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Abstract: The superelasticity of CuZr shape memory alloys (SMAs) originates from stress-

induced transformations between the B2 (austenite) and B19’ (martensite) phases. Grain 

size is a key parameter affecting the superelasticity of shape memory alloys. Previous 

studies on NiTi, Fe-based, and Cu-based SMAs confirm that altering grain size effectively 

regulates superelasticity. Current research on the influence of grain size on the superelas-

ticity of CuZr shape memory alloys (SMAs) is relatively sparse. This study employs mo-

lecular dynamics simulations to evaluate the effect of grain size on the superelasticity of 

CuZr SMAs through uniaxial loading–unloading tests. Polycrystalline samples with grain 

sizes of 6.59 nm, 5 nm, and 4 nm were analyzed. The results indicate that reducing grain 

size can decrease the irrecoverable strain, thereby enhancing superelasticity. The improve-

ment in superelasticity is attributed to a higher recovery rate of the martensite-to-austenite 

transformation, allowing more plastic deformation within the grain interior to recover 

during unloading, and thereby reducing the irrecoverable strain. The recovery rate of the 

martensite-to-austenite transformation is closely related to the elastic strain energy accu-

mulated within the grain interior during loading. 

Keywords: shape memory alloys; superelasticity; grain size effects; irrecoverable strain; 

phase transformation; molecular dynamics 

 

1. Introduction 

Shape memory alloys (SMAs) are metallic smart materials that can recover large de-

formations through the shape memory effect and superelasticity [1]. When a sufficiently 

large stress is applied to the shape memory alloy, martensite transformation occurs in the 

specimen, causing a transformation from austenite to martensite and resulting in the plas-

tic deformation of the specimen. When the applied stress is released, the martensitic phase 

transforms back into the austenitic phase, allowing the specimen to recover its plastic de-

formation and return to its original shape. The transformation between austenite and mar-

tensite under stress is the origin of the superelasticity in shape memory alloys [2–5]. Due 

to its superelasticity, shape memory alloys such as NiTi, Fe-based, and Cu-based alloys 

are widely utilized across various fields, including aerospace [6,7], engineering [8–10], 

and medicine [11]. Compared to the aforementioned shape memory alloys, CuZr shape 

memory alloys have a lower cost [12], with higher strength, hardness, and better corrosion 

resistance [13–15]. This means CuZr shape memory alloys can be considered potential 
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replacements for these shape memory alloys in certain applications [16]. Therefore, by 

improving the superelasticity of CuZr shape memory alloys, we can further enhance the 

cost-effectiveness of CuZr shape memory alloys. 

Uniaxial loading–unloading is commonly used to test the superelasticity of shape 

memory alloys. The sample is loaded to a strain (typically 4–8% for NiTi alloys [17,18]) to 

induce martensite transformation, followed by unloading until the stress reaches 0 GPa. 

During unloading, as the stress decreases, the martensite phase transforms back to the 

austenite phase, and a portion of the strain in the shape memory alloy is recovered. After 

unloading, some strain remains unrecovered, known as irrecoverable strain. In NiTi shape 

memory alloys, irrecoverable strain arises from plastic deformation at grain boundaries 

during loading [19,20] and residual martensite within the grain interior after unloading 

[21,22]. Irrecoverable strain is one of the criteria for evaluating the superelasticity of shape 

memory alloys [20,23,24]. The smaller the irrecoverable strain, the more superior the su-

perelasticity of the shape memory alloy. The irrecoverable strain of shape memory alloys 

can be modified by altering the grain size [25]. In the Ti-Nb-Zr system, Zitouni et al. [26] 

controlled the grain size of samples by adjusting rolling levels, while Kong et al. [27] 

achieved grain size control by varying annealing durations. Both studies observed that 

smaller grain sizes resulted in reduced residual strain after loading and unloading, lead-

ing to improved superelasticity in the samples. Tseng et al. [28] reported that FeMnAlNi 

samples with larger grain sizes (>5 mm) had an irrecoverable strain of 1% after unloading 

under a maximum tensile strain of 3%, while smaller grain sizes (≈2 mm) showed 1.5%. 

