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Abstract: Selective laser melting lightweight lattice structures have broad application
prospects in the aerospace field. Understanding the dependence of mechanical performance
on feature size is crucial for structure design. This work optimized the process parameters
based on large-size metal blocks (20 mm) and then fabricated submillimeter features with
a size of 0.4~1.0 mm. The influence of feature size on the defects, microstructures, and
mechanical properties was investigated. The results showed that the dimensional errors
for all size features were above 15%. When matched with appropriate border offset, these
features could be printed precisely. The densification of submillimeter features was more
than 99%, demonstrating the applicability of the optimized process parameters for the
fine features. The porosity and relative roughness decreased and tended to stabilize with
increasing feature size. Due to having less defects, the thicker features exhibited better
mechanical properties in terms of ultimate strength and elongation. After being processed
with polishing treatment, the roughness was reduced below 1 µm and the tensile strength
increased above 320 MPa. The elastic modulus, yield strength, and elongation were also
significantly improved.

Keywords: selective laser melting; lattice structure; size effect; dimensional accu-
racy; AlSi10Mg

1. Introduction
A lattice structure is a kind of artificially designed porous material. Unlike randomly

distributed metal foam, the cells of the lattice structure are arranged periodically in space [1].
A large number of cavities inside the lattice structure provide feasibility for lightweight
design. With the advantages of low density and high specific strength and stiffness, lattice
structures are widely used in aerospace fields. The programmable cells can endow the
lattice structure with unique physical performance, such as a negative Poisson ratio [2],
vibration reduction [3], thermal control [4], electromagnetic shielding [5], and acoustic
shielding [6], which do not exist in nature. The combination of outstanding load-bearing
capacity and function lays the foundation for the idea of structure–function integration
design [7], and greatly promotes the application and development of lattice structures.

The performance of lattice structure depends on their internal complex structure de-
sign. Traditional forming and processing technologies are unable to fabricate such intricate
structures. The advent of additive manufacturing (AM) technology provides a solution
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for the fabrication of cross-scale lattice structures. Ran Tao [8] innovatively integrated
lattice structure optimization design and additive manufacturing technology to achieve
the efficient structural design and experimental validation of lattice metamaterials. The
results showed that AMed lattice metamaterial exhibited excellent performance in energy
absorption, load-bearing capability, and thermal management. The innovative work pro-
vides strong theoretical and experimental support for the design of future multifunctional
materials. Selective laser melting (SLM) is one of the most widely used additive manu-
facturing techniques [9]. During the printing process, a high-energy laser beam is used
to melt the metal powder track by track according to the planned trajectory. Through the
overlap between track and track, and layer and layer, the designed model is finally printed.
Compared with the traditional process, SLM has higher forming accuracy and can realize
the fabrication of submillimeter (<1 mm) features. SLM also has obvious advantages in
terms of material utilization and production cycle. The development of SLM technology
provides strong technical support for the innovative design and functional exploration of
lattice structures [10].

The defects introduced in the SLM process, such as microscopic pores [11–14], surface
roughness [15–20], dimensional accuracy [21,22], etc., have significant effects on mechanical
performance. The SLM process involves hundreds of process parameters, and a reasonable
combination of process parameters is crucial for forming quality control [21,23–28]. In
addition to the process parameters, the as-designed model also plays an important role
in print quality. Wang et al. [29] used 316L stainless-steel powder to print struts with a
diameter ranging from 0.25 mm to 5 mm. It was observed that the distance between the
primary dendrite arms of the sub-cell decreased as the diameter of the strut increased from
0.25 mm to 1 mm, and remained stable when the diameter was larger than 1 mm. This
difference in microstructure further caused differences in hardness and tensile strength.
Dong et al. [30] also observed the influence of geometry size on microstructure in an
AlSi10Mg specimen with a diameter of 1~5 mm. As the size increased, there was a transition
from fine equiaxed crystals to coarse columnar crystals. Furthermore, the microscopic
porosity decreased significantly. As a result, the larger specimen showed a higher yield
strength and ultimate tensile strength. Majeed et al. [31] found that the hardness of
AlSi10Mg thin-wall structures with different thicknesses was significantly different. The
microstructure and defects of Ti6Al4V struts and thin walls are also shaped by geometry
size, which will further influence the mechanical properties [32–34]. Shahabad et al. [35]
and Promoppatum et al. [36] analyzed the influence of feature size on molten pool size,
temperature gradient, and cooling rate through numerical simulations, and explained the
influence mechanism on the microstructure.

Among all the metals used for SLM, AlSi10Mg stands out due to its excellent print-
ability, as well as specific stiffness, specific strength, and thermal and electrical conduc-
tivity [37,38]. In order to accommodate the requirements of bearing and lightweight in
aerospace applications, the diameter of the strut of a lattice structure is usually designed to
0.4~1.0 mm, and the thickness of the external skin is usually less than 1 mm. Up to now,
the size effect of AlSi10Mg skin lattice structures has not been fully studied. On the one
hand, existing studies mainly focus on scales greater than 1.0 mm, which is higher than the
feature size. On the other hand, the influence of porosity, roughness, and microstructure on
mechanical properties is complex, and the systematic analysis of the influence mechanism
of feature size on mechanical properties needs to be supplemented.

To complement the gaps of current studies, the features of an AlSi10Mg body-centered
cubic lattice structure were taken as samples to analyze the influence of size on forming
quality. Firstly, the process parameters were optimized and then were used to print features
with a size of 0.4~1.0 mm. The as-built size was measured to investigate the effect of
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geometry size on dimension accuracy, and appropriate BO was set to compensate for
dimensional errors. The defects and microstructure were characterized to analyze the
effect of geometry size on the printing quality. After that, the relationship between feature
size and mechanical properties was explored. In addition, a polishing treatment was
implemented to explore the surface quality in relation to mechanical properties.

