Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of an Electromagnetic Intensity on the Macromorphology of the Cladding Layer
3.2. Effect of Electromagnetic Intensity on the Phase Composition of the Cladding Layer
3.3. Effect of an Electromagnetic Intensity on the Microstructure
3.4. Effect of an Electromagnetic Intensity on the Microhardness
3.5. Effect of an Electromagnetic Intensity on the Wear Resistance
3.6. Effect of an Electromagnetic Intensity on Corrosion Resistance
4. Conclusions
- (1)
- With the increase in magnetic field intensity, the bonding strength of the cladding layer increases, and the width increases gradually from 4.02 mm at 0 T to 4.25 mm at 12 T. The crack phenomenon decreases gradually, and the dilution rate increases.
- (2)
- Magnetic field-assisted laser cladding will not change the phase composition of the cladding layer, but the position of the diffraction peak will shift to lower angles due to the different degrees of lattice distortion. With the increase in magnetic field intensity, some of the microstructure of the coating is refined, and the hard phase CrB tends to form clusters.
- (3)
- The microhardness of the coating with magnetic field assistance increases compared with that without magnetic field assistance and reaches the maximum at 8 T, which is 944 HV0.5. The microhardness at 12 T does not increase but decreases and is lower than the other three coatings.
- (4)
- With the assistance of the magnetic field, the COF of the coating decreases with the magnetic field intensity. The average COF of the coating at 12 T is 0.29, which is 6.5% lower than that at 0 T. With the increase in magnetic field intensity, the wear width, wear volume, and wear rate of the coating gradually decrease. The wear volume decreases by 81.13% at 12 T compared with that at 0 T.
- (5)
- The current corrosion density of the coating decreases with the increase in the magnetic field intensity, and the corrosion potential reaches its maximum at 8 T. At low frequency and high magnetic field intensity, the coating has larger amplitude modulus and phase angle, indicating the enhancement of its corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Price, S.; Figueira, R. Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings 2017, 7, 25. [Google Scholar] [CrossRef]
- Mou, J.; Jia, X.; Chen, P.; Chen, L. Research on Operation Safety of Offshore Wind Farms. J. Mar. Sci. Eng. 2021, 9, 881. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Y.; Yu, T.; Wang, D.; Leng, X.; Wang, K.; Liu, L.; Pan, J.; Yao, S.; Chen, Z. Review on wear resistance of laser cladding high-entropy alloy coatings. J. Mater. Res. Technol. 2024, 28, 911–934. [Google Scholar] [CrossRef]
- Momber, A.W. Quantitative performance assessment of corrosion protection systems for offshore wind power transmission platforms. Renew. Energy 2016, 94, 314–327. [Google Scholar] [CrossRef]
- Farayibi, P.K.; Abioye, T.E.; Clare, A.T. A parametric study on laser cladding of Ti-6Al-4V wire and WC/W2C powder. Int. J. Adv. Manuf. Technol. 2016, 87, 3349–3358. [Google Scholar] [CrossRef]
- Sui, S.; Chew, Y.; Hao, Z.; Weng, F.; Tan, C.; Du, Z.; Bi, G. Effect of cyclic heat treatment on microstructure and mechanical properties of laser aided additive manufacturing Ti–6Al–2Sn–4Zr–2Mo alloy. Adv. Powder Mater. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Arias-González, F.; Del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. Fiber laser cladding of nickel-based alloy on cast iron. Appl. Surf. Sci. 2016, 374, 197–205. [Google Scholar] [CrossRef]