Similarly, Vollmer et al. [29] found that FeMnAlNi samples with a grain size of 7.2 mm 

exhibited 0.3% irrecoverable strain, while those with a grain size of 2.3 mm showed 0.8% 

irrecoverable strain during a single loading–unloading cycle. Xu et al. [30] found that NiTi 

shape memory alloys with an average grain size of 22.29 μm exhibited an irrecoverable 

strain of 2.7%, while those with 10.59 μm had 0.6% during a single loading–unloading 

cycle. Liu et al. [21] used molecular dynamics simulations to find that as the grain size 

decreased from 30 nm to 5 nm, the irrecoverable strain after unloading decreased from 

3% to 1% under a maximum tensile strain of 8%. 

The main strategy used in recent studies to improve the superelasticity of CuZr shape 

memory alloys is microalloying, which involves adding elements like Al, Co, and Ni to 

CuZr shape memory alloys [12,31]. Grain size is a key parameter affecting the superelas-

ticity of shape memory alloys. In NiTi-based, Fe-based, Cu-based, and other shape 

memory alloys, altering the grain size has been studied and proven to be an effective 

method for regulating the superelasticity of shape memory alloys. However, there is a 

lack of research on the effect of grain size on the superelasticity of CuZr shape memory 

alloys. This study employs molecular dynamics simulations to investigate the effect of 

grain size on the superelasticity of polycrystalline B2-CuZr samples. By comparing the 

irrecoverable strain of samples, the effect of grain size within the range of 6.59 nm to 4 nm 

on the superelasticity is examined. By observing the evolution of local shear strain distri-

bution and the corresponding changes in atomic configuration during the loading and 

unloading of polycrystalline B2-CuZr samples, the origin of the irrecoverable strain in 

these samples is analyzed. The volumetric strain within the grain interior and at the grain 

boundaries of the samples was calculated separately to compare the irrecoverable strain 

in these regions for polycrystalline B2-CuZr samples with different grain sizes. Further-

more, the factors influencing the irrecoverable strain were analyzed. 

2. Modeling and Methods 

First of all, three cubes with dimensions of 22.91 nm × 22.91 nm × 22.91 nm were 

created (Figure 1). The total number of atoms for all three models was approximately 

686,000, with the number of Cu and Zr atoms in each model being approximately 343,000. 
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The polycrystalline structure were generated by utilizing Atomsk software (version Beta 

0.13.1) based on the Voronoi construction method [32] to establish three polycrystalline 

B2-CuZr samples with average grain sizes of 6.59 nm, 5 nm, and 4 nm, respectively (Figure 

1). By filling these cubes with varying quantities of grains, we were able to alter the grain 

sizes of the samples. The number of grains inside the three cubes were 80, 183, and 359, 

respectively (Table 1). The relationship between the average grain size dave and number of 

grains n follows the following formula [33]: 

dave = √
6V

πn

3

 (1) 

 

Figure 1. Polycrystalline B2-CuZr samples with different average grain sizes of (a) dave = 6.59 nm, (b) 

dave = 5 nm, and (c) dave = 4 nm. The B2-CuZr crystals within the grain interior are colored in blue and 

the grain boundaries are colored in white. 

Table 1. The dimension of specimens, grain size, number of grains, number of atoms, and the per-

centage of grain boundaries and B2 crystalline in the polycrystalline B2-CuZr samples considered 

in the present molecular dynamics simulations. 

The Dimension of Specimens 22.91 nm × 22.91 nm × 22.91 nm 

Grain size (nm) 6.59 5 4 

Number of grains 80 183 359 

Number of atoms 686,032 685,910 685,942 

Grain boundaries (%) 52.0 64.2 75.4 

B2 crystallite (%) 48.0 35.8 24.6 

Above, V represents the volume of the sample. In this work, we employed the latest 

embedded atom method (EAM) potential developed by Mendelev et al. [34] and 

performed molecular dynamics simulations using the open source LAMMPS [35] 

package. Periodic boundary conditions are applied in all three directions during both the 

relaxation and loading–unloading stages. The timestep is set to 1 fs. The system was 

simulated using the isobaric–isothermal (NPT) ensemble under zero external pressure. 

The temperature and pressure were controlled using a Nosé–Hoover thermostat [36] and 

a Parrinello–Rahman barostat [37], respectively. 