2. Materials and Methods
2.1. Materials

AlSi10Mg powder was used, which was supplied by Zhong Yuan Advanced Material
Technology Co., Ltd. (Ningbo, China). The tap density was 2.67 g/cm3 and the apparent
density was 1.35 g/cm3. The SEM image and particle size distribution of the AlSi10Mg
powder are shown in Figure 1. The particle size ranges from 20 µm to 63 µm, and D10, D50,
and D90 are 25.6 µm, 42.98 µm, and 70.52 µm, respectively. The flow test results showed
that the Hall flowability was 75.5 s. The chemical composition was examined according
to GB/T 20975 standard [38], and the proportion is shown in Table 1. In addition to three
major elements of Al, Si, and Mg, the powder also contained some microelements, such as
Fe, Cu, and Ti, and the cumulative proportion of microelements was less than 0.5%.
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Figure 1. (a) SEM image of AlSi10Mg powder; (b) powder size distribution. 

  

Figure 1. (a) SEM image of AlSi10Mg powder; (b) powder size distribution.

Table 1. AlSi10Mg powder chemical composition (in wt%).

Element Si Mg Fe Cu Mn Ni Zn Ti Sn Pb Al

Composition
(wt%) 10.23 0.39 0.16 0.011 0.009 0.01 0.011 0.013 0.011 0.01 Bal

An EP-M650 machine (E-plus 3D Technology Co., Ltd., Beijing, China) was used to fabri-
cate samples. This machine is configurated with a forming chamber of 657 × 657 × 800 mm3

and is suitable for the formation of large-sized metal parts. To ensure production efficiency,
the system is equipped with four lasers and vibroscopes. The maximum laser power can
reach 1000 W and the maximum scanning speed is up to 8000 mm/s. The four lasers can
work simultaneously. The energy of the laser beam is approximately at the level of Gaussian
distribution, and the beam spot diameter is 100 µm. Argon was used as a protection gas
and the oxygen content of the forming cabin was controlled below 100 ppm. Multi-laser
precision positioning and splicing area precision control technology ensures high-quality,
high-efficiency, and high-stability printing. The advanced technology provides technical
support for the direct production of large-size, high-precision, and high-performance parts
in aerospace, military, and other fields.
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2.2. Methods
2.2.1. Process Parameter Optimization

Pore defects are one of the major challenges encountered by SLM. Understanding the
relationship between process parameters and pore defects is a prerequisite for producing
high-densification parts. The process parameters directly related to pore defects mainly
include laser power, scanning speed, hatch spacing, and powder layer thickness [9,39].
In order to obtain the best combination of process parameters, an orthogonal experiment
method was employed. Laser power ranged from 140 W to 340 W, scanning speed ranged
from 800 mm/s to 1800 mm/s, and hatch spacing ranged from 90 µm to 140 µm. Each
parameter included 6 variables. Three factors and six levels were combined into an orthog-
onal experimental scheme, as shown in Table 2. The powder layer thickness was 30 µm, in
accordance with engineering practice.

Table 2. Orthogonal experimental scheme design.

Scheme # Power
/W

Speed
/(mm/s)

Hatch
/µm Scheme # Power

/W
Speed

/(mm/s)
Hatch
/µm

1 140 800 90 19 260 800 120
2 140 1000 100 20 260 1000 130
3 140 1200 110 21 260 1200 140
4 140 1400 120 22 260 1400 90
5 140 1600 130 23 260 1600 100
6 140 1800 140 24 260 1800 110

7 180 800 100 25 300 800 130
8 180 1000 110 26 300 1000 140
9 180 1200 120 27 300 1200 90
10 180 1400 130 28 300 1400 100
11 180 1600 140 29 300 1600 110
12 180 1800 90 30 300 1800 120

13 220 800 110 31 340 800 140
14 220 1000 120 32 340 1000 90
15 220 1200 130 33 340 1200 100
16 220 1400 140 34 340 1400 110
17 220 1600 90 35 340 1600 120
18 220 1800 100 36 340 1800 130

The image method and Archimedes method were used to characterize pore defects. In
order to obtain more statistically meaningful data, the sample was designed with a large
size of 20 × 20 × 20 mm3, as shown in Figure 2. After the metal blocks were printed, the
surface was burnished to eliminate the interference of sticky powder on the Archimedes
test. AG204 analytical balance (Mettler Toledo, Dresden, German) was used to weigh
samples with an accuracy of 0.1 mg. The dry weight of the samples was measured before
they were immersed in water. Each metal block was measured twice, and the results had to
be consistent. The results were recorded as Mdry. The metal blocks were weighed again
when immersed in water. The measurements were also repeated twice with a deviation
controlled within 2.0 mg. The average values were taken and recorded as Mwet. The
densification is defined by Formula (1). For image characterization, the metal blocks were
polished with 180-, 400-, 600-, 800-, 1500-, and 2000-grit sandpapers and 0.05 µm diamond
suspension, respectively. Then, an inverted metallographic microscope GX51 (Olympus,
Tokyo, Japan) was used to characterize pore defects within the metal blocks.
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φ =
Mdryρwater

(Mdry − Mwet)ρsolid
(1)

ρwater is water density; ρsolid is theoretical density.
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2.2.2. Specimen Design

To investigate the influence of feature size on mechanical properties, corresponding
tensile specimens were designed, as shown in Figure 3. The feature size ranged from
0.4 mm to 1.0 mm. Figure 3b illustrates the design of the tensile test rods corresponding to
the struts. The building orientation of the tensile test rods coincides with the inclination
angle of the struts within the body-centered cube structure, which is 35.3◦. Considering
that tensile test rods are easily bended by scrapers, support was added to both ends of
the rods. Figure 3c illustrates the design of the tensile test piece corresponding to the skin.
Tensile test pieces were placed parallel to the building direction. The cross-section of the
tensile test piece is rectangular, and the width of the middle section is twice the thickness.

