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Abstract: This paper presents the results of the study of the composite based on magnesium
hydride with the addition of nanosized nickel powder, obtained by the method of an
electric explosion of wires. The obtained MgH2-EEWNi (20 wt.%) composite with the
core-shell configuration demonstrated the development of a defect structure, which makes
it possible to significantly reduce the hydrogen desorption temperature from 418 ◦C for
pure magnesium hydride to 229 ◦C for hydride with the addition of nickel powder. In
situ studies of the evolution of the defect structure using positron annihilation methods
and diffraction methods made it possible to draw conclusions about the influence of
the Mg2NiH0.3 and Mg2NiH4 phases on the sorption and desorption properties of the
composite. The results obtained in this work can be used in the field of hydrogen energy in
mobile or stationary hydrogen storage systems.

Keywords: hydrogen storage material; magnesium hydride; nickel; nanoscale powders;
hydrogen; desorption

1. Introduction
Metal-hydrogen systems have their own specific features, which are associated mainly

with the high diffusion mobility of hydrogen in the crystal lattice of metals and their alloys,
as well as high reactivity. This is due to the fact that hydrogen tends to interact with
various types of defects, such as impurity atoms, dislocations, grain boundaries, vacancy-
type defects, and its own embedding atoms [1–7]. Hydrogen can induce the formation of
many other defects and actively interact with defects in the structure of the material as
well. Many studies have been aimed at studying the effect of hydrogen on defects, their
structure and mechanical properties, but the mechanisms of such influence have not been
fully established and explained. Thus, it is important to develop and improve known
methods for defect control in functionally graded materials. This is directly related to
the unresolved problems of the hydrogen embrittlement of metals, which is why many
scientific works are devoted to the creation of completely new materials for operation in
a hydrogen environment [8–16]. In this context, the most effective method for evaluating
hydrogen interaction with the structure of defects is the positron spectroscopy method.
Due to its high sensitivity, it allows the most accurate determination of the type of defects
and their concentration, as well as the chemical environment. The effectiveness of this
method has been demonstrated in many studies [17–20].
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Another area of application for positron spectroscopy may be hydrogen storage ma-
terials. Since hydrogen stored in hydride-forming materials is currently considered as a
promising energy carrier, it is important to study the properties of the interaction of such
materials with hydrogen. Of particular interest in this case is the study of metal hydrides
with different properties [21–27]. One of the most common hydride-forming materials is
LaNi5. This compound is characterized by high cyclic stability and is capable of absorbing
and releasing about (1.2–1.4) wt.% hydrogen at room or higher temperatures. This makes it
suitable for use in laboratory storage devices. However, this compound has disadvantages,
such as high cost and mass, as well as limited production sites. Due to the small capacity
for storing hydrogen, the possibilities of using this hydrogen storage material are limited.
Another promising hydrogen storage material is magnesium. Magnesium hydride has
several advantages: it is light, cheap, and has a high hydrogen capacity (7.6% by weight).
However, it has a few drawbacks as well. It has a high bond stability with hydrogen
and begins to dissociate only at relatively high temperatures of about 400 ◦C. Despite the
slow kinetics and high activation energy of desorption, this material is of great interest to
researchers as a potential mobile source of hydrogen storage. To improve the properties of
magnesium hydride, the authors of various studies suggest using different methods and
approaches [28–36]. One of the most well-known methods for improving sorption charac-
teristics is milling in a planetary ball mill. This method allows the magnesium powder to
be activated by mechanical friction [37–42]. Activation in this case means the mechanical
milling of the powder in order to destroy the oxide layer and increase the surface area to
create additional hydrogen diffusion paths into the bulk of the material. Moreover, the
interaction of magnesium and hydrogen is strongly influenced by the presence of various
catalysts that can be added during the ball milling process. However, the grinding process
in a ball mill is inextricably linked with the occurrence of a defective structure. In addition,
catalytic additives affect both the formation of defects during the ball milling process and
the evolution of the defect structure during the hydrogen sorption/desorption processes.

