrated on a specific phase and was deformed relatively uniformly over the entire
area of the specimen.
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Table 2. Tensile properties of ST and various aging conditions.

Yield Strength
(MPa)

Elongation
(%)

Modulus of Toughness
(MPa%)

ST 985.97 (±24.2) 15.71 (±1.8) 15,996 (±117.4)

A_480-1 1063.13 (±21.3) 16.22 (±1.7) 17,056 (±159.6)

A_530-120 1067.42 (±23.1) 16.28 (±1.9) 17,752 (±200.8)

A_630-480 1053.40 (±13.4) 19.10 (±0.3) 19,803 (±112.3)

For the safety of the UAM industry using Ti64, toughness is one of the most important
properties. Therefore, aging at 630 ◦C for 480 min (A_630-480) is the optimal aging condi-
tion because it increases toughness by 26% with adequate high strength and elongation
compared to the ST condition.

3.4.3. Fractographies

Figure 14 shows fractographies of ST and STA. In Figure 14a–d, both cleavage and
dimple structures are observed, indicating a mixture of brittle and ductile fracture patterns.
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Figure 14e–h are enlarged specific areas in Figure 14a–d. In Figure 14e, the ST exhibits some
cleavage structures surrounded by cracks. The high dislocation density hinders dislocation
and slip movements in α′, causing it to be unable to withstand deformation under tensile
load, which leads to cleavage fracture [31,38,39]. A_480-1 has a very fine basketweave
structure and α′; so, Figure 14f shows a mixed fracture pattern similar to that of ST, as
shown in Figure 14e. In Figure 14g, the fractography of A_530-120 exhibits various sizes of
dimple structures, and small dimples are observed even within the area surrounded by
cracks and cleavage facets. These small dimples are made from fracturing α and β plates
in a basketweave structure. In Figure 14h, A_630-480 exhibits some tear ridge patterns
with various sizes of dimple structures [40]. This tear ridge patterns were formed from
β plates between α. The β plate in A_630-480 has an excessively high V concentration,
as shown in Figure 11d, and that β plate is surrounded by coarse α plates. According to
J.M. Oh et al. [38], the hardness increases as the concentration of the contained elements
increases. This means that in A_630-480, the β plate with a higher V concentration is
stronger than the surrounding α plate with a lower V concentration in the basketweave
structure. Therefore, during the tensile test, the α plates in the basketweave structure of
A_630-480 are sufficiently deformed, while the β plates between the α plates act as a tough
tissue, which suppresses failure due to severe deformation. Consequently, A_630-480 has
the highest modulus of toughness with adequate high strength and high elongation.
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4. Conclusions

This study investigated the microstructural and mechanical properties according to
heat treatment conditions in various STA (ST, A_480-1, A_530-120, A_630-480) conditions
to determine the optimal STA heat treatment conditions to obtain high toughness with high
strength of Ti64 for the UAM industry. The following conclusions were obtained:

All selected STA conditions exhibited a duplex microstructure consisting of equiaxed
α, and α′ and/or α + β basketweave structures. As the aging conditions increase, the
thickness of the α plate and concentration difference in the V element become larger. In the
case of aging at 630 ◦C for 480 min, the thickness of the α plate is approximately five times
coarser than that of ST, and the difference in V concentration between β and α plates in the
basketweave structure is 1.98%; this value is approximately 2.5 times higher than ST.

Regarding the hardness of equiaxed α and α’ and/or basketweave under STA condi-
tions, when aged at 530 ◦C for 120 min after ST, both phases showed the highest hardness.
After aging at 630 ◦C for 480 min, the hardness of the basketweave structure decreased
rapidly, so the hardness difference according to each phase is insignificant.

Aged Ti64 showed improved yield strength and elongation than the solution-treated
sample. The highest strength was exhibited in A_530-120 due to fine α + β and Ti3Al
precipitation. Toughness, which is the highest combination of strength and elongation, was
highest in A_630-480; this value was approximately 26.18% higher than just ST. The β plates
between coarse α plates with sufficiently high V in A_630-480 appeared in a tear ridge
pattern, and played a role in withstanding large deformation and suppressing the fracture.

Aging Ti64 at 630 ◦C for 480 min (A_630-480) is the best condition as it enhances
toughness by 26% with sufficiently high yield strength (1053.40 MPa) and elongation
(19.10%) compared to the ST condition.
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