The molten pool width can reach hundreds of microns, which is in the same order
of magnitude as feature size, and can easily cause size deviation. In order to realize the
high-precision forming of fine structures, BO was used to control size deviation. BO means
that the border was offset inward by a certain distance to compensate for size deviation.
The molten pool size is determined by the process parameters, meaning that BO should
be adjusted according to the specific process scheme. BOs of 0.03 mm, 0.04 mm, 0.05 mm,
0.06 mm, and 0.07 mm were set, respectively, to prepare the specimens. The parameter
settings are shown in Table 3. The as-built size was measured and appropriate BOs were
matched for different size specimens. Then, tensile specimens were printed in batches. The
as-built tensile specimens are shown in Figure 3d,e.

Table 3. BO values for features of different sizes.

Designed Size/mm BO/mm

0.4, 0.6, 0.8, 1.0 0

0.4, 0.6, 0.8, 1.0 0.03

0.4, 0.6, 0.8, 1.0 0.04

0.4, 0.6, 0.8, 1.0 0.05

0.4, 0.6, 0.8, 1.0 0.06

0.4, 0.6, 0.8, 1.0 0.07
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2.2.3. Specimen Characterization

Specimens were annealed at a temperature of 280 ◦C for 4 h to eliminate residual
stress after printing. Ultrasonic cleaning was used to remove the residual powder for about
30 min. An optical microscope Nikon SMZ-745 (Nikon Corporation, Tokyo, Japan) was used
to gauge the as-built size under different BOs. A 3D surface profiler ContourGT 3D (Bruker
Corporation, Billerica, MA, United States) with a spatial resolution of 1 µm was used
to characterize surface morphology, and 300,000 points were collected. Microcomputed
tomography YXLON FF35 CT (YXLON International, Hamburg, German) was used to
detect pore defects. The scan was performed at 190 kV with a nano-focus ray. When
scanned, the sample was rotated at a constant speed of 0.36◦/s. The recorded scanning
data were imported into VGStudio MAX software (https://www.volumegraphics.com/en/
products/vgsm.html, accessed on 25 November 2024) to reconstruct the three-dimensional
topographies. All pores larger than 1 µm were within detection range. According to
the detected pore size and number, the total volume of pore defects was calculated, and
then the porosity of the sample was further defined. The thin walls for microstructure
characterization were polished using an argon ion polishing instrument IM4000II (JEOL
Ltd., Tokyo, Japan). An electron backscatter diffraction (EBSD) microscope EDAX Velocity
Super (EDAX Inc., Pennsylvania, PA, USA) was used to characterize the microstructure.

2.2.4. Tensile Test

Uniaxial tensile testing was carried out at room temperature on a microcomputer-
controlled electronic universal testing machine (Lishi LD26.205, Shanghai, China), as shown
in Figure 4a. The tensile testing speed was set to 1.0 mm/min. Conventional extensometers
and strain gauges are unable to measure the deformation data of submillimeter specimens.
Digital image correlation (DIC), a non-contact full-field strain measurement technique,
was used to gauge strain. An industrial camera acA2440-35um (Basler, Berlin, German)

https://www.volumegraphics.com/en/products/vgsm.html
https://www.volumegraphics.com/en/products/vgsm.html
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was used to record the deformation process of specimens during tensile testing. The
camera used a 75 mm telephoto lens. The image acquisition frequency was 2 f/s. A
representative stress–strain curve is shown in Figure 4b. Six repeated specimens were
tested for each specific size. Elastic modulus, yield strength, ultimate tensile strength, and
fracture elongation were calculated based on the tensile stress–strain curve. AlSi10Mg
has no obvious yield point, and the stress corresponding to 0.2% strain was taken as the
yield strength.
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3. Results and Discussion
3.1. Optimization of Process Scheme

The internal defects of the metallographic blocks were characterized by optical mi-
croscopy. Figure 5 shows the pore defects under different process parameters. Figure 5a–f
exhibit the internal pore characteristics with a laser power of 140 W and scanning speed
of 800~1800 mm/s. It can be seen that a large number of pores are distributed inside the
metallographic blocks. These pores are characterized by irregular shapes, and the size is
generally greater than 100 µm. According to these characteristics, the type of the pores can
be classified as lack-of-fusion pores. Such defects are mainly caused by insufficient energy
input [40]. Increasing the scanning speed from 800 mm/s to 1800 mm/s causes energy
density to reduce. As a result, pore size, number, and irregularity significantly increase.
At scanning speeds of 1600 mm/s and 1800 mm/s, the pores even interconnect with each
other, which is greatly detrimental to the print quality.

When the laser power is increased to 340 W, the number and size of the pores are
greatly reduced. The pores are mainly characterized by circular shape. According to the
pore morphology, they can be classified as gas pores. Gas pores are mainly caused by
trapped gas. When instable flow occurs in a molten pool, the inert gas or gas contained
in the raw materials may be involved. If the gas cannot escape before solidification, the
residual gas will cause the formation of gas pores. The porosity slightly changes as the
scanning speed increases from 800 mm/s to 1800 mm/s. Due to the heterogeneity of
pore distribution, the captured images cannot reflect the actual porosity. The Archimedes
method was further used to quantify the porosity.