All samples were relaxed for 0.2 ns at 300 K and zero external hydrostatic pressure 

to relax local atomic structures. Engineering strain is employed as a measure of 

deformation and denoted by ε = (l − l0)/l0, where l is the instantaneous length of the sample 

and l0 is its initial length before loading. We performed tensile loading along the X 

direction of the sample at a strain rate of 109 s−1 under 300 K and zero external hydrostatic 

pressure, terminating the loading when the strain reached 0.08. Afterwards, unloading 

commenced at the same strain rate and was terminated when the stress dropped to 0 GPa. 

The atomic-scale deformation mechanisms were analyzed using the local shear strain, 

ηmises [38]. We visualized ηmises using Open Visualization Tool (OVITO) softwear (version 
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2.9.0) [39] and employed polyhedral template matching (PTM) [40] to investigate the 

phase transformation during the loading and unloading stages of the nanograin 

structures. 

When testing the superelasticity of shape memory alloys, an appropriate maximum 

tensile strain should be selected to prevent the plastic deformation of martensite within 

the grain interior, thereby eliminating its influence on the superelastic behavior of the 

alloy [41]. Based on the combined analysis of the average atomic potential energy and the 

phase evolution of the crystal, the R phase does not exhibit plastic deformation when the 

applied tensile strain is less than 0.08 [42]. Therefore, it can be said that a maximum tensile 

strain of 0.08 is a reasonable strain value for testing the superelasticity of polycrystalline 

B2-CuZr samples. 

In molecular dynamics simulations, the kinetic energy Ek at a given thermodynamic 

temperature T can be expressed as follows [42]: 

Ek = 
3

2
NKbT (2) 

where Kb is the Boltzmann constant and N is the number of atoms in the system. The total 

energy of the system is the sum of the kinetic energy and the potential energy. As the 

average kinetic energy is stable at a constant temperature, the change in potential energy 

is consistent with the change in total energy. The average potential energy of each atom is 

quantified and used to describe the phase transition behavior. 

3. Results and Discussion 

3.1. The Engineering Stress–Strain Curve During Loading and Unloading Process 

Figure 2 shows the engineering stress–strain curves of polycrystalline B2-CuZr sam-

ples with grain sizes of 6.59 nm, 5 nm, and 4 nm during the loading–unloading process. 

The sample initially undergoes elastic deformation during loading. As the stress on the 

sample increases and reaches the critical level for martensitic transformation, the B2 phase 

begins to transition into the R phase. The critical stress of martensite transformation can 

be defined as the minimum stress required to initiate the martensite transformation when 

the sample is subjected to external loading [43]. The corresponding strain to trigger the 

initiation of the martensitic transformation is the critical strain of martensitic transfor-

mation. 

 

Figure 2. Engineering stress–strain curves of polycrystalline B2-CuZr samples with grain sizes of 

6.59 nm, 5 nm, and 4 nm during tensile loading and unloading. 

As the grain boundary area consists of a randomized lattice structure without local 

ordering, and the grain interior is arranged in an ordered structure, the grain boundary 

phase and the grain interior can often be conceptualized into the crystalline-amorphous 

composite model. This amorphous-crystalline composite model is often used to describe 

the shape memory behavior of the B2-NiTi nanocrystalline alloy [44,45]. The grain size 
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effect on the critical stress and strain of martensitic transformation can be explained by 

the innate interfacial elastic strain model [46]. The innate interfacial elastic strain model 

proposes that there is an intrinsic compressive–dilatative elastic strain field when a B2-

CuZr crystalline precipitated is embedded into the amorphous matrix. The B2-CuZr 

crystalline precipitate experiences an intrinsic compressive strain–stress, while the 

amorphous matrix experiences dilatative strain–stress. As the size of the crystalline 

precipitate decreases, the compressive strain and stress exerted on the crystalline 

precipitate by the amorphous matrix increases. The larger the crystalline precipitate is, the 

smaller the intrinsic compressive strain and stress exerted by the amorphous matrix in the 

initial state. 

