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Abstract: In this study, we designed and manufactured an ideal electromigration testing de-
vice for soldering joints to solve the reliability problems caused by temperature and current
density changes in the electromigration processes of micro solder joints. We analyzed the
effects of temperature and current density on the electromigration β-Sn (single-crystal β-Sn
grain) of Sn2.5Ag0.7Cu0.1RE/Cu solder joints, the relationship between the grain orienta-
tion and interfacial IMC (intermetallic compound) growth of Sn2.5Ag0.7Cu0.1RE/Cu solder
joints, and the mechanical properties of solder joints. The results showed that the angle θ be-
tween the c-axis of the β-Sn grain and the current direction for the Sn2.5Ag0.7Cu0.1RE/Cu
solder joint gradually decreased to 8.2◦ when the temperature increased to 150 ◦C, which
accelerated the diffusion of Cu atoms and Cu substrate dissolution. The recrystallization
and grain growth of Cu6Sn5 (An intermetallic compound formed by the fusion of copper
and tin in a ratio of six to five) grains in the anode region promoted electromigration
polarity. Compared with the initial state, the shear strength decreased to 11 MPa, a decrease
of 61.3%, the fracture position shifted from the top of the IMC at the cathode interface to
the root of the IMC at the cathode interface, and the fracture mode changed from ductile
fracture to brittle fracture. With an increase in the current density to 1.1 × 104 A/cm2, θ
decreased to 3.2◦. In addition, we observed the recrystallization of Cu6Sn5 grains in the
anode region and an increase in the grain length and diameter to 6.8–31.9 µm, which further
promoted electromigration polarity. Compared with the initial state, the shear strength
decreased by 72.5% to 7.8 MPa, and the fracture position shifted from the top of the IMC
at the cathode interface to the root of the IMC at the cathode interface. Additionally, the
fracture mode changed from ductile to brittle fracture.

Keywords: Sn2.5Ag0.7Cu0.1RE soldering metal; electromigration; temperature; current
density; intermetallic compounds; grain orientation; shear strength

1. Introduction
With the continuous development of microelectronic products towards miniaturization

and multi-functionalization, the scale of micro–nano connection technology is shrinking,
thereby increasing the number of microsoldering joints and the current density carried by
them. This situation is leading to electromigration [1–3], a phenomenon in which charges
move through a medium and are affected by temperature and current density, thus affecting
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the performance and reliability of semiconductor materials and electronic devices [4–9].
Therefore, it is important to understand the effects of temperature and current density on
electromigration. Chen et al. [10] observed significant electromigration in the local area
above the critical value of current density caused by the current concentration effect in
solder joints with low current density. To avoid the current concentration effect, Li et al. [11]
designed an in situ constant temperature electromigration test for triangular-prism-shaped
Cu/Sn3.0Ag0.5Cu/Cu solder joints. At a temperature of 120 ◦C and a current density
of 7 × 103 A/cm2, obvious electromigration polarity was observed, which demonstrated
that the threshold current density of electromigration occurred or was correlated with the
external (ambient) temperature. Chellvarajoo et al. [12] also found that temperature is
an important factor affecting electromigration, and that the polarity of electromigration
becomes more significant as the temperature increases. Han et al. [13] found that with an
extension of the current loading time, the solder joint transitioned from ductile fracture to
brittle fracture, with fracture sites mostly occurring in the cathode region. Zuo et al. [14]
compared the electromigration phenomenon of Cu/Sn3.0Ag0.5Cu/Cu solder joints at
temperatures of 100 ◦C and 25 ◦C and found that the migration rates of Cu and Sn atoms
varied, resulting in large differences in the timing of electromigration polarity mounds.
This result indicated the existence of an incubation period for the electromigration polarity
effect of microelectron connection solder joints. Wang et al. found that with an increase in
temperature, the electromigration rate increased and tended to become saturated within
a certain temperature range [15–18]. Hsu, Y.C. et al. [19] studied the electromigration
behavior at different current densities in the temperature range of 80–120 ◦C and measured
the corresponding critical current densities of 4.3 × 104 A/cm2, 3.2 × 104 A/cm2, and
1.4 × 104 A/cm2 at higher temperatures. The results indicated that the current densities
needed for electromigration to occur were reduced at higher temperatures, with electromi-
gration itself becoming more commonplace. Jiang Nan et al. [20–22] found that with an
increase in the current density, the c-axis angles of Sn grains decreased. When the angle θ

between the current direction and the c-axis of the Sn grain was 90◦, the electromigration
behavior weakened. When the angle θ between the current direction and the c-axis of the
Sn grain was 0◦, the Cu atoms spread outward along the gap of the c-axis for the Sn particle,
which accelerated the appearance of electromigration. Zhang found that large grains in
polycrystalline β-Sn are the most dominant grains in affecting electromigration [23], so this
paper focuses on large single-crystal β-Sn grains.