Statistical analysis was performed on the densification of metal blocks treated by
different process parameters, and the results are shown in Figure 6. Figure 6a exhibits
the densification under different volumetric energy density (EV). The volumetric energy
density is defined by Formula (2) [41,42]. According to the test results, the densification
varied from 86.3% to 99.7% under the given process parameters. With the increase in
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volumetric energy density, the sample densification showed an increasing trend. When the
volumetric energy density exceeded 67 J/mm3, the densification was almost above 99%.

Ev =
P

v × l × h
(2)

where P is laser power (W), v is scanning velocity (mm/s), h is the hatch space (mm), and l
is the layer thickness (mm).
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1000 mm/s, 1200 mm/s, 1400 mm/s, 1600 mm/s, and 1800 mm/s. (g–l) Laser power 340 W, scanning
speed 800 mm/s, 1000 mm/s, 1200 mm/s, 1400 mm/s, 1600 mm/s, and 1800 mm/s.
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Minitab statistical software (https://www.minitab.com/en-us/products/minitab/,
accessed on 25 November 2024) was used to analyze the influence of laser power, scanning
speed, and hatch spacing on densification. Figure 6b exhibits the effect of a single factor
on the density. It can be seen that with increases in laser power, the density increases
monotonically. Almost full densification could be achieved when the laser power was

https://www.minitab.com/en-us/products/minitab/
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340 W. With the increase in scanning speed and hatch spacing, the density decreases.
Analysis of variance (ANOVA) was used to further examine the sensitivity of density to
these three factors, and the results are shown in Table 4. F-factor is an index for evaluating
the sensitivity of the target to the factors. The larger the value, the stronger the influence
of this factor. The F-factor of laser power is 28.3, which is much higher than that of the
scanning speed and hatch spacing. This phenomenon indicates that laser power is the main
factor affecting densification. The F-factor of scanning speed is 4.47, inferior to that of laser
power. The F-factor of hatch spacing is the lowest, indicating that the influence on density
is the weakest.

Table 4. ANOVA on density.

Source DF Seq SS Contribution Adj SS Adj MS F P

Power 5 0.031942 70.95% 0.031942 0.006388 28.30 0.000
Speed 5 0.005346 11.87% 0.005346 0.001069 4.74 0.005
Hatch 5 0.003219 7.15% 0.003219 0.000644 2.85 0.042
Error 20 0.004515 10.03% 0.004515 0.000226 - -
Total 35 0.045021 100.00% - - - -

The three highest densifications are 99.659%, 99.634%, and 99.629%, respectively, and
the corresponding process parameters are listed in Table 5. There is a slight discrepancy
among the three values, and the maximum error is only 0.03%. In terms of printing
efficiency and energy consumption, these three schemes are significantly different. Scheme
35 has the highest scanning speed and lowest energy density, and the resulting density
is slightly smaller than that of the top two schemes. Therefore, considering time and
economic cost, scheme 35 is used as the optimized process parameter to prepare the
subsequent specimens.

Table 5. The maximum three groups of density corresponding to process parameters.

Scheme # Power/W Speed/(mm/s) Hatch/(µm) VED/(J/mm3) Densification/%

32 340 1000 90 125.9 99.659
31 340 800 140 101.2 99.634
35 340 1600 120 59.0 99.629

3.2. Effect of Feature Size on Dimensional Accuracy

The actual size of 0.4~1.0 mm cylindrical struts under different BOs was measured,
and the data are depicted in Figure 7. When BO is 0 mm, the actual size of all specimens is
larger than the designed size. This is because the BO of 0 mm implies that the scanning
tracks are filled directly within the geometry border, and the molten pool will cross the
border, causing the actual size to exceed the designed size. The size deviation for the
0.4 mm strut is 0.075 mm, and the relative error is 18.75%. When the diameter increases
to 1.0 mm, the dimensional error reaches 0.161 mm, and the relative error is 16.15%. The
increase in designed size causes an increasing trend of absolute size error. In contrast, the
relative size error is relatively stable, fluctuating in the range of 15% to 20%.

The influence mechanism of the diameter of the strut on the absolute size error can be
attributed to the heat accumulation during the forming process. Heat accumulation occurs
when the heat dissipation efficiency is lower than the heat input efficiency, which causes
the temperature to rise. The high-energy laser beam is the main source of heat input. As
the top-layer material is heated by the laser beam, the heat energy, on the one hand, will be
conducted downward to the substrate, and on the other hand, will be transferred to the
surrounding powder by the lateral surface, as illustrated by Figure 8a,b. The thicker strut
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possesses a smaller specific surface area compared with the thinner strut, which reduces the
heat dissipation efficiency of the lateral surface. In addition, the larger cross-section area
of the thicker strut means that the laser provides more energy on the top layer. Therefore,
there is stronger heat accumulation on the thicker strut. Regarding the influence of size on
macroscopic heat accumulation, Patcharapit Promoppatum [36] conducted a detailed study.
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Figure 8. Schematic diagram of heat transfer in struts and thin walls of different sizes during the
forming process: (a) thinner strut, (b) thicker strut, (c) thinner wall, (d) thicker wall.

Affected by heat accumulation, the temperature on the top layer of the larger strut
is higher and causes more powder near the border to melt, resulting in a larger size error.
To improve the forming accuracy, an appropriate BO was matched for the struts. It can
be found that with the increase in BO, the actual size gradually decreases and approaches
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the designed size. The statistical data are listed in Table 6. When BO was set to 0.04 mm,
0.06 mm, 0.06 mm, and 0.07 mm, respectively, the as-built size of the struts with diameters of
0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm could reach a good agreement with the designed size.