During the tensile process of shape memory alloys, when the specimen yields, a 

martensitic phase transformation occurs. This transformation is reflected on the 

engineering stress–strain curve as a decrease in slope compared to the elastic deformation 

stage [47]. Therefore, the critical stress and strain for the martensitic transformation in 

polycrystalline B2-CuZr samples can be determined by the stress and strain at which the 

slope of the curve begins to decrease, as shown in Figure 2. For the nanocrystalline 

specimens in this study, as the average grain sizes decrease from 6.59 nm to 5 nm, and 

then to 4 nm, the critical stress required to promote martensitic transformation increases 

from 0.802 GPa to 0.839 GPa and then to 0.901 GPa, and the critical strain needed to induce 

the structural change from the B2 phase to the R phase increases from 0.0215 to 0.0222 and 

then to 0.0231, respectively. The increase in the critical stress and strain of martensitic 

transformation is ascribed to the increase in the compressive stress and strain when the 

crystalline precipitate embedded in the amorphous phase (the grain boundary phase) 

becomes smaller [46]. 

When the applied stress decreases to zero during unloading, the engineering strain 

of each sample does not completely recover; this non-recoverable strain is commonly 

referred as irrecoverable strain. When the grain size decreases from 6.59 nm to 5 nm to 4 

nm, the irrecoverable strain decreases from 0.046 to 0.030 to 0.026, respectively. This 

indicates that the irrecoverable strain decreases as the grain size decreases. The 

nanocrystalline specimen with smaller grain sizes is more capable of reversing the 

martensite phase back to the austenite phase. 

3.2. The Evolution of the Shear Strain Distribution and the Corresponding Phase Configuration 

During the Loading and Unloading Process 

The evolution of the shear strain distribution and the corresponding phase configu-

rations of the three samples with varying grain sizes during loading and unloading are 

shown in Figure 3. The initial state without applied strain (ε = 0), the critical strain for 

martensitic transformation, the maximum strain of loading (ε = 0.08), and the end point of 

unloading were selected for display. As all three specimens display similar trends related 

to the evolution of the shear strain distribution and the corresponding phase configura-

tions, the samples with an average grain size of 6.59 nm (Figure 3a) were taken as an ex-

ample. When the tensile strain reaches 0.0215 (critical strain for martensitic transfor-

mation), shear strain increases within the grain interior, leading to martensitic transfor-

mation which induces the B2 phase to the R phase. The applied tensile strain reaches a 

maximum value of 0.08 during loading, and the high-shear-strain regions within the grain 

interior correlate well with the locations of the R phase. A detailed description of the cor-

relation between the high-shear-strain regions within the grain interior and the R phase 

locations is shown in Figures S1 and S2 of the Supplementary Materials. Additionally, 

there are regions of high shear strain indicated in red at the grain boundaries. Once the 

applied strain reaches 0.08, the loading process is terminated. During the unloading pro-

cess, the shear strain within the grain interior decreases, and some of the martensite R 
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phase reverts back to the initial austenite B2 phase. However, some of the R phase within 

the grain interior does not have the capability to transfer back to the original B2 phase. 

These locations still exhibit relatively high shear strain after unloading, indicating that the 

plastic deformation within the grain interior cannot be fully recovered. For the grain 

boundary area, no phase transformation behavior occurs. The shear strain inside the grain 

boundary area recovers partially, while the unrecovered shear strain suggests that plastic 

deformation has occurred within the grain boundary area. For samples with average grain 

sizes of 5 nm (Figure 3b) and 4 nm (Figure 3c), they display similar trends to the specimen 

with average grain sizes of 6.59 nm. Therefore, the irrecoverable shear strain may come 

from two sources: the first one is the irrecoverable strain related to the un-reverted phase 

transformation, and the other one is ascribed to the plastic deformation of the grain 

boundary area. 

 

Figure 3. The evolution of local shear strain distribution and the corresponding phase configuration 

in polycrystalline B2-CuZr samples with grain sizes of (a) 6.59 nm, (b) 5 nm, and (c) 4 nm. The initial 

state without applied strain (ε = 0), the critical strain for martensitic transformation, the maximum 

strain of loading (ε = 0.08), and the end point of unloading were selected for display. 