In summary, although there is a preliminary understanding of the correlation between
temperature and current density and electromigration of lead-free soldered joints, the
development of the research is constrained by the single means of the relevant research
equipment. This paper takes Sn2.5Ag0.7Cu0.1RE/Cu soldered joints as the research object,
designs and manufactures electromigration test devices under different temperatures and
current densities, and observes and analyzes the effects of soldered joints’ temperatures
and current densities on the IMC (intermetallic compound) and mechanical properties
of the interface of electromigration and at the same time also observes and analyzes
the relationship between single-crystalline β-Sn grain orientation and the interface IMC
mechanism and the reliability of solder joints. The study provides a key foundation for the
design and reliability of solder joints. It provides theoretical and experimental basis for the
reliability design and manufacture of high-reliability lead-free soldering material soldered
joints, which is of great significance to the manufacture of electronic information industry.
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2. Materials and Methods
2.1. Preparation of the Soldering Metal

As shown in Figure 1, Sn2.5Ag0.7Cu0.1RE powder was obtained by mixing Sn, Ag,
and Cu powders with purities greater than 99.9% and rare earth (RE) powder with main
contents of Ce and La in a certain ratio [24]. These powders were evenly mixed in a
planetary ball mill at a speed of 180 r/min for 8 h. The mixed soldering metal powder was
then pressed into a cylindrical shape with a diameter of 20 mm and sintered in a vacuum
furnace at 180 ◦C for 2 h to obtain the composite soldering metal required for the test.
Finally, the composite soldering metal was rolled into a thin sheet of 1 mm × 0.5 mm, and
a copper plate with a mass fraction of 99.9% was selected as the soldering base metal.
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Figure 1. Flow chart of soldering material preparation.

2.2. Soldering Test

The solder joints in this test were integrated for easy disassembly and assembly and
partially butted to eliminate changes in the direction of heat conduction. A schematic
diagram of the solder joints is shown in Figure 2 [25].
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Figure 2. Schematic diagram of the solder joint specimen (all units on the diagram are in mm).

After grinding and cleaning the surface to be soldered and the soldering flake, drop
the appropriate amount of CX600 commercial water-cleaning flux into it, send it into the
vacuum soldering furnace, and obtain the soldered joint after cooling. The test soldering
temperature is 270 ◦C, the holding time is 210 s, and the cooling method is air cooling [26].

2.3. Design, Manufacture, and Testing of Electric Relocation Device

To meet the electromigration test conditions of solder joints in the oil bath environment,
the apparatus was composed of an electromigration energizing device and a temperature
field test chamber. The working principle of the designed and manufactured electromi-
gration test device is shown in Figure 3. The device also included a DC-regulated power
supply, an energizing fixture, and a temperature field test chamber. To reduce the influence
of contact resistance on the electromigration test, we used a single strand of pure Cu wire,
which was filled with Sn. Then, the bolts fixed with the electromigration sample were
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spaced to expand the contact area with the soldering joint. The temperature field test
chamber was able to meet the test conditions in the oil bath environment. The electromigra-
tion test was conducted under a variety of temperature fields in the constant temperature
environment, with parameters set using a temperature measurement and control panel.
After the electromigration test, the specimen was air-cooled for half an hour and then
disassembled. The specific experimental parameters are shown in Table 1.
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Table 1. Technical parameters for studying the influence of temperature and current density on
electromigration.

Research Factor Current Density
(A/cm2) Energizing Time (h) Temperature (◦C)

Influence of
Temperature 7 × 103 100

70
110
150

Influence of Current
Density

5 × 103

100 1108 × 103

1.1 × 104

2.4. Determining the Microstructure and Mechanical Properties of Solder Joints

The prepared electromigration specimens were mounted, sanded, polished, and cor-
roded with a 4% hydrochloric acid alcohol mixture for 10 s [27]. Subsequently, the speci-
mens were placed in a JSM-IT100 (JEOL Ltd., Tokyo, Japan) tungsten filament scanning
electron microscope for observations, and EBSD (Carl Zeiss AG, Oberkochen, Germany)
was used to analyze the microstructure and phase [28]. The SEM photos of the IMC (inter-
metallic compound) interface were imported into the AutoCAD software 2021, and the area
and length of certain areas were randomly measured. The average thickness of the IMC at
the interface of the region was obtained using the equal area method [29]. To ensure the
reliability of the data, five areas were randomly selected for area and length measurements.

The tensile test used a UTM2503 micro-tensile testing machine (Jinan Kesheng Testing
Equipment Co., Ltd., Jinan, China) and was carried out using ±0.5% test force accuracy
and a 0.5 mm/min tensile rate. Three specimens were selected for tensile testing under
each test parameter, and the average shear strength of the three specimens was taken as
the shear strength of the solder joint under this test parameter [30]. A JSM-IT100 tungsten
filament scanning electron microscope was used to observe the shear and cut of the solder
joint, and the necessary composition analysis was carried out via energy spectroscopy.
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3. Results and Discussion
3.1. Electromigration Microstructure of Sn2.5Ag0.7Cu0.1RE/Cu Solder Joints