Table 6. Statistical table of as-built size under different BOs.

Sample BO/mm 0.4 mm 0.6 mm 0.8 mm 1.0 mm

Struts

0 0.48 ± 0.0108 0.72 ± 0.01236 0.92 ± 0.01236 1.16 ± 0.01885
0.03 0.45 ± 0.027 0.64 ± 0.02 0.89 ± 0.01773 1.11 ± 0.01464
0.04 0.41 ± 0.02669 0.61 ± 0.02646 0.86 ± 0.01885 1.08 ± 0.01488
0.05 0.39 ± 0.03606 0.61 ± 0.02744 0.82 ± 0.01165 1.05 ± 0.01291
0.06 0.35 ± 0.0255 0.59 ± 0.01729 0.80 ± 0.01512 1.02 ± 0.01414
0.07 0.34 ± 0.03315 0.58 ± 0.01458 0.80 ± 0.02236 1.00 ± 0.00641

Thin walls

0 0.59 ± 0.01986 0.80 ± 0.01667 1.00 ± 0.01885 1.18 ± 0.01246
0.03 0.51 ± 0.02698 0.73 ± 0.02121 0.92 ± 0.0207 1.17 ± 0.03159
0.04 0.51 ± 0.03105 0.69 ± 0.03739 0.89 ± 0.01996 1.08 ± 0.01915
0.05 0.48 ± 0.01959 0.67 ± 0.0239 0.87 ± 0.01773 1.06 ± 0.01642
0.06 0.42 ± 0.01093 0.63 ± 0.01922 0.83 ± 0.01246 1.03 ± 0.02031
0.07 0.39 ± 0.02728 0.59 ± 0.02242 0.81 ± 0.02295 1.01 ± 0.02167

Figure 9 depicts the as-built size of 0.4~1.0 mm thin walls under different BOs. When
the BO is 0 mm, the actual size is greater than the designed size, with deviation ranging from
0.18 mm to 0.21 mm. The size deviation is relatively stable and does not show dependence
on wall thickness. The schematic diagram of the heat transfer of the thin-wall structure
during the forming process is illustrated in Figure 8c,d. Compared to the heat transfer of
the cylindrical strut, except for the lateral heat dissipation and downward heat conduction,
the length direction of the thin wall also provides space for heat transfer, resulting in no
obvious difference in heat accumulation for different wall thickness structures. In addition,
there are more scanning tracks on the thin-wall structure; in other words, more energy will
be input on the top layer, promoting heat accumulation and causing the dimensional errors
to exceed 0.18 mm.
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3.3. Effect of Feature Size on Roughness 

A 3D surface profiler was used to characterize the surface topography of the thin-

wall specimens. Figure 10a–d show the surface topography characteristics of the thin 

walls with a thickness of 0.4~1.0 mm. The surfaces of the thin walls are rough and uneven, 

and the roughness is almost in the range of 0~100 μm. Surface quality is mainly deter-

mined by two factors. One factor is adhesive powders. Partially melted powder—firmly 

adhered to the surface and difficult to remove by ultrasonic cleaning—is the main contrib-

utor to surface roughness. Another one is the irregularity of the solidified molten pools. 

The semi-ellipsoidal morphology of the molten pools and overlap at the model boundary 

cause the formation of an uneven surface, as shown in Figure 10e. The deflection of scan-

ning tracks between successive layers is usually used to control the thermal stress during 

the printing process, but the deflection of scanning direction will lead to different ditch on 

the surface and affect the surface quality. 
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Figure 9. The actual size of the thin wall: (a) 0.4 mm, (b) 0.6 mm, (c) 0.8 mm, (d) 1.0 mm.
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The relative size error for the 0.4 mm thin-wall structure is the largest, at close to 50%.
When the designed size increases to 1.0 mm, the relative size error is reduced to less than
20%. This indicates that the size control for the thin-wall structure with submillimeter
thickness needs to be paid more attention. In order to achieve high-precision forming, it is
necessary to match an appropriate BO for thin-wall structures with different thicknesses.
According to the statistical results in Table 6, when BO is set to 0.07 mm, all thin-wall
structures can be printed precisely.

3.3. Effect of Feature Size on Roughness

A 3D surface profiler was used to characterize the surface topography of the thin-wall
specimens. Figure 10a–d show the surface topography characteristics of the thin walls with
a thickness of 0.4~1.0 mm. The surfaces of the thin walls are rough and uneven, and the
roughness is almost in the range of 0~100 µm. Surface quality is mainly determined by
two factors. One factor is adhesive powders. Partially melted powder—firmly adhered
to the surface and difficult to remove by ultrasonic cleaning—is the main contributor to
surface roughness. Another one is the irregularity of the solidified molten pools. The
semi-ellipsoidal morphology of the molten pools and overlap at the model boundary cause
the formation of an uneven surface, as shown in Figure 10e. The deflection of scanning
tracks between successive layers is usually used to control the thermal stress during the
printing process, but the deflection of scanning direction will lead to different ditch on the
surface and affect the surface quality.

Metals 2025, 15, x FOR PEER REVIEW 13 of 22 
 

 

and increases gently with the increase in wall thickness. The variation in roughness can 

be attributed to the influence of wall thickness on temperature field. The 0.4 mm thin-

walled structure is relatively narrow and reduces the heat conduction efficiency. More 

heat energy is transferred through the lateral surface to the surrounding powder, as 

shown in Figure 8c. As a result, the powder near the wall surface can be melted more fully. 