- Zhu, L.; Xue, P.; Lan, Q.; Meng, G.; Ren, Y.; Yang, Z.; Xu, P.; Liu, Z. Recent research and development status of laser cladding: A review. Opt. Laser Technol. 2021, 138, 106915. [Google Scholar] [CrossRef]
- Zhai, L.L.; Ban, C.Y.; Zhang, J.W. Investigation on laser cladding Ni-base coating assisted by electromagnetic field. Opt. Laser Technol. 2019, 114, 81–88. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Chen, Z.; Zhu, Y.; He, F.; Xiang, N.; Wang, Y. Study on the effect of electromagnetic field on the segregation and structural property of Ni60 cladding layer. Optik 2023, 272, 170279. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, L.L.; Zhang, L.; Zhang, J.W.; Ban, C.Y. Effect of steady magnetic field on microstructure and properties of laser cladding Ni-based alloy coating. J. Mater. Res. Technol. 2022, 17, 2145–2157. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, H.; Wang, J.; Zhang, G.; Zhao, Y.; Sun, K. Effects of TiB2+TiC content on microstructure and wear resistance of Ni55-based composite coatings produced by plasma cladding. Trans. Nonferrous Met. Soc. 2019, 29, 132–142. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Du, D.; Chang, B.; Liu, G.; Hu, Y.; Tong, Y.; Zhang, M.; Zhang, J.; Ju, J. Microstructure and properties of K648 superalloy additively manufactured by extreme high-speed laser metal deposition. Trans. Nonferrous Met. Soc. 2024, 34, 2192–2203. [Google Scholar] [CrossRef]
- Zhao, J.; Han, B.; Cui, G.; Zhang, S.; Li, M.; Wang, Y. Preparation of Ni55 + FeS composite coatings and their antifriction performances in artificial seawater. Mater. Des. 2017, 131, 375–383. [Google Scholar] [CrossRef]
- You, W.; Wei, G.; Yinkai, X.; Huaixue, L.; Caiyou, Z.; Ming, X.; Hongqiang, Z. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J. Mater. Sci. Technol. 2024, 177, 44–58. [Google Scholar]
- Zhang, Y.; Guo, W.; Shi, J.; Chi, J.; Chen, G.; Han, G.; Zhang, H. Improved rotating bending fatigue performance of laser directed energy deposited Ti6Al4V alloys by laser shock peening. J. Alloys Compd. 2024, 980, 173664. [Google Scholar] [CrossRef]
- Lei, J.; Liu, G.; Li, H.; Han, H.; Di, R.; Lei, J. Gaussian and circular oscillating laser directed energy deposition of WC/NiCu composites. Mater. Charact. 2023, 204, 113218. [Google Scholar] [CrossRef]
- WEI, W.; ZHENG, X.; CHEN, X.; ZHAI, Y.; CHENG, Q.; GUO, F.; HE, Q.; SU, W.; ZHANG, C.; RAN, H.; et al. Anisotropy of mechanical properties response on crystallographic features of GH5188 superalloy fabricated by laser powder bed fusion. J. Adv. Manuf. Sci. Technol. 2023, 3, 2023015. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.H.; Cui, X.; Zhang, S.; Chen, J.; Zhang, J.B. Microstructure and mechanical behavior of additive manufactured Cr–Ni–V low alloy steel in different heat treatment. Vacuum 2020, 175, 109216. [Google Scholar] [CrossRef]
- Balyan, M.K. X-ray Bragg diffraction with allowance for the second derivatives of amplitudes in dynamical diffraction equations. J. Contemp. Phys. 2014, 49, 180–187. [Google Scholar] [CrossRef]