Figure 4 presents the process of phase evolution (including the grain boundary, the 

B2 phase, and the R phase) during loading and unloading. We take the nanocrystalline 

specimen with an average grain size of 6.59 nm as an example (Figure 4a). Before loading, 

the percentages of the grain boundary phase, the B2 phase, and the R phase are 52.0%, 

48.0%, and 0%, respectively. With increasing strain, the percentage of the B2 phase and 

the R phase shows negligible change. As the strain reaches 0.0215, the B2 phase begins to 

transform into the R phase. A proportion of the B2 phase gradually decreases to 9.2% 

when the tensile strain reaches the maximum value of 0.08. The fraction of the R phase 

reaches a maximum value of 38.7%. During the unloading process, as the tensile strain 

gradually decreases from 0.08 to 0.046, some of the R phase reverts back to the B2 phase, 

resulting in an increase in the B2 phase and a decrease in the R phase. The amount of grain 

boundary phase remains unchanged throughout the entire loading–unloading process. 
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Figure 4. Phase content evolution of polycrystalline B2-CuZr samples with grain sizes of (a) 6.59 

nm, (b) 5 nm, and (c) 4 nm during loading and unloading. 

For nanocrystalline specimens with average grain sizes of 5 nm and 4 nm, the 

evolution of the phase components is similar to that of the specimen with an average grain 

size of 6.59 nm (Figure 4b,c). Table 2 summarizes the proportions of all phases during the 

loading–unloading processes. There are some similarities and differences that are worth 

noting: (1) The transformation rate from the B2 phase to the R phase is 80.8%, 80.4%, and 

80.9% for specimens with average grain sizes of 6.59 nm, 5 nm, and 4 nm, respectively. 

This means the grain size does not significantly impact the transformation rate from the 

austenite B2 phase to the martensite R phase during loading. (2) The recoverable rate from 

the martensite R phase to the B2 phase is 32.0%, 70.1%, and 78.9 for specimens with 

average grain sizes of 6.59 nm, 5 nm, and 4 nm, respectively. It appears that the recovery 

rate of the R phase increases as the grain size decreases. What is noteworthy is that when 

the grain size is smaller than 5 nm, the recoverable rate of the R phase to the B2 phase can 

be quite high, exceeding 70%. However, once the grain size exceeds 6.59 nm, the 

recoverable rate significantly decreases to 32.0%. Although the increase in the grain size 

is less than 2 nm, the recovery rate decreases substantially by more than 38%. Additionally, 

the plastic deformation of the specimen at a tensile strain of 8% can be obtained by 

subtracting the elastic strain during loading from the maximum tensile strain of 8%, as 

shown in Table 2. As the grain size decreases from 6.59 nm to 5 nm to 4 nm, the elastic 

strain during loading increases from 2.15% to 2.22% to 2.31%, while the plastic strain at 

the maximum tensile strain decreases from 5.85% to 5.78% to 5.69%, respectively. 
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Table 2. The phase proportions of polycrystalline B2-CuZr samples with different grain sizes dur-

ing the loading–unloading processes, including the transformation rate of the B2 phase after load-

ing and the recovery rate of the R phase after unloading. The elastic and plastic strains of the sam-

ples during the loading process were also evaluated 

Grain size (nm) 6.59 5 4 

Grain boundaries (%) 52.0 64.2 75.4 

Elastic strain during loading (%) 2.15 2.22 2.31 

B2 phase before loading, ε = 0 (%) 48.0 35.8 24.6 

B2 phase after loading, ε = 8% (%) 9.2 7.0 4.7 

B2 phase after unloading (%) 21.7 27.2 20.4 

Transformation rate of B2 phase during loading (%) 80.8 80.4 80.9 

R phase before loading, ε = 0 (%) 0 0 0 

R phase after loading, ε = 8% (%) 38.7 28.8 19.9 

R phase after unloading (%) 26.3 8.6 4.2 

Recovery rate of R phase during unloading (%) 32.0 70.1 78.9 

Irrecoverable rate of R phase during unloading (%) 68.0 29.9 21.1 

Plastic strain at maximum tensile strain 8% (%) 5.85 5.78 5.69 

3.3. The Correlation Between the Irrecoverable Strain and the Average Atomic Volume 

To further understand how much of the irrecoverable strain comes from the irrecov-

erable strain induced by un-reverted phase transformation behavior, and how much of 

the irrecoverable strain comes from the plastic deformation of the grain boundary area, 

the volumetric strain εV was used to calculate the irrecoverable strain. The grains in pol-

ycrystalline materials are randomly oriented, allowing polycrystalline materials to be con-

sidered isotropic [48]. For isotropic materials, the relationship between volumetric strain 

and linear strain is as follows [49]: 