The 1.0 mm thin-wall structure has a larger space for heat conduction, and can conduct 

heat to the substrate more efficiently, as shown in Figure 8d. In this case, less heat is dis-

sipated through the wall surface, resulting in the powder near the surface being melted 

incompletely and adhering to the wall surface, increasing the roughness. However, the 

relative roughness of the 0.4 mm thin-wall structure is more than 3%, while the relative 

roughness of the 1.0 mm thin-wall structure is less than 1.5%. The relative roughness de-

creases significantly with the increase in wall thickness. 

102.318 µm

 104.516 µm

99.4 µm

 85.292 µm

89.012 µm

 95.812 µm

94.560 µm

 77.622 µm

(a) Thickness 0.4 mm (b) Thickness 0.6 mm

(c) Thickness 0.8 mm (d) Thickness 1.0 mm

67°

0.4 0.6 0.8 1
4

6

8

10

12

14

16
 Ra    Relative roughness

Thickness (mm)

R
o
u

g
h

n
es

s 
(μ

m
)

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

 R
el

a
ti

v
e 

ro
u

g
h

n
es

s 
(%

)

Adhesive powders

Ditch

Scanning 

path

(e) (f)

 

Figure 10. Three-dimensional surface topography of thin-wall structure: (a) 0.4 mm, (b) 0.6 mm, (c) 

0.8 mm, (d) 1.0 mm, (e) schematic diagram of rough surface by SLM, (f) relation of roughness with 

thickness. 
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Figure 10. Three-dimensional surface topography of thin-wall structure: (a) 0.4 mm, (b) 0.6 mm,
(c) 0.8 mm, (d) 1.0 mm, (e) schematic diagram of rough surface by SLM, (f) relation of roughness
with thickness.
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The surface roughness of thin-walled structures was statistically analyzed, and the
results are shown in Figure 10f. The absolute roughness varies in the range of 12~14 µm,
and increases gently with the increase in wall thickness. The variation in roughness can be
attributed to the influence of wall thickness on temperature field. The 0.4 mm thin-walled
structure is relatively narrow and reduces the heat conduction efficiency. More heat energy
is transferred through the lateral surface to the surrounding powder, as shown in Figure 8c.
As a result, the powder near the wall surface can be melted more fully. The 1.0 mm thin-wall
structure has a larger space for heat conduction, and can conduct heat to the substrate
more efficiently, as shown in Figure 8d. In this case, less heat is dissipated through the wall
surface, resulting in the powder near the surface being melted incompletely and adhering to
the wall surface, increasing the roughness. However, the relative roughness of the 0.4 mm
thin-wall structure is more than 3%, while the relative roughness of the 1.0 mm thin-wall
structure is less than 1.5%. The relative roughness decreases significantly with the increase
in wall thickness.

3.4. Effect of Feature Size on Porosity

The internal pore defects of the struts were evaluated based on the 3D reconstruction
model. Figure 11. demonstrates the pore morphology and size distribution within the
struts with a diameter of 0.4~1.0 mm. The porosity is below 1% for all struts, which means
the optimized process parameters based on large-size metal blocks are also suitable for
the manufacturing of fine structures. Figure 12. shows that with the increase in diameter,
the porosity declines. When the diameter increases from 0.4 mm to 1.0 mm, the porosity
declines from 0.696% to 0.032%. Regarding the influence of feature size on porosity, Dong
et al. [30] drew the same conclusion. Meanwhile, it is noted that under the same conditions,
the struts in the present study have a lower porosity. This proves the superiority of the
optimized process parameters in this work.
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Figure 11. Morphology and size distribution of the pore defects within the struts: (a) 0.4 mm, (b) 0.6 

mm, (c) 0.8 mm, (d) 1.0 mm. 
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Figure 12. Porosity of struts with different diameters. 

Figure 11. Morphology and size distribution of the pore defects within the struts: (a) 0.4 mm,
(b) 0.6 mm, (c) 0.8 mm, (d) 1.0 mm.

The pores within struts are dominated by circular pores, which are usually caused by
residual gas in the molten pool [43]. Gas pores are mainly caused by an unstable flow in the
molten pool. Influenced by recoil pressure, protective gas is easily involved in the molten
pool. If these gases do not escape before the solidification of the molten pool, they will be
captured and form pores. The influence mechanism of the strut diameter on porosity lies in
its influence on the temperature field. The space for heat conduction in the 0.4 mm strut is
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small, limiting the efficiency of heat dissipation. In addition, the small cross-sectional area
of the 0.4 mm strut means that the scanning tracks on the top layer are short, shortening
the scanning time for single tracks. Before the molten pool on the current track solidifies
completely, the laser beam begins to scan along the next track. Under this circumstance,
continuous heat input easily causes unstable flow in the molten pool, introducing pore
defects. The 1.0 mm strut has a larger cross-section area, providing a larger space for heat
dissipation. Also, longer scanning tracks allow more time for heat dissipation. Therefore,
the duration of the molten pool is short, which can suppress the unstable flow of the molten
pool, reducing pore defects. According to previous reports, some scholars found [44,45]
that unstable energy input in the laser turn point or stopping emitting light at the end of
tracks could also cause pore defects.
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Figure 11. Morphology and size distribution of the pore defects within the struts: (a) 0.4 mm, (b) 0.6 

mm, (c) 0.8 mm, (d) 1.0 mm. 
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3.5. Effect of Feature Size on Microstructure

The longitudinal sections (XZ plane) of the thin-walled structures were examined, and
the microstructure was characterized by EBSD. The inverse pole figures (IPFs) and grain
statistics information are shown in Figure 13. The EBSD maps show that the α-Al matrix is
mainly composed of elongated columnar grains and fine equiaxial grains. The morphology
of the molten pool can be distinguished by the distribution of crystals. Affected by the heat
flow direction, the grains within the molten pool grew epitaxial towards the center and
formed columnar crystals. At the edge of the molten pool, the cooling rate was higher. The
grains did not develop fully and formed fine equiaxed crystals.