The electromigration microstructure of the Sn2.5Ag0.7Cu0.1RE/Cu solder joint is
shown in Figure 4a. This solder joint was composed of a base metal Cu substrate, an
interfacial IMC layer, and a soldering seam zone composed of primary phase β-Sn and
eutectic structures. These eutectic structures included granular β-Sn + Cu6Sn5, needle-
β-Sn + Ag3Sn binary eutectic structures, and β-Sn + Cu6Sn5 + Ag3Sn ternary eutectic
structures [31–33]. IMC was mainly composed of scallop-like Cu6Sn5 (An intermetallic
compound formed by the fusion of copper and tin in a ratio of six to five). Figure 4b shows
the high-power SEM in Region A, while the component analysis results in Region B are
shown in Figure 4c. Region B was mainly composed of Sn and Cu. The EBSD phase diagram
of the anode region presented in Figure 4d indicates that the interfacial IMC was composed
of many Cu6Sn5 phases and a small amount of Cu3Sn (An intermetallic compound formed
by the fusion of copper and tin in a ratio of three to one) phases. This research focused on
the cathode and anode interface of the solder joint since electromigration primarily affects
atomic migration, yielding changes in the morphology of the IMC at the interface between
the cathode and anode of the solder joint. In addition, void cracks in the IMC can occur at
the interface of the cathode region [34,35].
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3.1.1. Effect of Temperature on Tissues

Figure 5 shows an IMC (intermetallic compound) microstructure diagram and
EBSD orientation diagram of the cathode region interface under different temperatures
with a current density of 7 × 103 A/cm2 and a loading completion time of 100 h for
Sn2.5Ag0.7Cu0.1RE0.05Ni-GNSs/Cu solder joints. As shown in Figure 5(a1–c1), the inter-
face IMC in the cathode region of the solder joint (temperature: 70 ◦C) was symmetrical,
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while that at both ends was mainly a continuously distributed “scallop-like” Cu6Sn5 layer.
In addition, no Cu3Sn formation or obvious electromigration polarity was observed. When
the temperature increased from 110 ◦C to 150 ◦C, the thickness of the Cu6Sn5 layer in the
anode region of the interface increased significantly, with the shape beginning as wave-like
and then fusing into a coarse lamellar sheet. The thickness of the Cu6Sn5 layer at the
interface of the cathode region decreased, and the number of Kirkendal voids affected by
diffusion in the Cu3Sn layer increased.
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Figure 5. Microstructure (a1–c1) and corresponding EBSD orientation maps (a2–c2) of the IMC
boundary figure in the cathode and anode regions of Sn2.5Ag0.7Cu0.1RE/Cu solder joints at a
current density of 7 × 103 A/cm2 and a loading completion time of 100 h under oil bath temperatures
of 70 ◦C, 110 ◦C, and 150 ◦C.

The EBSD orientation diagram in Figure 5(a2) shows that for the anode region at
70 ◦C with a larger β, the angle θ between the c-axis of the -Sn grain and the current
direction is 56.2◦. The Cu atoms mainly come from Cu substrate dissolution. The Cu6Sn5

grain orientation is also more chaotic, with a grain diameter of 3.2–8.8 µm. In addition,
this figure shows that the proportion has a relatively large-angle grain boundary with
very large energy and that the Cu6Sn5 faced difficulties growing under a temperature
of 70 ◦C. Figure 5(b2) shows the EBSD orientation of the anode region at 110 ◦C. Here,
with an increase in temperature for β, the angle θ between the c-axis of the C-Sn grain
and the current direction becomes 38.6◦. The Cu atoms are mainly diffused through Cu
substrate dissolution and the migration of Cu atoms in the cathode region, resulting in the
grain size of Cu6Sn5 on the side of the Cu substrate growing significantly and flattening
compared with the results under a temperature of 70 ◦C. The Cu6Sn5 orientation also
becomes more chaotic at this time, and the Cu6Sn5 grain diameter varies from 7.5 µm to
25.4 µm. Figure 5(c2) shows an EBSD orientation diagram of the anode region at 150 ◦C.
With an increase in temperature to 150 ◦C, the angle θ between the c-axis and the current
direction of the β-Sn grain decreased to 8.2◦. The diffusion of Cu atoms subsequently
intensified, yielding a further increase in the grain size of Cu6Sn5 on the side close to the
Cu substrate and an obvious preferential orientation in the grain orientation. The newly
formed Cu6Sn5 grains near the soldering seam further increased, and the grain orientation
became more chaotic. In addition, the Cu6Sn5 grains coarsened, and the diameter increased
to 7.8–32.7 µm, indicating that with an increase in temperature, the angle θ between the



Metals 2025, 15, 75 7 of 17

c-axis of the β-Sn grain and the current direction decreased. Then, the electromigration
phenomenon became increasingly obvious, Cu substrate dissolution and the migration of
atoms in the cathode region to the anode region, as well as the recrystallization and growth
of Cu6Sn5 grains in the anode region. This finding is in agreement with Shen et al. who
suggested that Cu-Sn IMC grows very fast during electromigration for Sn grains with β-Sn
grains with c-axis θ angle less than 25◦ [36]. In summary, as temperature rises, under the
dual influence of electron wind and temperature, atomic thermal motion intensifies, the
diffusion coefficient increases, and the diffusion rate accelerates. During electromigration,
the anode acts as the recipient of metal ions. Higher temperatures enable more metal atoms
to surmount the energy barrier, diffusing from the cathode to the anode and depositing
there, thus increasing the thickness of the intermetallic compound (IMC) at the anode.