When considering magnesium hydride, catalytic additives are one of the most common
methods for improving hydrogen storage properties. In recent years, many research papers
have been published on the effects of catalytic additives on magnesium hydride by various
research groups. Metal oxides are most often used as additives [43–45], as well as transition
metals: nickel [46,47], cobalt [48], iron [49], titanium [50], vanadium [51], palladium [52],
rare earth metals [53,54], etc. However, the problem of reducing operating temperatures
is still relevant. Many authors [54–62] note an acceptable level of reduction in operating
temperature and maximum hydrogen performance by using Ni as additive material to
MgH2. Doppiu S., Schultz L., and Gutfleisch O. [60], in their work, obtained a composite
based on magnesium hydride with the addition of nickel obtained by the decomposition
of metal carbonyl. All catalysts were divided into micro-, submicro-, and nano-nickel.
According to the data obtained, the most effective added material turned out to be a
powder with a nano-nickel configuration. This effect was explained by the size of the
added powder materials; in this case, the dependence on the size factor was demonstrated.
Liang G. et al. [61], in a similar work, investigated the effect of adding another metal group,
such as Ti, V, Mn, Fe, or Ni. The result of the work was that the addition of only 1 at.%
nickel reduces the temperature of hydrogen desorption from 450 ◦C to 350–370 ◦C. Shang
et al. [62] conducted their own research, and according to the results, they were able to
establish that the addition of 8 mol.% nickel allows the magnesium hydride to dissociate
at temperatures of about 300 ◦C. They associate this phenomenon with the formation of
the intermetallic hydride phase Mg2NiH4. In their work, desorption kinetics were rapidly
achieved, in ~700–800 s. Thus, great progress has been made in the study of magnesium
hydride with the addition of nickel, but no attention has been paid to the study of the defect
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structure of the resulting compositions. Moreover, nano-nickel produced by the electrical
explosion method has also not been sufficiently studied as a catalytic additive to MgH2.

It is important to note that complex defect structure is formed in the composite when
magnesium hydride and EEWNi are milled together in a planetary ball mill. This defective
structure can have a significant impact on the interaction of the composite with hydrogen.
The presence of a catalytic additive can also already affect the defective structure in the
processes of hydrogen sorption and desorption. At the same time, the method of positron
annihilation spectroscopy is the only method that allows the direct study of the influence of
defects on the processes of hydrogen sorption/desorption for hydrogen storage materials.
Thus, in this work, for the first time, a comprehensive analysis was carried out on a
specially designed spectrometric complex that combines an automated system for studying
the interaction of hydrogen with materials (Sievert’s type) and positron spectroscopy to
determine the effect of the defect structure of the composite based on MgH2 and EEWNi
on its interaction with hydrogen. Thus, the novelty of this study is the comprehensive
approach to the study of the Mg–EEWNi–H hydrogen storage system, including in situ
methods of positron annihilation.

2. Materials and Methods
2.1. Materials Preparation

Nanoscale nickel powder obtained by the electric explosion of wires (EEWNi) [63–66]
and magnesium of MPF-4 grade (NMK Ural, Yekaterinburg, Russia) of a high purity of
99.2% with a particle size of 50–300 µm were used to obtain the composite. Magnesium
powder was preliminarily subjected to mechanical activation in a planetary ball mill and
then to hydrogenation using the Gas Reaction Automated Machine (GRAM) complex
(Tomsk Polytechnic University, Tomsk, Russia). A detailed description of the mechanical
activation and hydrogenation process are presented in [67]. They are acceptable and
optimal for the synthesis of this type of powder materials. The mechanical synthesis of
composites was carried out in planetary ball mill AGO-2 (NPO NOVIC LLC, Novosibirsk,
Russia) at the following parameters: jar rotation speed was 900 rpm, milling time was
120 min, the mass ratio of balls to powder was 20:1, and the amount of EEWNi powder
was 20 wt.%. To eliminate the possibility of contamination and appearance of oxides on the
surface of the materials used, the processes of unpacking the packages and loading into the
drums of the planetary ball mill and chambers of the automated complex were carried out
in a sealed glove box, SPEX GB 02M (Spectroscopic Systems, Lomonosov Moscow State
University, Moscow, Russia), with an argon supply line to the working chamber and airlock.
The contents of purified argon 99.999%, water vapor, and oxygen were less than 1 ppm.