The average grain sizes of the 0.4~1.0 mm thin walls are plotted in Figure 13e. As the
thickness increased from 0.4 mm to 0.8 mm, the grain size increased from 11.6 µm to 12.7 µm.
When the thickness further increased to 1.0 mm, the grain size reduced to 12.0 µm. The
analysis shows that the heat transfer condition, determined by wall thickness, is responsible
for the variation in grain size. High-efficiency heat transfer implies a high cooling rate
that is more prone to generate fine grains. The thinner structures possess higher specific
surface area, which is beneficial for heat transferring through the surface. With thickness
increasing, heat conduction gradually becomes the main mode of heat dissipation. The two
modes of heat transfer are competitive. In thin walls with a thickness less than 0.8 mm, heat
is mainly transferred through the surface. The increase in thickness accompanied with the
decrease in specific surface area, weakening the heat transfer efficiency, led to an increase
in grain size. When the wall thickness exceeds 0.8 mm, heat is mainly transferred through
the as-deposited entity, which can effectively improve the heat sinking efficiency and result
in a decrease in grain size.

Figure 13f shows the variation in the grain aspect ratio with wall thickness. A high
aspect ratio indicates that the grains are elongated to a great extent. With the increase in
wall thickness, the aspect ratio decreased first and then increased, varying in the range of
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2.74~3.14. The aspect ratio showed no significant correlation with wall thickness. Figure 13g
displays the relationship between grain orientation and wall thickness. With the increase
in thickness, the grain arrangement is more inclined in the built direction, indicating the
heat flow direction gradually converts from the lateral side to the downward direction.
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Figure 13. Microstructure characteristics: (a–d) EBSD inverse pole figure orientation maps for thin 

walls with thickness of 0.4~1.0 mm, (e) grain size, (f) aspect ratio, (g) grain orientation. 

  

Figure 13. Microstructure characteristics: (a–d) EBSD inverse pole figure orientation maps for thin
walls with thickness of 0.4~1.0 mm, (e) grain size, (f) aspect ratio, (g) grain orientation.

3.6. Mechanical Properties Before Polishing

Tensile tests were performed at room temperature to investigate the effects of defects
and microstructure on the mechanical properties. Figure 14. exhibits the stress–strain
curves of the tensile specimens with a size of 0.4~1.0 mm. Figure 14a and b correspond to
the stress–strain curves of the tensile test rods and tensile test pieces, respectively. As can be
seen from the figure, there are slight differences in the stress–strain curves between tensile
test specimens with the same size. This phenomenon can be attributed to random defects
introduced during the printing process, such as microscopic pores and cross-section size
variation. Comparing the stress–strain curves of the specimens of different sizes, there are
obvious differences in elongation to fracture. For the tensile test piece, the thickness not only
affects the elongation, but also has an obvious influence on the ultimate tensile strength.
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Figure 14. Stress–strain curve for tensile specimen: (a) tensile test rod, (b) tensile test piece. Figure 14. Stress–strain curve for tensile specimen: (a) tensile test rod, (b) tensile test piece.

Based on the stress–strain curves, mechanical properties such as elastic modulus, yield
strength, ultimate tensile strength, and fracture elongation were statistically analyzed, and
the results are shown in Figure 15. Figure 15a compares the Young’s modulus of the tensile
test rods and the tensile test pieces. The Young’s modulus of the tensile test rods is in



Metals 2025, 15, 77 16 of 22

the range of 34.3~51.3 GPa, which is similar to the values reported by Dong et al. [46]. In
terms of the tensile test pieces, the Young’s modulus varies in the range of 58.1~71.5 GPa.
The variation trend of the elastic modulus does not show a correlation with geometry size.
Figure 15b compares the yield strength of the tensile test specimens of different sizes. The
yield strength of the tensile test rods and pieces varies in the range of 194.0~215.1 MPa and
167.6~181.3 MPa, respectively. The statistical result also does not show the dependency of
yield strength on geometry size.
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Figure 15. Mechanical properties of tensile test rods and pieces: (a) elastic modulus, (b) yield 

strength, (c) ultimate strength, (d) elongation. 
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In contrast to the elastic modulus and yield strength, ultimate tensile strength has
an obvious correlation with geometry size, as illustrated in Figure 15c. With the increase
in thickness, the tensile strength shows an increasing trend. With increasing specimen
size from 0.4 mm to 1.0 mm, the tensile strength of the test rods increases from 273.8 MPa
to 288.5 MPa, with an increment of about 15 MPa. The tensile strength of the test piece
increases from 262.4 MPa to 289.9 MPa; the increase is 37.5 MPa. Figure 15d compares the
fracture elongation of the tensile specimens of different sizes. With the increase in size,
the elongation is obviously enhanced. The elongation of the test rod with a diameter of
0.4 mm is 1.66%. When the diameter increases to 1.0 mm, the elongation rises to 3.7%, and
the increase exceeds one time. The fracture elongation of the 0.4 mm tensile test piece is
3.7%. When the thickness increases to 1.0 mm, the elongation rises to 5.3%.