εV ≈ (1 - 2v)εl (3) 

In Equation (1), v represents the Poisson’s ratio of the sample. εl represents the linear 

strain in the loading direction, referring to the irrecoverable strain of the sample. εV rep-

resents the volumetric strain of the sample. The formula for calculating the volumetric 

strain εV is given by the following: 

εV = 
V̅after loading −  V̅before loading

V̅before loading

 × 100% (4) 

In Equation (2), V̅before loading is the average atomic volume of the sample before load-

ing, and V̅after unloading is the average atomic volume of the sample after the loading–un-

loading process. The average atomic volume refers to the mean volume of the Voronoi 

cell corresponding to each atom in a polycrystalline B2-CuZr sample. It is obtained by 

calculating the Voronoi cell volume for each atom in the sample and then taking the aver-

age of these values. The results are shown in Figure 5a. When the grain size decreases 

from 6.59 nm to 5 nm to 4 nm, the volumetric strain of the samples decreases from 0.82% 

to 0.30% to 0.16%, while the irrecoverable strain of samples decreases from 0.046 to 0.030 

to 0.026, respectively. This indicates that the smaller the volumetric strain of the samples, 

the smaller the irrecoverable strain. We calculated the volumetric strain within the grain 

interiors and grain boundaries of polycrystalline B2-CuZr samples with different grain 

sizes, and the results are shown in Figure 5b. When the grain size decreases from 6.59 nm 

to 5 nm to 4 nm, the volumetric strain within the grain interior decreases from 0.52% to 

0.20% to 0.11%, respectively, while the volumetric strain at the grain boundaries decreases 

from 0.30% to 0.10% to 0.05%. From Equation (3), the volumetric strain can be associated 

with the irrecoverable strain in a linear relationship. The decrease in the volumetric strain 
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is linked to the decrease in the irrecoverable strain. We can therefore infer that the irre-

coverable strain within the grain interior and at the grain boundaries decreases as the 

grain size decreases. From Figure 5b, the volumetric strain of the grain interior is much 

higher than that of the grain boundary for all three specimens, indicating that the irrecov-

erable strain within the grain interior plays a more significant role than that at the grain 

boundaries. 

 

Figure 5. (a) The volumetric strain εV and irrecoverable strain of polycrystalline B2-CuZr samples 

with different grain sizes. (b) The volumetric strain εV  of polycrystal, grain interior, and grain 

boundaries with different grain sizes. 

As the irrecoverable strain comes from two factors, one is from lattice rearrangement 

induced by the uncoverable phase within the grain interior; another is from the plastic 

deformation at the grain boundary area. The following will discuss the grain size effect 

on the irrecoverable strain from within the grain interior and along the grain boundaries, 

respectively. 

3.4. The Potential Energy Evolution During the Reversion Process of the Martensitic 

Transformation from the Grain Interior and the Grain Boundary Phase 

When the austenite phase transforms into the martensite phase, both the shape and 

volume of the lattice structure change. As the change in shape and volume are constrained 

by the grain boundary phase, elastic strain energy is stored within the grain interior 

[25,50,51]. The stability of the martensite phase will be affected by the strain energy [52]. 

The higher the stored strain energy, the lower the stability of the martensite phase. The 

recovery rate of the strained martensite phase will be higher. 

Strain energy is a type of potential energy stored within a material when it is de-

formed elastically. The material can regain its original shape after the applied force is re-

moved. As the irrecoverable strain comes from both within the grain interior and the grain 

boundary phase, the potential energies of the nanocrystalline specimens, the grain inte-

rior, and the grain boundary phase were extracted to evaluate the effect of stored energy 

from different lattice structures on superelasticity. 