2.2. Analysis and Characterization

The morphology of the obtained composites was studied using a TESCAN VEGA 3
SBU scanning electron microscope (Tescan Orsay Holding s.r.o., Brno, Czech Republic).
The elemental composition of the composite was analyzed by the energy-dispersive X-ray
spectroscopy on an XMax 50 X-ray spectrometer (Oxford Instruments plc, Abingdon, UK).
Transmission electron microscopy (TEM) was performed on a Philips CM12 microscope
(Philips/FEI Company, Amsterdam, The Netherlands/Hillsboro, OR, USA). Differential
scanning calorimetry was carried out on a STA 449 F3 Jupiter unit (Netzsch, Selb, Ger-
many). Hydrogen concentration curves and hydrogen sorption–desorption cycles were
obtained using a Gas Reaction Automated Machine (GRAM) complex specially developed
at the Department of Experimental Physics of Tomsk Polytechnic University. Hydrogen
concentration was measured after hydrogen sorption–desorption experiments by melting
the sample in an inert gas (Ar) atmosphere using an RHEN602 hydrogen analyzer (LECO
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Corporation, St. Joseph, MI, USA). The crystalline structure of the samples was analyzed
by X-ray diffraction (XRD) in the scanning range of (5–80)◦ using an XRD-7000S (Shimadzu,
Kyoto, Japan). The diffractometer was operated in a Bragg-Brentano configuration with a
Cu Kα tube (λ = 0.154 nm, 40 kV, 30 mA) with a divergence slit of 1 mm. The study of phase
transitions in magnesium hydride and the composite during dehydrogenation was carried
out in situ at the Precision Diffractometry II station of the Institute of Nuclear Physics,
Siberian Branch of the Russian Academy of Sciences, on channel 6 of the synchrotron
radiation of the VEPP-3 electron storage ring. Single-coordinate detectors simultaneously
record the scattered radiation in a specified angular range (~30◦) over 3328 channels at a
rate of up to 10 MHz. The sample was placed in a chamber pumped with argon to remove
air, and the sample was heated linearly to a temperature of 723 K at a rate of 6 K/min. The
analysis of the gas release during temperature-programmed desorption was performed
using a UGA100 mass spectrometer (Stanford Research Systems, Sunnyvale, CA, USA).
The measured diffraction patterns were processed and reflections were identified using the
PDF-2 (2004) database, FullProf Suite (Version 5.20), and Crystallographica (Version 2.1.1.1
Copyright © 1996–2004 Oxford Cryosystems) search-match software. The in situ analysis of
experimental samples of magnesium powders and composites based on these was carried
out using the Doppler broadening spectroscopy method on a specialized facility [68]. A
positron source based on the 64Cu isotope was used in this work. This source can be pro-
duced by the reaction 63Cu (n, γ) → 64Cu by irradiating copper foil with a thermal neutron
flux. Pure copper, which has a high melting point, interacts very weakly with hydrogen
compared to other materials, allowing it to be used in a heated hydrogen environment at
high pressure [34]. DBS were acquired and recorded every five minutes. The minimum
number of spectra in each sample was 150,000. The ratio of the number of positron events
at the center of the annihilation peak to the total number of events below the peak is known
as the S parameter and characterizes the probability of positron annihilation with free
electrons. The parameter W is defined as the ratio of the number of events in the wings
of the annihilation peak to the total area of the peak and characterizes the probability of
positron annihilation with electrons. The S parameter is therefore more sensitive to changes
in the free volume, while the W parameter is more sensitive to the chemical environment.
The values used to determine S and W are as follows: channel width for S is 6; channel
width for W is 8; parameter A is 40; and background level is 500 [34].

3. Results and Discussion
3.1. Composite Characterization

Figure 1 shows microphotographs of magnesium hydride and the MgH2–20 wt.%
EEWNi composite obtained using a scanning electron microscope (SEM), as well as particle
size distribution histograms and element distribution maps.