At the cathode, metal atoms continuously migrate to the anode due to electromigration,
and the elevated temperature further expedites this process. This leads to a more rapid
depletion of metal atoms at the cathode, inhibiting the growth of the cathode IMC and
reducing its thickness.

Furthermore, grain boundaries, which serve as rapid diffusion pathways for atoms,
become more influential as temperature increases. The anode region likely harbors a
relatively high density of high-angle grain boundaries. The temperature increase enhances
the atomic diffusion rate along these grain boundaries, allowing more atoms to rapidly
diffuse through them into the IMC growth region. This accelerates IMC growth and
contributes to an increase in anode IMC thickness.

Conversely, the cathode’s microstructure may impede atomic diffusion. As temper-
ature increases and anode-side atomic diffusion intensifies, relatively fewer atoms are
available for IMC growth at the cathode, resulting in a decrease in cathode IMC thickness.

Figure 6: Sn2.5Ag0.7Cu0.1RE with a current density of 7 × 103 A/cm2 and a loading
completion time of 100 h. Figure 6a shows that the asymmetric growth of the cathode and
anode IMC is relatively flat when the temperature is between 70 ◦C and 110 ◦C. Moreover,
the increase rate for total IMC thickness and the difference in IMC thickness between the
cathodes was relatively stable at this stage. In addition, the increase and decrease rates
of the IMC between the total thickness of the cathode and the IMC thickness increased
significantly when the temperature was between 110 ◦C and 150 ◦C. As shown in Figure 6b,
the linear increase in the difference between the total thickness of the IMC and the current
thickness of the IMC increased at this stage, at which time IMC growth was in its expansion
phase. In summary, with an increase in temperature, electromigration became more obvious
and intense under the dual effects of electronic wind and temperature.
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Figure 6. Under the conditions of a current density of 7 × 103 A/cm2, and a loading completion time
of 100 h at oil bath temperatures of 70 ◦C, 110 ◦C, and 150 ◦C. (a) The thickness of the intermetallic
compound (IMC) in the cathode and anode regions of the Sn2.5Ag0.7Cu0.1RE/Cu solder joint.
(b) The difference between the sum of the IMC thicknesses of the cathode and anode.
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3.1.2. Effect of Current Density on Tissues

Figure 7 presents the IMC boundary diagram and EBSD orientation diagram for the
Sn2.5Ag0.7Cu0.1RE/Cu solder joint in the cathode and anode regions under different
current densities at 110 ◦C and a loading completion time of 100 h. Figure 7(a1) shows the
current density of 5 × 103 A/cm2. The interface between the Cu substrate and the cathode
and anode regions formed a continuous scallop-like Cu6Sn5 intermetallic compound and a
thin, light gray layer of the compound Cu3Sn. In addition, the interface between the cathode
and anode IMC was in good condition, with no defects such as cracks or holes. Figure 7(b1)
shows that the IMC interface at a current density of 8 × 103 A/cm2 changed significantly
compared to the IMC interface at a current density of 5 × 103 A/cm2. The thickness
of the IMC at the interface of the anode region also increased significantly, presenting a
thick slat, as did the light gray Cu3Sn compound between the Cu6Sn5 and Cu substrate.
Conversely, the thickness of the IMC in the cathode region decreased as the morphology
changed to thin slats with cavity cracks. Figure 7(c1) shows that under a current density of
1.1 × 104 A/cm2, the thickness of the interface IMC in the anode region of the solder joint
increased sharply and the morphology resembled a thick slat. Additionally, the Cu3Sn that
formed between the Cu6Sn5 and Cu substrate in the anode region thickened further, while
the thickness of the interface IMC in the cathode region decreased. IMC at the interface in
the cathode region presented as a thin strip, and the crack grew further.

Metals 2025, 15, x FOR PEER REVIEW 8 of 17 
 

 

3.1.2. Effect of Current Density on Tissues 

Figure 7 presents the IMC boundary diagram and EBSD orientation diagram for the 
Sn2.5Ag0.7Cu0.1RE/Cu solder joint in the cathode and anode regions under different cur-
rent densities at 110 °C and a loading completion time of 100 h. Figure 7(a1) shows the 
current density of 5 × 103 A/cm2. The interface between the Cu substrate and the cathode 
and anode regions formed a continuous scallop-like Cu6Sn5 intermetallic compound and 
a thin, light gray layer of the compound Cu3Sn. In addition, the interface between the 
cathode and anode IMC was in good condition, with no defects such as cracks or holes. 
Figure 7(b1) shows that the IMC interface at a current density of 8 × 103 A/cm2 changed 
significantly compared to the IMC interface at a current density of 5 × 103 A/cm2. The 
thickness of the IMC at the interface of the anode region also increased significantly, pre-
senting a thick slat, as did the light gray Cu3Sn compound between the Cu6Sn5 and Cu 
substrate. Conversely, the thickness of the IMC in the cathode region decreased as the 
morphology changed to thin slats with cavity cracks. Figure 7(c1) shows that under a cur-
rent density of 1.1 × 104 A/cm2, the thickness of the interface IMC in the anode region of 
the solder joint increased sharply and the morphology resembled a thick slat. Addition-
ally, the Cu3Sn that formed between the Cu6Sn5 and Cu substrate in the anode region 
thickened further, while the thickness of the interface IMC in the cathode region de-
creased. IMC at the interface in the cathode region presented as a thin strip, and the crack 
grew further. 