- Lin, Y.; Yuan, Y.; Wang, L.; Hu, Y.; Zhang, Q.; Yao, J. Effect of electromagnetic composite field on microstructure and cracks of Ni60 alloy during solidification. Acta Metall. Sin. 2018, 54, 1442–1450. [Google Scholar] [CrossRef]
- Kota, S.; Wang, W.; Lu, J.; Natu, V.; Opagiste, C.; Ying, G.; Hultman, L.; May, S.J.; Barsoum, M.W. Magnetic properties of Cr2AlB2, Cr3AlB4, and CrB powders. J. Alloys Compd. 2018, 767, 474–482. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Zeng, Z.; Fu, Y. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al. J. Alloys Compd. 2017, 727, 278–285. [Google Scholar] [CrossRef]
- Savrai, R.A.; Makarov, A.V.; Soboleva, N.N.; Malygina, I.Y.; Osintseva, A.L. The Behavior of Gas Powder Laser Clad NiCrBSi Coatings Under Contact Loading. J. Mater. Eng. Perform. 2016, 25, 1068–1075. [Google Scholar] [CrossRef]
- Yao, G.; Yuan, J.; Pan, S.; Guan, Z.; Cao, C.; Li, X. Casting In-Situ Cu/CrBx Composites via Aluminum-Assisted Reduction. Procedia Manuf. 2020, 48, 320–324. [Google Scholar] [CrossRef]
- Yao, G.; Cao, C.; Pan, S.; Yuan, J.; De Rosa, I.; Li, X. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting. J. Mater. Sci. Technol. 2020, 58, 55–62. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Li, X.; Tong, Y.; Hu, Y.; Hu, H.; Chang, B.; Ju, J. Effect of hot isostatic pressing on microstructure and properties of high chromium K648 superalloy manufacturing by extreme high-speed laser metal deposition. J. Mater. Res. Technol. 2024, 28, 3951–3959. [Google Scholar] [CrossRef]
- Chiang, K.A.; Chen, Y.C. Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide. J. Mater. Process. Technol. 2007, 182, 297–302. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Farhat, Z.; Nasiri, A. Effect of Surface Nanocrystallization on Wear Behavior of Steels: A Review. Materials 2024, 17, 1618. [Google Scholar] [CrossRef]
- Yutao, L.; Kaiming, W.; Hanguang, F.; Xingye, G.; Jian, L. Microstructure and wear resistance of in-situ TiC reinforced AlCoCrFeNi-based coatings by laser cladding. Appl. Surf. Sci. 2022, 585, 152703. [Google Scholar]
- Jian, G.; Jiang, J.; Rui, W.; Jingjing, L.; Hongyao, Y.; Kaiming, W. Effects of Laser Scanning Rate and Ti Content on Wear of Novel Fe-Cr-B-Al-Ti Coating Prepared via Laser Cladding. J. Therm. Spray Technol. 2022, 31, 2609–2620. [Google Scholar]
- Dai, X.; Xie, M.; Zhou, S.; Wang, C.; Gu, M.; Yang, J.; Li, Z. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J. Alloys Compd. 2018, 740, 194–202. [Google Scholar] [CrossRef]
- Lu, F.; Ma, K.; Li, C.; Li, C. Enhanced Corrosion Resistance of a Double Ceramic Composite Coating Deposited by a Novel Method on Magnesium-Lithium Alloy (LA43M) Substrates. J. Therm. Spray Technol. 2021, 30, 680–693. [Google Scholar] [CrossRef]
- Li, W.; Xia, Y.; Fang, Y.; Song, H.; Lei, J. Effects of circular beam oscillation on microstructure, mechanical and electrochemical corrosion properties of laser melting deposited Inconel 625. J. Manuf. Process. 2022, 84, 847–858. [Google Scholar] [CrossRef]
- Ji, X.; Wang, H.; Pang, X.; Zhang, H.; Chen, T.; Hu, Y.; Wang, K.; Zhang, J.; Zhang, X.; Tong, Y. Multinary intermetallic with enhanced catalytic activity and prolonged stability at high current density for electrochemical hydrogen production. J. Alloys Compd. 2024, 976, 173119. [Google Scholar] [CrossRef]