Magnesium hydride particles represent large agglomerates up to 180 µm in size and
consist of smaller particles of (3–15) µm in size as can be seen in the Figure 1e. The average
particle size is about 12 µm (Figure 1e). At the same time, no contaminants are observed
on the surface of the particles, and the elemental distribution map for this sample shows
only the presence of the Mg (Figure 1b). SEM micrographs of the composite show that
the particles of the synthesized MgH2-EEWNi composite reach sizes of (0.08–0.18) µm
(Figure 1c,f). The average particle size is much smaller than that of magnesium hydride
and is about 0.14 µm (Figure 1f). The elemental distribution maps showed that during the
mechanical synthesis process, nickel powder particles were uniformly distributed over the
volume of the composite and deposited on magnesium particles (Figure 1d).
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Figure 1g–h demonstrates the results obtained by transmission electron microscopy.
From the images presented, the nanoscale nickel particles lying on the surface of the
magnesium hydride particle can be clearly identified (Figure 1g). Thus, the composite
particles represent a core-shell structure, where Ni nanoparticles acts as the shell and MgH2

particles act as the core. The selected area electron diffraction (SAED) pattern demonstrated
in Figure 1h makes it possible to conclude that there is no interaction between Mg and Ni
with the formation of new phases. The diffraction rings and spots can be assigned to the
Mg, MgH2, and Ni phases. A small halo is observed at angles characteristic of magnesium
hydride as well, which may indicate the formation of a small amount of amorphous phase
during the milling process. The results of calculations of the sizes of coherent scattering
regions and micro-stresses in MgH2 and the MgH2-EEWNi composite are presented in
Table 1.

Table 1. Results of determining the sizes of coherent scattering regions and micro strains in magne-
sium hydride and MgH2-EEWNi.

Sample Phase Phase Content,
vol.%

Crystallite Size,
nm Strains, ×10−3

MgH2
Mg 24 90 0.31

MgH2 76 70 2.32

MgH2-EEWNi
Mg 18 31 1.76

MgH2 61 24 3.53
Ni 21 31 3.84

The combined mechanical milling of magnesium hydride and EEWNi powder leads
to a decrease in the size of crystallites and an increase in micro strains in all detected phases,
since EEWNi particles are not only deposited on the surface of MgH2 particles, but also
embedded in the surface, inducing intense defect formation (this can be seen in the TEM
image in Figure 1g), which also increases the milling efficiency. Higher stress values in the
composite compared to magnesium hydride indicate the formation of a developed defect
structure in the composite. In this regard, the use of positron spectroscopy to identify the
features of defect formation in the composite and its interaction with hydrogen is relevant.

3.2. Hydrogen Storage Properties of the Composite

Figure 2 shows the differential scanning calorimetry (DSC) analysis of MgH2 and the
MgH2-EEWNi composite when heated to 600 ◦C at a heating rate of 6 K/min in an inert gas
(argon) stream. Differential scanning calorimetry (DSC) is a well-established technique in
which the difference in the amount of heat needed to raise the temperature of a sample and
a reference is measured as a function of temperature. Both the sample and the reference
are maintained at almost the same temperature throughout the experiment. As a rule, the
temperature program for DSC analysis is designed in such a way that the temperature of
the sample holder increases linearly as a function of time. The control sample must have a
well-defined heat capacity in the temperature range to be scanned.