 
(a) 5 × 103 A/cm2 (b) 8 × 103 A/cm2 (c) 1.1 × 104 A/cm2 

Figure 7. Microstructure (a1–c1) and corresponding EBSD orientation maps (a2–c2) for the IMC 
boundary in the cathode area of Sn2.5Ag0.7Cu0.1RE/Cu solder joints at an oil bath temperature of 
110 °C; a loading completion time of 100 h; and current densities of 5 × 103 A/cm2, 8 × 103 A/cm2, and 
1.1 × 104 A/cm2. 

Figure 7(a2–c2) shows the EBSD crystal structure orientation of β-Sn grains in the 
anode region at different current densities (see Figure 7(a2)). The angle θ between the c-
axis of the β-Sn grain and the current direction indicates that Cu atoms mainly diffused 
through Cu substrate dissolution at a large angle of 44.8°. The grain orientation of Cu6Sn5 
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Figure 7. Microstructure (a1–c1) and corresponding EBSD orientation maps (a2–c2) for the IMC
boundary in the cathode area of Sn2.5Ag0.7Cu0.1RE/Cu solder joints at an oil bath temperature of
110 ◦C; a loading completion time of 100 h; and current densities of 5 × 103 A/cm2, 8 × 103 A/cm2,
and 1.1 × 104 A/cm2.

Figure 7(a2–c2) shows the EBSD crystal structure orientation of β-Sn grains in the
anode region at different current densities (see Figure 7(a2)). The angle θ between the
c-axis of the β-Sn grain and the current direction indicates that Cu atoms mainly diffused
through Cu substrate dissolution at a large angle of 44.8◦. The grain orientation of Cu6Sn5

then became more chaotic, with a grain diameter of 3.8–9.6 µm, a high proportion of large-
angle grain boundaries, and large grain boundary energy. When the current density was
8 × 103 A/cm2, as shown in Figure 7(b2), the angle θ between the c-axis of single crystal
β-Sn and large grain β-Sn was 27.6◦. Here, Cu atoms mainly diffused through Cu substrate
dissolution and the migration of Cu atoms in the cathode region, resulting in a grain size of
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Cu6Sn5 near the Cu substrate higher than 5 × 103 A. The newly formed Cu6Sn5 grains near
the soldering seam side were small, and the grain orientation was relatively messy, with a
Cu6Sn5 grain diameter of 6.2–22.4 µm. When the current density was 1.1 × 104 A/cm2, as
shown in Figure 7(c2), the angle θ between the c-axis and the current direction of the β-Sn
die of the solder joint further reduced to 3.2◦. The diffusion of Cu atoms then intensified,
further increasing the grain size of Cu6Sn5 on the side near the Cu substrate, with an
obvious preferential orientation in the grain direction. The newly formed Cu6Sn5 grains
near the soldering seam also increased further with a chaotic grain orientation. Additionally,
the Cu6Sn5 grains gradually coarsened—the diameter increased from 6.8 µm to 31.9 µm.
Therefore, the current density of the solder joint was ≥8 × 103 A/cm2 under a 100 h oil
bath at a temperature of 110 ◦C. In summary, with an increase in current density, the angle
θ between the c-axis of the β-Sn grains and the current direction decreased, Cu substrate
dissolution and the migration of Cu atoms from the cathode region to the anode region.
This phenomenon also led to the recrystallization and grain growth of Cu6Sn5 grains in the
anode region, thickening of the interface IMC, and gradual thinning of the cathode until
failure. This finding is in agreement with Fu et al. who suggested that when the c-axis of
Sn grains is aligned with the current direction, the intermetallic compound layer is thicker
at the anode and almost absent at the cathode [21]. In summary, as the current density
escalates, the force of the electron wind strengthens, exacerbating the electromigration
phenomenon. The electron wind, flowing from the cathode to the anode, exerts a drag
force on metal atoms. At relatively high current densities, an increased number of metal
atoms, such as Cu atoms, migrate from the cathode to the anode under the influence of
the electron wind. At the anode, these additionally migrated atoms supply more materials
for the growth of intermetallic compounds (IMC), contributing to an augmentation in the
thickness of anode IMC.

Conversely, the cathode experiences a substantial loss of atoms, resulting in an insuffi-
cient number of atoms to sustain IMC growth. This leads to a deceleration of IMC growth,
and in some instances, partial decomposition, ultimately culminating in failure.