The analysis shows that surface quality and internal pore defects are the key factors
affecting tensile strength and elongation. Figure 16a–d show the optical image of the
longitudinal section of the thin-walled structure and the corresponding contour lines. A
random distribution of microscopic pores can be observed in the longitudinal section.
Influenced by SLM’s layer-by-layer forming characteristics, irregular bumps and dents are
distributed along the vertical border of the longitudinal section. Figure 16e demonstrates
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the influence mechanism of the surface defects and internal pores on mechanical properties.
When tensile load is applied, these dents and pores will become the stress concentration
point, leading to the initiation of the propagation of cracks, reducing the strength and
ductility. Specimens of different sizes possess different specific surface areas. Figure 16f
compares the specific surface areas of specimens of different sizes. For the cross-section
of the tensile test piece, the width is two times the thickness. With the increase in wall
thickness, the specific surface area decreases rapidly. This means that the influence of
surface quality on the mechanical properties is gradually reduced. Therefore, with the
increase in wall thickness, the tensile strength and fracture elongation of the test piece both
show an increasing trend.
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of influence mechanism of defects on mechanical properties; (f) specific surface of tensile test rods
and pieces of different sizes; (g) schematic diagram of polished surface.

The increase in the tensile test rod diameter leads to a decrease in the specific surface
area, which makes the large-size tensile test rod exhibit better mechanical properties. It
is noted that the specific surface area of the tensile test piece is higher than that of the
tensile test rod with the same size, but the fracture elongation is higher for the tensile test
piece. The reason for this may be attributed to the build orientation. Different orientations
produce different microstructures, which may affect the fracture elongation.

3.7. Mechanical Properties After Polishing

The tensile test pieces were polished with 240-grit sandpaper, and the bilateral polish-
ing thickness was 0.05 mm~0.2 mm. The surface topography before and after polishing is
shown in Figure 17a. The polishing treatment effectively reduced the surface roughness
from 13.6 µm to 0.56 µm. Tensile test was performed on the polished specimen, and the
stress–strain curves are shown in Figure 18b. To avoid the figure being polluted by nu-
merous data, only a representative curve is displayed for the same size specimens. From
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the figure, we can see that significant improvements in ultimate strength and ductility are
realized after the polishing treatment.
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Figure 18. Comparison of mechanical properties of the test piece before and after polishing: (a) elastic
modulus, (b) yield strength, (c) ultimate strength, (d) elongation.

Young’s modulus, yield strength, ultimate tensile strength, and elongation were
calculated based on the stress–strain curves, and the results are shown in Figure 18. Through
comparison, it is found that the mechanical properties of the tensile specimens are improved
by the polishing treatment to different extents. The elastic modulus of all tensile specimens
after polishing exceeds 70 GPa. For the specimen with a wall thickness of 0.6~1.0 mm,
the elastic modulus was significantly increased by about 20 GPa. The yield strength of
the polished specimens is in the range of 211.1~226.9 MPa, which is higher than that of
the untreated specimens at 167.6~181.3 MPa. In terms of tensile strength, the polishing
treatment makes the tensile strength of the test pieces exceed 320 MPa, reaching the level
of casting, and the increase is more than 30 MPa. At the same time, it is noted that
increase in the yield strength and tensile strength of the 0.4 mm thin wall after polishing are
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significantly higher than the amplitude corresponding to the 1.0 mm thin wall, indicating
that the polishing treatment is more effective for small-feature structures. In terms of
elongation, the thin walls of 0.4, 0.8, and 1.0 mm show better ductility after polishing, while
the elongation of the thin wall of 0.6 mm does not improve significantly. Experimental
error may be responsible for this phenomenon.

Comprehensive analysis shows that polishing treatments can significantly improve the
mechanical properties of fine features. The mechanism behind this lies in the improvement
of surface quality. Figure 16e,g show the schematic diagram of the surface morphology be-
fore and after polishing. Without the polishing treatment, there are vulnerable points on the
surface that may cause stress concentration, which can easily lead to crack initiation. After
the polishing treatment, these sharp concaves are smoothed and there are few vulnerable
points near the surface, resulting in better mechanical properties. This analysis shows that
surface quality is a key factor affecting the mechanical properties, and the improvement of
surface quality can be an effective way to enhance the mechanical properties of structures.
This also implies that polishing post-treatment can realize further weight reduction for
lightweight structures.

4. Conclusions
In the present work, the features of skin lattice structures, such as struts and thin

walls, were taken as samples to investigate the effect of geometry size on dimension accu-
racy, pore defects, roughness, and microstructure. Through tensile tests, the relationship
between feature size and mechanical properties was investigated. A polishing treatment
was implemented to explore the improvement to mechanical properties. The following
conclusions are drawn based on this study:

1. Submillimeter features fabricated using optimized process parameters can reach a
densification of above 99%, demonstrating that optimized process parameters based
on large size samples (20 mm) are also applicable for the formation of submillime-
ter features.

2. When the diameter of a strut increases from 0.4 mm to 1.0 mm, the size error in-
creases from 0.075 mm to 0.161 mm. The dimensional error for thin-walled structures
is relatively stable. The difference in heat accumulation is responsible for dimen-
sional errors. When matched with a suitable BO, all features of different sizes can be
printed precisely.

3. When the thickness is increased from 0.4 mm to 1.0 mm, the porosity is reduced from
0.7% to 0.03%, and the relative roughness is reduced from 3.1% to 1.4%. After being
processed with polishing treatment, roughness can be reduced to below 0.5 µm. The
grain size and aspect ratio do not show a dependence on specimen size.

4. Increasing feature size will reduce the specific surface area and weaken the negative
impact of the rough surface on mechanical properties, so large-size specimens show
higher tensile strength and elongation. Elastic modulus and yield strength have no
obvious correlation with feature size. Polishing treatments are an effective way to
improve surface quality. By diminishing the points of stress concentration near the
surface, the mechanical properties of fine features can be remarkably enhanced.
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