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Abstract: For the purpose of improving the productivity of laser metal deposition (LMD), the focus
of current research is set on increasing the deposition rate, in order to develop high-deposition-rate
LMD (HDR-LMD). The presented work studies the effects of the powder stream on HDR-LMD
with Inconel 718. Experiments have been designed and conducted by using different powder
feeding nozzles—a three-jet and a coaxial powder feeding nozzle—since the powder stream is mainly
determined by the geometry of the powder feeding nozzle. After the deposition trials, metallographic
analysis of the samples has been performed. The laser intensity distribution (LID) and the powder
stream intensity distribution (PID) have been characterized, based on which the processes have been
simulated. Finally, for verifying and correcting the used models for the simulation, the simulated
results have been compared with the experimental results. Through the conducted work, suitable
boundary conditions for simulating the process with different powder streams has been determined,
and the effects of the powder stream on the process have also been determined. For a LMD process
with a three-jet nozzle a substantial part of the powder particles that hit the melt pool surface are
rebounded; for a LMD process with a coaxial nozzle almost all the particles are caught in the melt
pool. This is due to the different particle velocities achieved with the two different nozzles. Moreover,
the powder stream affects the heat exchange between the heated particles and the melt pool: a surface
boundary condition applies for a powder stream with lower particle velocities, in the experiment
provided by a three-jet nozzle, and a volumetric boundary condition applies for a powder stream
with higher particle velocities, provided by a coaxial nozzle.

Keywords: laser metal deposition (LMD); direct metal deposition (DMD); HDR-LMD; Inconel 718
(IN718); coaxial powder feeding; powder intensity distribution; laser intensity distribution

1. Introduction

Laser metal deposition (LMD)—also known as direct metal deposition (DMD), direct laser
deposition (DLD), and laser engineered net shaping (LENS)—is one of the laser additive manufacturing
(LAM) processes. In LMD, a laser beam is used as the power source to generate a melt pool on the base
material, normally a metal substrate, and to melt the metal powder that is injected by a powder nozzle
into the melt pool. The powder feeding nozzle and the laser optic together form the LMD processing
head. With the relative movement between the processing head and the working table, the melt pool
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solidifies and a single track is deposited. A layer is formed by the overlapping of single tracks, and a
3D structure can be built up layer by layer.

Due to the principle of LMD, the material waste can be much lower than that of conventional
manufacturing methods, such as turning or milling from solid, in which material is removed to create
the desired geometry.

Moreover, LMD has advantages in comparison to other deposition welding processes, such as
the defined low heat input, which enables an accurate control of solidification. In addition, due to the
small heat affected zone (HAZ) and non-equilibrium rapid solidification, a fine microstructure can be
obtained, leading to improved mechanical properties.

The applications of LMD in industry have been growing in recent years [1–4]. For its
development, research nowadays involves all kinds of areas, such as process optimization [5–9],
modelling/simulation [10–14], and material microstructure and mechanical properties [15–19].

Inconel 718 (IN718) is a nickel-based super-alloy. It has high strength, high wear and creep
resistance at elevated temperatures, and is very widely used in aerospace and energy industries [20,21].
LMD can be used to process IN718, for example to repair or to additive manufacture components in
turbo engines, which brings high economic benefits. Thus, investigations on LMD for IN718 have
been attracted more and more attention [22–25]. One research focus is to develop high-deposition-rate
laser metal deposition (HDR-LMD) for IN718 [26–29] in order to improve productivity. The deposition
rate of conventional LMD for IN718 is lower than 0.5 kg/h; in comparison, the deposition rate for
HDR-LMD is higher than 2 kg/h.

HDR-LMD with IN718 has been intensively investigated by the author. Firstly, a novel method for
establishing a process window for HDR-LMD of IN718 [26] has been developed and methods for the
reduction of porosity [27] have been presented. Secondly, investigations of the effects of main process
parameters on the deposition properties have been conducted [28]. In addition, microstructures and
tensile properties of IN718 formed by HDR-LMD have been characterized [29]. Based on the results of
these previous studies, it is found that the powder stream significantly affects the track geometry and
dilution properties of the cladded track, which are crucial factors that must be considered for process
development. Therefore, the current work has been conducted to study the effects of the powder
stream on HDR-LMD with IN718.