On the other hand, the anode region is likely to have a relatively high density of
high-angle grain boundaries. Under the effect of an electric field, atomic diffusion along
these grain boundaries is accelerated. This allows more atoms to rapidly diffuse through
the grain boundaries into the IMC growth region, expediting the growth of anode IMC and
increasing their thickness.

In comparison, the grain boundary structure in the cathode region may be less con-
ducive to rapid atomic diffusion. Alternatively, at high current densities, a large number of
atoms at the grain boundaries are extracted, constraining the growth of cathode IMC and
ultimately causing failure.

Figure 8 shows the IMC thickness of the cathode area on the Sn2.5Ag0.7Cu0.1RE/Cu
solder joint with a current density of 7 × 103 A/cm2 and a loading completion time of
100 h. Figure 8b shows that the increase rate for the total thickness of the cathode and the
difference between the IMC thickness of the cathode and the IMC thickness of the anode
was relatively stable at this stage. Additionally, as shown in Figure 8a, the growth of the
IMC was stable in the range of 7 × 103 A/cm2 to 8 × 103 A/cm2. Figure 8b shows that
the total IMC thickness did not change significantly. However, the linear increase rate for
the IMC thickness difference grew at this stage, possibly due to an increase in the atomic
and total migration rates. Figure 8a shows that the asymmetric growth of the cathode
and anode IMC became relatively gentle between 8 × 103 A/cm2 and 1.2 × 104 A/cm2,
with the material migration reaching its maximum at 1.2 × 104 A/cm2. Here, the anode
thickness was the largest, while the cathode thickness was the thinnest. In summary, with
an increase in current density, electromigration became more obvious and intense, and the
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growth of IMC on the anode side reached its maximum. Finally, fracture failure occurred at
the IMC on the cathode side.
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Figure 8. Under the conditions of a temperature of 110 ◦C, and a loading completion time of 100 h
with 5 × 103 A/cm2, 8 × 103 A/cm2, and 1.1 × 104 A/cm2 (a) The thickness of the intermetallic
compound (IMC) in the cathode and anode regions of the Sn2.5Ag0.7Cu0.1RE/Cu solder joint.
(b) The difference between the sum of the IMC thicknesses of the cathode and anode.

3.2. Electromigration Mechanical Properties of Sn2.5Ag0.7Cu0.1RE/Cu Soldering Joints
3.2.1. Effect of Temperature on the Electromigration Shear Strength of the Joint

Figure 9 shows the shear strength of the Sn2.5Ag0.7Cu0.1RE/Cu soldering joint
at different temperatures. As shown in Figure 9, the shear strength of the solder joint
decreased uniformly and relatively gently until the oil bath temperature reached 110 ◦C,
after which the shear strength of the solder joint began to fluctuate slightly, and the decline
rate increased. When the temperature increased to 150 ◦C, the shear strength of the solder
joint was 11 MPa, which is 61.3% lower than that before energizing (28.4 MPa).
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Figure 9. Effect of different temperatures on the shear strength of solder joints at a current density of
7 × 103 A/cm2 and an electric loading time of 100 h.

Figure 10 presents the shear and cutting joints of Sn2.5Ag0.7Cu0.1RE/Cu soldering
joints at different temperatures. With an increase in oil bath temperature, the number
of dimples in the shear fractures decreased and the cleavage facets gradually increased
and became smoother. As shown in Figure 10a, when the oil bath temperature was 70 ◦C,
many dense spherical dimples and tear ridges appeared in the shear fracture. According
to the spectroscopic analysis of Region A in Figure 10a, the shear fracture structure was
dominated by the β-Sn phase, and the brittle phase with a small amount of Cu6Sn5 was
ductile fractured. The fracture occurred at the edge of the dimple, forming a fracture fiber
band through the inside of the grain, with the fracture occurring at the top of the cathode
interface IMC. As shown in Figure 10b, when the oil bath temperature increased to 110 ◦C,
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the shear cut of the solder joint was mainly composed of partial tear ridges and large
cleavage facets. Additionally, the brittle phase of Cu6Sn5 in the B Region of Figure 10b
increased, and a fracture occurred in the middle of the cathode interface IMC. Here, a
tough–brittle mixed fracture mode could be observed. As shown in Figure 10c, when the
oil bath temperature increased to 150 ◦C, the shear fracture was mainly composed of a
large cleavage plane and a tear edge, with the whole fracture appearing relatively smooth.
The fracture mode then changed from ductile to brittle fracture and the shear strength
decreased very obviously. The compositional analysis of regions A, B and C is presented in
Table 2.
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Figure 10. SEM images of the shear cut-off of the Sn2.5Ag0.7Cu0.1RE/Cu solder joint under different
temperatures at a current density of 7 × 103 A/cm2 and an electric loading time of 100 h: (a) oil bath
temperatures of 70 ◦C, (b) 110 ◦C, and (c) 150 ◦C.

Table 2. EDS analysis of the shear and cut-off areas of solder joints at different oil bath temperatures
(At.%).