External loading usually increases the potential energy [42], while phase transfor-

mation behavior alone tends to decrease the potential energy [46]. The trend of potential 

energy during loading–unloading is presented along with the Engineering stress–strain 

curve in Figure 6. The potential energies for the polycrystal, the grain boundary phase, 

and the grain interior were calculated separately to understand the effect of superelasticity 

on the grain interior and the grain boundary phase. Figure 6a presents the nanocrystalline 

specimen with an average grain size of 6.59 nm. From point OI to AI, both the grain bound-

ary and the grain interior experiences elastic deformation, and the potential energy in-

creases. The elastic strain is recoverable from the OI to AI stage. From AI to BI, the grain 
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interior experiences phase transformation from the B2 structure to the R structure (Figure 

3a—phase evolution). Part of the grain boundary continues to deform elastically, and part 

of the grain boundary experiences plastic deformation. The elastic deformation increases 

the potential energy and the plastic deformation decreases the potential energy [53]. In 

Figure 6a, the grain boundary potential energy increases, indicating that the deformation 

of the grain boundary is predominantly elastic. The higher plastic deformation regime 

along the grain boundary area is shown in red in Figure 3a—shear strain. 

 

Figure 6. The engineering stress–strain curves of polycrystalline B2-CuZr samples with grain sizes 

of (a) 6.59 nm, (b) 5 nm, and (c) 4 nm and the corresponding potential energy changes with applied 

strain. 

At point BI, the tensile strain reaches 0.08, and the unloading process subsequently 

starts at a strain rate of 109 s−1. During unloading, the removal of the external force will 

decrease the potential energy, while the release of the elastic strain energy during the re-

version process of the martensite phase to the austenite lattice structure will help increase 

the potential energy [19]. During the unloading process from BI to DI (ε = 0.046), 32.0% of 

the martensite R phase reverts back to the austenite B2 phase, and the remaining 68.0% of 

the martensite R phase is not capable of reverting back to the R phase. The potential en-

ergy of the grain interior decreases initially, followed by an increase. From BI to CI, the 

decreasing trend in the potential energy within the grain interior is primarily governed 

by the removal of the external force. From CI to DI, the increasing trend is mainly con-

trolled by the reversal process of phase transformation. From BI to CI to DI, the evolution 

of the potential energy in the grain boundary phase during unloading is mainly domi-

nated by the removal of the external force. The evolution of the potential energy in the 

polycrystalline is just the combination of the potential energy evolution in the grain 

boundary phase and the grain interior. 

For the nanocrystalline specimens with average grain sizes of 5 nm and 4 nm, the 

evolution of the potential energy follows a similar trend (Figure 6b,c). 
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3.5. The Correlation Between the Elastic Strain Energy Within the Grain Interior and the 

Recovery Rate of R Phase During Unloading 
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grain interior was calculated and is presented in Figure 7. As the grain size decreases from 

6.59 nm to 5 nm, and then to 4 nm, the average elastic strain energy per atom decreases 

from 0.18 eV/atom to 0.16 eV/atom, and subsequently to 0.11 eV/atom, respectively. It ap-

pears there is a linear correlation between the decrease in average elastic strain energy per 

atom within the grain interior and the decrease in the average grain size. As the grain size 

decreases from 6.59 nm to 5 nm to 4 nm, the recovery rate of the R phase to the B2 phase 

during unloading increases from 32.0% to 70.1 to 78.9%, respectively. There is a strong 

correlation between the recovery rate of the martensite R phase and the elastic strain en-

ergy within the grain interior. 

 

Figure 7. The correlation between the recovery rate of the R phase and the elastic energy accumula-

tion within the grain interior during loading. 

4. Conclusions 

The grain size effect on the superelasticity of the B2-CuZr nanocrystalline were stud-

ied through molecular dynamics simulation. For polycrystalline samples with grain sizes 

ranging from 4 nm to 6.59 nm, particularly those with grain boundary percentages be-

tween 52% and 75.4%, or grain interior percentages between 24.6% and 48%, the major 

conclusions can be drawn as follows: 

(1) The smaller the grain size, the higher the recovery rate of the martensite-to-aus-

tenite transformation, and the better the superelasticity. 

(2) The critical strain and stress of martensitic transformation during loading can be 

well explained by the “innate interfacial elastic strain model”, which consists of a B2 crys-

talline precipitate embedded in an amorphous matrix. 

(3) The recovery rate of the martensite-to-austenite transformation is closely corre-

lated with the elastic strain energy within the grain interior accumulated during the aus-

tenite-to-martensite process while loading. 
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with a grain size of 6.59 nm at the maximum tensile strain (ε = 0.08). 
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