For obtaining different powder streams, a coaxial and a three-jet powder feeding nozzle have
been used, since the powder stream is mainly determined by the powder feeding system; to ensure the
parallelism, the experiments have been conducted under identical conditions. In order to simulate
the processes, the laser beam and the powder streams have been characterized by using the following
parameters: laser intensity distribution (LID) for the laser beam and powder intensity distribution
(PID), and particle velocity for the powder stream.

2. Materials and Methods

Gas atomized (GA) IN718 powder has been used, with a grain size distribution in the range of
45 to 90 µm. The chemical composition for the main elements of the used powder has been measured
using the ICP (inductively-coupled plasma spectroscopy) method, and the results are shown in Table 1.

Table 1. Tested chemical composition of the used IN718 powder in wt %.

Element Ni Cr Nb (+Ta) Mo Ti Al

Tested results 53.51 19.08 4.89 2.98 0.99 0.68

The powder has been additionally analysed by using an optical microscope (OM, Zeiss, Jena,
Germany) and scanning electron microscope (SEM, Zeiss, Jena, Germany). An optical micrograph
that shows the metallographic prepared cross-sections, as well as a SEM micrograph that shows the
morphology of the powder, are presented in Figure 1.
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Figure 1. (a) Metallographic prepared cross-sections and (b) scanning electron microscope (SEM) 
micrograph of the used IN718 powder. 

As shown in Figure 1 there exists a large fraction of powder particles that feature satellites—the 
small particles which adhere on the large particles. Additionally, a large number of irregularly-
shaped particles and particles with enclosed pores can be observed. IN718 has been used as the base 
material for the experiments. 

The experimental setup consists mainly of a diode laser source with maximal 12 kW output, a 
collimator, a zoom optic, a powder feeder and a powder feeding nozzle. The high power diode laser 
is linked via a glass fiber to the laser optic. The movement of the lenses in the zoom optic and the tool 
axis are controlled by the NC-control of a four-axis tool machine. A three-jet and a coaxial powder 
feeding nozzle are used for the experiments.  

The three-jet nozzle and the coaxial nozzle (Fraunhofer ILT, Aachen, Germany), which are two 
commonly used powder nozzles for coaxial powder feeding, have different powder feeding 
mechanisms, so that significantly different powder streams can be obtained by using them. Photos 
for comparing these two nozzles, showing their different powder-gas jets with approx. 2.7 kg/h 
powder feeding rate, are presented in Figure 2. 
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Figure 2. Powder-gas-jets of the three-jet nozzle (a) and the coaxial nozzle (b) with a powder feeding 
rate of approx. 2.7 kg/h. 

Experiments using these two nozzles have been conducted under identical experimental 
conditions. The main process parameters are as follows: powder mass flow rate 	 ሶ݉ = 2.7	kg/h, laser 
power 	 ܲ = 2.9	kW, scanning speed 	ݒ = 1500	mm/min and laser spot diameter 	݀ = 4	mm. The 
offset distances are dependent on the focus position of the nozzles, and they are 12 and 14 mm for 
the three-jet nozzle and the coaxial nozzle, respectively. 
  

Figure 1. (a) Metallographic prepared cross-sections and (b) scanning electron microscope (SEM)
micrograph of the used IN718 powder.

As shown in Figure 1 there exists a large fraction of powder particles that feature satellites—the
small particles which adhere on the large particles. Additionally, a large number of irregularly-shaped
particles and particles with enclosed pores can be observed. IN718 has been used as the base material
for the experiments.