The hydrogen yielding process from the composite was characterized by the presence
of a peak at 229 ◦C, and compared to magnesium hydride the difference was 189 ◦C.
The process of hydrogenation and dehydrogenation is accompanied by the process of the
dissociation of hydrogen molecules at the surface of the material due to nickel powder
particles covering magnesium hydride and acting as a “hydrogen pump”, which make it
easy to diffuse into the volume of the material. Figure 3a shows the X-ray diffraction (XRD)
pattern of the corresponding composite after the dehydrogenation process.
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From Figure 3b, it is clearly seen that an increase in the Mg2NiH0.3 phase can be
observed, indicating the dissociation of magnesium hydride due to the introduction of
nickel powder. Peaks of nickel and its oxide are observed as well, which is in agreement
with the above presented data. Upon hydrogenation, the phase changes to Mg2NiH4 and
acts as a “hydrogen pump”. Nanoscale particles of nickel and its oxide act as additional
hydrogen diffusion pathways. In situ studies using synchrotron radiation techniques can
demonstrate the hydride phase change during desorption. Figure 3c clearly shows the
dissociation of hydride during its heating, with a decrease in the hydride phase and an
increase in the metal phase, in this case magnesium, with increasing temperature. Before
the first temperature maximum, the dissociation of the material begins to occur, which
allows us to complete the assumption about the mechanism of the “hydrogen pump” and
the catalytic effect from the addition of nickel powder produced by the electrical explosion
of the conductor. Experiments were also carried out to determine the cyclic stability of the
composite, which is shown in Figure 3d. As a result of this experiment, it was found that
during 10 sorption/desorption cycles, the composite demonstrates good cyclic stability
and practically does not lose its hydrogen capacity. In the process of hydrogen sorption
by magnesium without the addition of a catalyst, hydrogen molecules dissociate into
individual atoms on the surface of the magnesium particle when overcoming a potential
barrier under the influence of temperature and pressure, binding to atoms of the storage
material, forming hydrides. In this case, a hydride layer is formed on the surface of the
magnesium particle, which prevents the diffusion of hydrogen into the volume of the
metal matrix. The hydrogen desorption process for magnesium hydride consists in the
recombination of hydrogen atoms into a molecule on the surface of the particle, followed by
the desorption of hydrogen from the volume. In the MgH2-EEWNi composite, nickel and
nickel oxide particles lying on the surface of magnesium particles have a significant catalytic
effect, as a result, hydrogen molecules dissociate at temperatures below 473 K. It is known
that Ni forms a Mg2Ni intermetallic compound during hydrogenation, which then passes
into Mg2NiH4 during hydrogen sorption, accelerating the diffusion of hydrogen into the
volume of the material. At the same time, during desorption, individual hydrogen atoms
recombine into molecular hydrogen, passing through nickel particles, and are desorbed
from the surface of MgH2 particles. It is shown that the hydrogen content in the initial
composite MgH2-EEWNi has an average value of ~4.64 wt.%. In the powder MgH2-EEWNi
after vacuum degassing, the hydrogen content is slightly lower (~4.46 wt.%), probably due
to the removal of residual gases and water vapor. In the MgH2-EEWNi composite, after
thermal desorption, the residual hydrogen content is ~ 4% of the initial concentration. For
further in situ analysis of the MgH2-EEWNi composite, the absorption and backscattering
coefficients of positrons and the path of positrons in this material were calculated (Table 2).

Table 2. Calculation of the absorption and backscattering coefficients of positrons and the path of
positrons in a MgH2-EEWNi composite.

Sample Thickness,
µm

The
Backscattering
Coefficient of

Positrons

The Absorption
Coefficient of

Positrons, cm−1

Intensity Without
Taking into Account the

Contribution of the
Source

MgH2–20
wt.%-EEWNi 5000 0.25 73 50

Copper source (64Cu) 10 0.35 345 -
MgH2–20

wt.%-EEWNi 5000 0.25 73 50

According to the calculations, filling a powder layer of more than 5 mm ensures the
complete absorption of positrons from a source based on the isotope 64Cu by the material
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under study. In addition, as shown in Section 1, the distance from the edge of the source to
the inner wall of the crucible of the experimental chamber should also exceed 5 mm. Thus,
for in situ analysis of MgH2-EEWNi composite powders, a round-shaped positron source of
∅4 mm is required. In this case, its mass will be ~ 1.5 g, which increases the irradiation time
to achieve nominal activity to 120 ± 15 min. The in situ Doppler Broadening Spectroscopy
(DBS) spectra are analyzed by estimating the S and W parameters for each spectrum as
pressure and temperature change over time. Such a graphical representation is optimal
because it provides information about the pulse distribution of positron annihilation in
the material under study at each moment of time at a known pressure and temperature,
which allows us to characterize the kinetics of processes and structural features quite fully.
In situ studies by using positron annihilation methods for Mg/MgH2 were performed in
our previous articles [69,70]. The time dependences of pressure, temperature and DBS
parameters for the composite MgH2-EEWNi when held in vacuum at room temperature
are shown in Figure 4.
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composite after exposure to a vacuum at room temperature.