Location Sn Ag

A 93.46 2.33
B 55.68 3.43
C 34.76 1.78

3.2.2. Effect of Current Density on the Shear Strength of the Joint

Figure 11 shows the electromigration shear strength of Sn2.5Ag0.7Cu0.1RE/Cu solder
joints at different current densities. As shown in Figure 11, when the current density was
less than 8 × 103 A/cm2, the electromigration shear strength of the solder joint did not
change significantly with an increase in current density until experiencing a small rapid
decrease at 7 × 103 A/cm2. When the current density exceeded 8 × 103 A/cm2, the shear
strength decreased significantly with an increase in the current density. When the current
density reached 1.1 × 104 A/cm2, the shear strength of the solder joint was 7.8 MPa, 72.5%
lower than that before energizing (28.4 MPa).
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Figure 11. Effect of different current densities on the shear strength of solder joints at a temperature
of 110 ◦C and electric loading time of 100 h.

Figure 12 presents the shear fracture under non-current density. Figure 12 indicates
that with an increase in current density, the shear fracture gradually changed from many
dense spherical dimples to cleavage facets supplemented by spherical dimples, followed
by becoming flat and smooth. As shown in Figure 12a, when the current density was
5 × 103 A/cm2, the shear fracture morphology presented dense spherical dimples, mainly
small dimples, supplemented by large dimples, with a large number of tear ridges. Ac-
cording to the energy spectrum analysis of the A Region shown in Figure 12a, the shear
fracture structure was dominated by a β-Sn phase with a small amount of the Cu6Sn5

phase, indicating ductile fracture. The fracture occurred at the top fracture near the cathode
interface IMC. (As shown in Figure 13a) This is because, under a low current density of
5 × 103 A/cm2, the electron wind is relatively weak. However, the solder joint at the top
of the cathode, being directly exposed to the interface, has relatively active atoms that
are more susceptible to the influence of the electron wind and thus prone to migration.
The atomic migration leads to a decrease in the number of atoms in this area, gradually
weakening the structure. Under the stress concentration induced by atomic migration,
this site becomes a crack initiation locus. As electromigration proceeds, the crack propa-
gates, ultimately resulting in fracture. As shown in Figure 12b, when the current density
increased to 8 × 103 A/cm2, the soldering joint shear cut was mainly composed of a larger
spherical dimple and a smooth cleavage facet, while the fracture became flat. The energy
spectrum analysis of the B Region in Figure 12b shows that the brittle phase of Cu6Sn5

increased, while the β-Sn phase of the shear fracture structure decreased, confirming that
the fracture was located in the middle of the IMC at the cathode interface, with a mixed
fracture mode presenting both toughness and brittleness (as shown in Figure 13b). This is
because when the current density increases to 8 × 103 A/cm2, the electron wind intensifies,
causing a large number of atoms to migrate from the cathode to the anode. This leads to an
exacerbated loss of atoms from the middle part of the cathode where Cu6Sn5 exists. Such
atomic migration not only alters the chemical composition of Cu6Sn5 but also changes its
microstructure, such as modifications in grain size and adjustments in grain boundary
structure. The change in grain size may result in an increase in the grain boundary area. At
the grain boundaries, atoms are arranged irregularly, with higher energy levels, making
these areas prone to crack formation. As shown in Figure 12c, the current density increased
to 1.1 × 104 A/cm2 under the action of increasing Joule heating and electronic wind. At
this juncture, the large spherical dimple within the shear fracture almost disappeared
and a secondary crack appeared. The fracture was mainly composed of large cleavage
facets and tear ridges, and the whole fracture looked relatively smooth and flat. Based on
an EDS spectroscopic analysis of the C Region shown in Figure 12c, the structure of the
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shear fracture was almost completely dissolved as the Cu6Sn5 phase, mainly the Cu3Sn
phase, and the fracture position shifted from the middle of the cathode interface IMC to the
Cu3Sn interface at the root of the cathode interface IMC. (As depicted in Figure 13c) This is
attributed to the fact that when the current density reaches 1.1 × 104 A/cm2, the effect of
the electron wind becomes extremely strong. A substantial number of atoms continuously
migrate away from the cathode, leading to a significant depletion of atoms at the root of
the cathode where the Cu3Sn phase is located. The structure of the Cu3Sn phase is severely
damaged, with the integrity of its crystal structure being lost and a substantial decline
in the material’s strength. The originally closely packed atomic structure becomes loose,
rendering it unable to withstand external loads and internal stresses. The fracture pattern
then changed from ductile fracture to brittle fracture, and the void density in the cathode
region also increased, resulting in defects such as voids and cracks, which reduced the shear
strength of the solder joint, significantly reducing its reliability. The fracture pathways of
the solder joints at the three different current density stages are shown in Figure 13. The
compositional analysis of regions A, B and C is presented in Table 3.
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Table 3. EDS analysis of the shear and cut-off areas of the solder joints under different oil bath
temperatures (At.%).