The experimental setup consists mainly of a diode laser source with maximal 12 kW output,
a collimator, a zoom optic, a powder feeder and a powder feeding nozzle. The high power diode laser
is linked via a glass fiber to the laser optic. The movement of the lenses in the zoom optic and the tool
axis are controlled by the NC-control of a four-axis tool machine. A three-jet and a coaxial powder
feeding nozzle are used for the experiments.

The three-jet nozzle and the coaxial nozzle (Fraunhofer ILT, Aachen, Germany), which are
two commonly used powder nozzles for coaxial powder feeding, have different powder feeding
mechanisms, so that significantly different powder streams can be obtained by using them. Photos for
comparing these two nozzles, showing their different powder-gas jets with approx. 2.7 kg/h powder
feeding rate, are presented in Figure 2.
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Figure 2. Powder-gas-jets of the three-jet nozzle (a) and the coaxial nozzle (b) with a powder feeding
rate of approx. 2.7 kg/h.

Experiments using these two nozzles have been conducted under identical experimental
conditions. The main process parameters are as follows: powder mass flow rate

.
m = 2.7 kg/h,

laser power PL = 2.9 kW, scanning speed v = 1500 mm/min and laser spot diameter dL = 4 mm.
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The offset distances are dependent on the focus position of the nozzles, and they are 12 and 14 mm for
the three-jet nozzle and the coaxial nozzle, respectively.

3. Results

3.1. Powder Intensity Distribution

The powder particle trajectories are calculated by a statistical model which is based and
cross-checked on the experimental input of the particle intensity measurement system, which is
developed by Fraunhofer Institute for Laser Technology ILT [30]. The results that show the particle
intensity distributions (PID) on the working plane are presented in Figure 3.
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Figure 3. 3D colored pictures that show the PIDs: three-jet nozzle (a); coaxial nozzle (b); and the
overlap of them (c). The PID on the working plane of the three-jet nozzle (a) and the coaxial nozzle
(b) are superimposed in transparency mode with different colors in the two side views (c), and the
used powder mass flow rate is approx. 2.7 kg/h.

It can be seen in Figure 3 that the PID for both nozzles are similar. Nevertheless, the three-jet
nozzle is slightly steeper, which indicates that the PID should not be the main reason for different track
heights, powder efficiency, and dilution geometries. However, according to this result, one would
expect the three-jet nozzle has a higher powder efficiency due to its lower extension of the PID on the
working plane compared to that of the coaxial nozzle.
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3.2. Laser Intensity Distribution

The measurement of the laser intensity distribution (LID) is done with a PRIMES Focus
Monitor [31]: it measures the spatial power intensity distribution in the focus range of the processing
optic, based on which the system calculates the beam radius, the focus position in the space, as well as
the beam propagation ratio K or—respectively—the beam propagation factor M2. The LID of the used
diode laser on the working plane and the super Gauss fit [32] of it are shown in Figure 4.
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The deposition rate can be calculated by using the following formula: 

Figure 4. (a) LID of the used 12 kW diode laser on the working plane; (b) approximation by a Super
Gauss fit using an in-house software.

As shown in Figure 4, the approximation of the Primes Monitor data with a Super Gauss fit [32]
shows an exponent of n = 2.12, which means the laser beam has a Gaussian-like LID.

3.3. Experimental Results

The deposited tracks with both nozzles appear similar. Two randomly-selected cross-sectioned
and etched tracks deposited respectively by the three-jet nozzle and the coaxial nozzle are shown
in Figure 5.
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By comparing these two cross-sections shown in Figure 5 significant differences can be seen.
In order to ensure the statistical reliability, three cross-sections of different positions from each track
have been analyzed. This analysis shows the following results: the track height of the coaxial nozzle is
about 18% higher than that of the three-jet nozzle; the dilution of three-jet nozzle is approx. one-fourth
of that of the coaxial nozzle; the area of the track processed with the three-jet nozzle is approx.
2.93 mm2, and that of the coaxial nozzle, 3.35 mm2.

The deposition rate can be calculated by using the following formula:

.
mtrack = vv · area · density (1)

with:
.

mtrack: deposition rate;
vv: scanning speed;
area: mean cross-sectional area; and
density: density of IN718.