According to the data presented in Figure 4a, in situ DBS spectra, there is a decrease in
the number of samples over time associated with a change in the activity of the positron
source. The activity of the 64Cu isotope decreases markedly throughout the experiment due
to its short half-life of ~12.5 h. The annihilation line narrows over time due to a decrease in
half-width at half-height and a decrease in background with a significant decrease in overall
statistics. The exposure of the MgH2-EEWNi composite to a vacuum at room temperature
is accompanied by an increase in the S parameter and a corresponding decrease in the W pa-
rameter due to the stabilization of the detector load and a change in the recording efficiency.
The W parameter reflects the fraction of positron annihilations with high-momentum elec-
trons. For example, in the vicinity of a vacancy-type defect, the main contribution to the
electron density comes from valence electrons around atoms, as a result of which the W
parameter decreases and, accordingly, the S parameter becomes larger. The change in the S
parameter reflects information about the annihilation of positrons on electrons with low
momenta, i.e., on valence electrons (in metal conduction electrons serve as electrons with
low momenta), which carry information about the structure of the energy band of the
material and the Fermi surface located in the band. The dependence of the annihilation
parameters for the MgH2 sample showed similar changes over time [69]. Figure 5 shows
the in situ DBS spectra and the corresponding dependences of pressure, temperature, and
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S and W parameters for the composite MgH2-EEWNi obtained by stepwise heating in a
vacuum and in a hydrogen medium at pressures of 2 and 30 bar.
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Significant changes in the shape of the annihilation lines are observed over a period
of 200 to 1200 min during the thermally stimulated hydrogen desorption from the MgH2-
EEWNi composite. In situ DBS spectra during the thermally stimulated desorption of the
composite (Figure 5a) reveal a sharp increase in the parameter S in the range from 200 to
500 min, which is associated with the intensive decomposition of hydrides and the release
of hydrogen atoms from the material. Comparing these data with changes in pressure P and
temperature T during this period (Figure 5b), the release of hydrogen from the composite in
the time range of (190–300) min is accompanied by a sharp increase in the S parameter and
a decrease in the W parameter, as well as a noticeable increase in pressure P. In the range
corresponding to an increase in temperature from 50 to 200 ◦C, the changes are due to both
the release of adsorbed gases from the surface of the MgH2-EEWNi composite particles and
the release of hydrogen as a result of the rapid decomposition of MgH2. In the second range,
corresponding to the time interval of (400–560) min, there is also an intense hydrogen yield,
while for magnesium hydride only one broad and intense peak of hydrogen release was
observed at (555–750) min upon reaching a temperature of (342–400) ◦C [69]. This second
peak for the composite is associated with the decomposition of residual hydrides in the
composite. The relative change in the parameter S in these two ranges is significantly higher,
which confirms the intensive process of hydrogen desorption and the decomposition of
hydrides in the specified time intervals. Such an intense change in the S parameter may
indicate both an increase in the excess free volume in the material due to the dissociation of
hydrogen-associated defects and an increase in the concentration of vacancy-type defects,
and a change in the electronic structure. In particular, the transition from an “insulator” to
a “metal” as a result of the decomposition of magnesium hydrides affects the concentration
of charge carriers and the electronic structure of the material. A similar correlation was
observed previously for MgH2 and MgH2-based composites [69,70]. The observed changes
in the S and W parameters indicate the complex dynamics of physico-chemical processes
during the heating of MgH2-EEWNi in a vacuum, including hydrogen desorption and
the evolution of the composite structure. The changes in the DBS parameters occur in
stages and correspond to the heating profile with further heating. This profile is due to a
combination of changes in the activity of the positron source and the formation of thermal
vacancies in Mg. It is noted that the release of hydrogen at the high temperatures observed
in the intervals of (600–630) and (780–810) min is associated with residual hydrogen,
which is strongly associated with defects, as well as with a small amount of hydrides
in the material that were not doped with the catalytic additive EEWNi. In the range of
(950–2000) min, the composite sample is cooled to room temperature in a vacuum. Thus,
the behavior of DBS parameters in the process of thermally stimulated desorption can
be characterized in several stages. At the first stage, in the range of (0–190) min, a slight
increase in the S parameter and a decrease in the W parameter are observed due to a
decrease in the activity of the positron source. The second stage includes both ranges
associated with the release of adsorbed gases and the decomposition of hydrides (stages
with more abrupt changes in S and W parameters, ranges (190–300) and (400–560) min),
as well as the contribution from changes in the activity of the source and the formation
of thermal vacancies in the sample (contribution to the intervals at which the output is
observed hydrogen, and the stages of a smoother change in the S and W parameters in
the interval of 400–920 min). The third stage, (950–2000) min, is characterized by minor
changes in the S and W parameters, while the contribution is mainly made by the relaxation
of thermally induced defects (decrease in S parameter) and a change in the activity of the
positron source (increase in S parameter). As a result of the exposure of the MgH2-EEWNi