Location Sn Ag

A 94.77 2.33
B 57.46 3.24
C 25.56 1.02

Figure 12 shows the shear fracture under non-current density. Here, with an increase
in current density, the shear fracture gradually changed from a large number of dense
spherical dimples to cleavage facets supplemented by spherical dimples and then gradually
became flat and smooth. As shown in Figure 12a, under a current density of 5 × 103 A/cm2,
the morphology of the shear fracture presented dense spherical dimples—mainly small
dimples—supplemented by large dimples, with numerous tear ridges. According to the
energy spectrum analysis of the A Region shown in Figure 12a, the shear fracture structure
was dominated by the β-Sn phase with a small amount of the Cu6Sn5 phase, indicating
ductile fracture. Additionally, the fracture occurred at the top near the cathode interface
IMC. As shown in Figure 12b, when the current density increased to 8 × 103 A/cm2, the
soldering joint shear cut was mainly composed of a larger spherical dimple and a smooth
cleavage facet, while the fracture became flat. The energy spectrum analysis of the B
Region in Figure 12b shows that the brittle phase of Cu6Sn5 increased, and the β-Sn phase
of the shear fracture structure decreased, confirming that the fracture was located in the
middle of the IMC at the cathode interface. Additionally, the fracture mode presented a
mix of toughness and brittleness. As shown in Figure 12c, the current density increased
to 1.1 × 104 A/cm2 under the action of increasing Joule heating and electronic wind. At
this stage, the large spherical dimple inside the shear fracture almost disappeared, and a
secondary crack appeared. The fracture was mainly composed of large cleavage facets and
tear ridges, and the whole fracture looked relatively smooth and flat. Based on the EDS
spectroscopic analysis of the C region presented in Figure 12c, the structure of the shear
fracture was almost completely dissolved as the Cu6Sn5 phase, mainly the Cu3Sn phase,
and the fracture position shifted from the middle of the cathode interface IMC to the Cu3Sn
interface at the root of the cathode interface IMC. The fracture pattern then changed from
ductile fracture to brittle fracture. The void density in the cathode region also increased,
resulting in defects such as voids and cracks, which reduced the shear strength of the solder
joint, thereby significantly reducing its reliability. The fracture pathways of the solder joints
at the three different current density stages are shown in Figure 13.

4. Conclusions
This paper centers on the Sn2.5Ag0.7Cu0.1RE/Cu brazed joints, devising and fabricat-

ing electromigration devices and specimens to explore their electromigration characteristics
across diverse temperatures and current densities.

1. The electromigration device and specimen designed and manufactured in the
present study can meet the requirements for Sn2.5Ag0.7Cu0.1RE/Cu in a constant-
temperature oil bath.

2. The electromigration polarity phenomenon of asymmetric growth of IMC at the
electromigration interface of Sn2.5Ag0.7Cu0.1RE/Cu solder joints occurred at a tem-
perature of 70 ◦C and with an angle θ between the c-axis of the β-Sn grain and the
current direction of 56.2◦. With an increase in temperature to 150 ◦C, θ gradually
decreased to 8.2◦, which accelerated the diffusion of Cu atoms and Cu substrate disso-
lution, and the recrystallization and grain growth of Cu6Sn5 grains in the anode region
promoted the occurrence of electromigration polarity. Compared with the initial state,
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the shear strength decreased to 11 MPa, a decrease of 61.3%, the fracture position
shifted from the transition zone of IMC/soldering at the cathode interface to the root
of IMC at the cathode interface, and the fracture mode changed from ductile to brittle
fracture. In summary, temperature exerts a significant influence on the growth of
intermetallic compounds (IMC) at the anode and cathode during electromigration. An
increase in temperature intensifies atomic thermal motion and accelerates diffusion.
At the anode, the deposition of metal atoms diffusing from the cathode, coupled with
enhanced diffusion along grain boundaries, leads to an increase in IMC thickness.
Conversely, at the cathode, the accelerated migration of atoms to the anode, combined
with an unfavorable microstructure, inhibits IMC growth and reduces its thickness.
These findings provide a basis for materials research.

3. At a current density of 5 × 103 A/cm2, the angle θ between the c-axis and the current
direction of the β-Sn grain was 44.8◦, and the interface IMC of the Cu6Sn5 grain
diameter was 2.1–8.3 µm. Moreover, the current density increased to 1.1 × 104 A/cm2,
and θ gradually decreased by 3.2◦. Then, the diffusion of Cu atoms and the melting
of Cu substrates accelerated, as did the recrystallization of Cu6Sn5 grains in the anode
region. Additionally, the increase in grain length and diameter accelerated from 6.8 µm
to 31.9 µm, which promoted the occurrence of electromigration polarity. Compared
to the initial state, the shear strength dropped to 11 MPa, representing a decrease of
55.3%, and the fracture position shifted from the transition zone of IMC/soldering at
the cathode interface to the root of the IMC at the cathode interface. Lastly, the fracture
mode changed from ductile to brittle. In summary, as the current density increases,
the electron wind force strengthens, intensifying electromigration. The electron wind
drags metal atoms, like Cu, from the cathode to the anode. In the anode, the additional
migrating atoms and accelerated grain boundary diffusion boost IMC growth and
thickness. In contrast, the cathode suffers from atom depletion and unfavorable grain
boundary diffusion, leading to IMC growth inhibition and eventual failure. This
reveals the significant impact of current density on the electromigration-induced IMC
growth disparity between the anode and cathode.
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