- Di, J.; Zhi, C.H.; Jie, S.X.; Juan, L.X.; Feng, Z.X.; Hao, C.; Liang, M.G. Wear and corrosion resistance of CoCrNi composite coatings by laser cladding. China Foundry 2022, 19, 535–543. [Google Scholar]
- Xu, X.; Du, J.L.; Luo, K.Y.; Peng, M.X.; Xing, F.; Wu, L.J.; Lu, J.Z. Microstructural features and corrosion behavior of Fe-based coatings prepared by an integrated process of extreme high-speed laser additive manufacturing. Surf. Coat. Technol. 2021, 422, 127500. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N.; Davies, C.H.J. Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater. 2010, 63, 1201–1204. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Zakerin, N. A review on the role of surface nanocrystallization in corrosion of stainless steel. J. Mater. Res. Technol. 2022, 19, 1120–1147. [Google Scholar] [CrossRef]
- Morshed-Behbahani, K.; Nasiri, A. Corrosion response of steels fabricated through arc directed energy deposition additive manufacturing: A review. Mater. Horiz. 2024, 11, 3011–3037. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cu | Ni | Cr | Nb |
---|---|---|---|---|---|---|---|---|
≤0.20 | ≤0.55 | 1.20–1.70 | ≤0.025 | ≤0.010 | ≤0.30 | ≤0.30 | ≤0.30 | ≤0.050 |
Si | Mo | Cr | B | C | Fe | Cu | Mo | Ni |
---|---|---|---|---|---|---|---|---|
4.0 | 3.0 | 15.5 | 3.0 | 0.75 | 14.0 | 2.5 | 2.5 | Bal. |
Spot Scanning Position | Element/Mass Fraction wt.% | |||||
---|---|---|---|---|---|---|
Cr | B | C | Si | Fe | Ni | |
A | 4.00 | 3.89 | 9.02 | 3.11 | 15.67 | Bal. |
B | 62.01 | 12.44 | 8.26 | 0.24 | 4.38 | Bal. |
C | 45.28 | 2.72 | 10.98 | 0.88 | 6.86 | Bal. |
D | 13.98 | 1.35 | 9.65 | 1.45 | 12.35 | Bal. |
Element (wt.%) | Point | ||
---|---|---|---|
1 | 2 | 3 | |
C | 20.00 | 17.01 | 12.16 |
O | 5.38 | 0.07 | 17.04 |
Si | 3.10 | 2.52 | 3.77 |
Cr | 9.33 | 16.11 | 15.32 |
Fe | 11.46 | 12.89 | 10.49 |
Ni | 50.72 | 49.41 | 41.23 |
Magnetic Field Intensity | Icorr/(A·cm−2) | Ecorr/V | βc/(V/decade) |
---|---|---|---|
0 T | 3.527 × 10−6 | −0.655 | −0.13569 |
4 T | 3.059 × 10−6 | −0.617 | −0.14888 |
8 T | 1.985 × 10−6 | −0.498 | −0.29783 |
12 T | 2.362 × 10−6 | −0.597 | −0.13841 |
Magnetic Field Intensity | Rs (Ω·cm2) | CPE (Ω−1·sn·cm−2) | n | Rct (Ω·cm2) | ∑χ2 |
---|---|---|---|---|---|
0T | 7.303 | 5.507 × 10−5 | 0.841 | 2.113 × 103 | 1.818 × 10−3 |
4T | 7.383 | 5.71 × 10−4 | 0.8084 | 2.306 × 104 | 1.716 × 10−3 |
8T | 6.884 | 4.648 × 10−5 | 0.8395 | 2.738 × 104 | 3.481 × 10−3 |
12T | 7.313 | 4.422 × 10−4 | 0.8373 | 3.254 × 104 | 2.429 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, D.; Jiang, D.; Tong, Y.; Zhang, M.; Zhang, J.; Hu, H.; Zhang, Z.; Wang, K. Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding. Metals 2024, 14, 998. https://doi.org/10.3390/met14090998
Zhan D, Jiang D, Tong Y, Zhang M, Zhang J, Hu H, Zhang Z, Wang K. Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding. Metals. 2024; 14(9):998. https://doi.org/10.3390/met14090998
Chicago/Turabian StyleZhan, Dianxian, Dezhi Jiang, Yonggang Tong, Mingjun Zhang, Jian Zhang, Hongwei Hu, Zhenlin Zhang, and Kaiming Wang. 2024. "Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding" Metals 14, no. 9: 998. https://doi.org/10.3390/met14090998
APA StyleZhan, D., Jiang, D., Tong, Y., Zhang, M., Zhang, J., Hu, H., Zhang, Z., & Wang, K. (2024). Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding. Metals, 14(9), 998. https://doi.org/10.3390/met14090998