composite to a hydrogen atmosphere at a pressure of 2 bar (Figure 5c,d), special changes in
the shape of the annihilation line are observed, other than thermally stimulated desorption.
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In this case, changes in the shape of the annihilation line are limited to a small number
of counts during the first 1000 min. This is due to an increase in the free volume in the
material during heating and holding at a constant temperature and pressure of hydrogen,
as well as a change in the activity of the source. The graph of the dependencies of the DBS,
temperature, and pressure parameters also confirms that these changes follow a complex
stepwise heating profile. The exposure of the composite to a hydrogen atmosphere at a
pressure of 2 bar in the first 500 min does not lead to hydrogen absorption or desorption by
the material. There are no areas of sharp decrease in S and increase in W parameters during
thermally stimulated desorption, which indicates the absence of phase transformations
Mg → MgH2 and other induced physico-chemical processes in this time interval. Thus,
at this stage of the process, there is mainly an accumulation of thermally induced defects,
without observed phase changes in the material. However, it is worth noting that in
the range of (300–920) min, there is a more significant increase in the S parameter and a
decrease in the W. These changes become most significant in the range from 800 to 920 min,
which indicates the accumulation of thermal and hydrogen-induced defects under the
influence of elevated temperature and a hydrogen atmosphere. At the stage of subsequent
cooling, (920–1400) min, there is a decrease in S and an increase in W parameters, which
are due not only to the relaxation of defects at the initial stage of the cooling process with a
decrease in the activity of the source, but also to the absorption of hydrogen and the phase
transformation of Mg → MgH2. A further gradual increase in S parameter and a decrease
in parameter W at (1400–2000) min is associated with a decrease in the contribution of
defect relaxation and the presence of a larger contribution from changes in the activity of
the 64Cu isotope. The DBS in situ spectra for the MgH2-EEWNi composite under exposure
conditions at 30 bar of hydrogen (Figure 5e) exhibits a more complex shape compared
to other patterns and includes several additional stages. Analyzing them in combination
with pressure graphs for the corresponding measurements (Figure 5f), it can be noted
that the number of counts increases during hydrogen desorption and decreases during
sorption. This indicates that the shape of the annihilation line is closely related to the phase
transformations in the magnesium–hydrogen system and the physico-chemical processes
occurring during hydrogen sorption and desorption. The injection of 25 bar of hydrogen
into the chamber at room temperature has a negligible effect on the DBS parameters, the
nature of the dependencies of which is mainly due to a decrease in the activity of the
positron source. The same effect was observed when magnesium was heated in hydrogen
medium [70]. Heating to a temperature of 200 ◦C leads to an increase in pressure in the
chamber to 32 bar; however, the intensive absorption of hydrogen by magnesium powder
does not occur. However, a gradual, slow uptake of hydrogen was observed, in contrast to
magnesium [70]. At the same time, there is an increase in the S parameter and a decrease
in the W parameter. Heating to 300 ◦C in a time interval of (400–450) min leads to the
beginning of an active hydrogen sorption process, accompanied by an increase in the
parameter W and a decrease in the parameter S, and a phase transformation occurs with the
formation of hydrides. Thus, active hydrogen absorption up to equilibrium was completed
in two times less time than for Mg/MgH2, which indicates a faster sorption rate [70].
Further exposure and an increase in temperature to 350 ◦C in the interval of (480–780) min
leads to pressure equalization, but further hydrogen sorption does not occur. There is only
a slight increase in pressure due to an increase in temperature from 300 ◦C to 350 ◦C. In this
case, the parameter S increases and the parameter W decreases, which, apparently, is due
to rapid diffusion in the volume of the material and the accumulation of hydrogen-induced
defects. Heating to 400 ◦C is accompanied by a significant increase in pressure in the
chamber due to hydrogen desorption and a sharp increase in the S parameter. In this range,
not only the active accumulation of thermal and hydrogen-induced defects occurs, but also
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the decomposition of hydrides, accompanied by an intensive release of hydrogen. There
is also a transition of the electronic structure from an insulator (MgH2) to a metal (Mg).
Exposure at this temperature has practically no effect on the S and W parameters, or on the
MgH2 sample [70]. However, after that, the absorption of hydrogen is accompanied by the
same sharp change in the parameter S in the opposite direction. Apparently, the Mg2NiH4–
Mg2Ni phase, which occurs during the processes of hydrogen sorption/desorption at a
given hydrogenation pressure, as well as other structural-phase transformations, plays
an important role here. The pressure of hydrogen in the chamber drops to 11 bar upon
cooling, and the main stage of the phase transformation from magnesium to hydride
occurs. In our earlier study, a composite based on magnesium hydride with the addition of
aluminum powder obtained by electric wire explosion was prepared. The lowest desorption
temperature from the MgH2-EEWAl composite (10 wt.%) was 300 ◦C, compared to pure
magnesium hydride—393 ◦C at a heating rate of 2 K/min. The mass content of hydrogen
in the composite was 5.5 wt.%. The positive effect of the aluminum powder produced by
the electric explosion of wires method on reducing the activation energy of desorption was
demonstrated. The composite’s desorption activation energy was found to be 109 ± 1 kJ/mol,
while pure magnesium hydride had an activation energy of 161 ± 2 kJ/mol [71].

Figure 6 shows the scheme of the formation of the Mg2NiH4 and Mg2Ni phases. A
scheme for reducing the activation energy of desorption for the MgH2-EEWNi composite
is also presented here. This behavior in the interaction of hydrogen with the material is
caused by the effect of adding nanoscale nickel powder and the co-milling of materials in a
planetary ball mill.
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The mechanism is as follows. The co-milling of magnesium hydride with nano-nickel
leads to the formation of a core-shell structure, where Ni nanoparticles act as the shell
and MgH2 particles act as the core. Further, in the obtained composite in the processes
of hydrogen sorption and desorption, additional phases are formed, which contribute
to faster absorption and the release of hydrogen. During hydrogen sorption, the Mg2Ni
phase appears, which then, during the hydrogenation process, passes into the ternary
hydride phase Mg2NiHx, which acts as a “hydrogen pump”. The obtained results of in
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situ positron spectrometry make it possible to identify mechanisms for improving the basic
characteristics of hydrogen storage materials and to develop technological approaches to
the formation and management of their structure.

4. Conclusions
In this work it was experimentally shown that the addition of nickel nanoparticles

obtained by the electric explosion of wires significantly improves the hydrogen sorption and
desorption properties of Mg/MgH2. Using scanning electron microscopy, it was shown that
the composite consists of MgH2 particles and 20 wt.% of EEWNi nanoparticles uniformly
distributed on their surface. The behavior of the defect structure of the composites during
thermally stimulated hydrogen desorption and exposure to a hydrogen atmosphere at a
pressure of 2 and 30 bar was characterized by positron annihilation methods. The results
of in situ positron spectroscopy allow mechanisms to be established for improving the
main characteristics of hydrogen storage materials, as well as for technological approaches
to be developed for forming and controlling their structure. A comprehensive analysis
of time correlations of the parameters of the Doppler broadening of the annihilation line,
pressure, and temperature in the processes of thermal exposure, as well as the effect of a
hydrogen atmosphere on the MgH2-EEWNi composite allows the most complete data to
be obtained on the sorption and desorption properties and internal structure. It has been
established that the decrease in the activation energy of magnesium hydride dissociation
upon the addition of nanosized nickel powder is due to the fact that the deposition of nickel
nanoparticles on magnesium hydride particles reduces the binding energy of hydrogen
with magnesium.
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