The calculated deposition rates for the three-jet nozzle and the coaxial nozzle are 2.173 and
2.485 kg/h, respectively.

The powder efficiency can, therefore, be calculated by dividing the deposition rate by the powder
feeding rate. The calculated powder efficiency for the three-jet and the coaxial nozzle are 80.5% and
92%, respectively.

This result is just the opposite of the expectation drawn from the PID analysis result. Since the
experimental conditions are identical, the different powder deposition rate and powder efficiency must
be caused by the different powder streams that are mainly determined by the powder feeding nozzles.
In the following section, the effects of powder stream will be identified by simulating the processes.

4. Process Simulation

4.1. HDR-LMD with a Three-Jet Nozzle

A three-dimensional time-dependent finite element model for LMD with coaxial powder feeding
is used for simulating the process with the three-jet nozzle [30]. The used model encompasses the
powder stream, its interaction with the laser radiation, and the melt pool. Based on this model,
the temperature distribution and the track geometry have been calculated and the results are shown
in Figure 6.
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As can be seen in Figure 6, the temperature field exhibits a sickle-like distribution in the interaction
zone: there is an area where the process temperature exceeds the evaporating temperature of IN718;
there is one area in the middle of the sickle distribution where a temperature reduction can be observed.
This is the consequence of the laser radiation being shadowed by the powder particles, which can be
seen in in the following discussions.

The result for the comparison between the calculated and the metallographic prepared
cross-section of the deposited track with the three-jet nozzle is shown in Figure 7.Metals 2017, 7, 443 7 of 13 
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Figure 7. Comparison of the calculated cross-section with a metallographic prepared cross-section of a
track deposited with the three-jet nozzle.

Figure 7 shows an excellent agreement of the experimental and the computed results, which
indicates that the used model is suitable to simulate the process.

One optical micrograph with higher resolution that shows the interface of the track and the
substrate is presented in Figure 8, where the solidification line can be identified.
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Figure 8. Metallographic prepared cross-sections of a track processed with a three-jet nozzle in
higher resolution.

In Figure 8, two solidification lines in the middle of the track can be seen, which should be caused
by a repeated melting of an area that has been solidified before.

Further simulation has reproduced this observed detail in the microstructure: the solid/liquid
interface shows a local maximum in the area beneath the sickle-like temperature distribution on the
melt pool surface, as shown in Figure 9.
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surface (Figure 10b), although the measured powder efficiency for the three-jet nozzle is about 80.5%. 
Therefore, a substantial part of the powder particles that hit the melt pool surface must have been 
rebounded, as has been reported by Tan [33]. This result contradicts the general belief that all particles 
that hit the melt pool surface are incorporated into it. A more detailed discussion is given in Section 
4.2. 
  

Figure 9. Temperature distribution, track geometry, solid liquid interface, and cutting line of the
interface with the symmetry plane for the process with the three-jet nozzle.

This local maximum on the solid/liquid interface, shown in Figure 9, indicates that a part of
the already-solidified region is melted again, and the following solidification causes the second
solidification line.

The transmitted LID projected onto the track geometry shows that the track width is
approximately the same as the beam diameter, as can be seen in Figure 10.

Metals 2017, 7, x FOR PEER REVIEW  8 of 13 

 

 

Figure 9. Temperature distribution, track geometry, solid liquid interface, and cutting line of the 

interface with the symmetry plane for the process with the three-jet nozzle. 

This local maximum on the solid/liquid interface, shown in Figure 9, indicates that a part of the 

already-solidified region is melted again, and the following solidification causes the second 

solidification line. 

The transmitted LID projected onto the track geometry shows that the track width is 

approximately the same as the beam diameter, as can be seen in Figure 10. 

  
(a) (b) 

Figure 10. Transmitted LID (a) and PID (b) for the three-jet nozzle projected onto the track 

geometry. 

This result explains the sickle-like temperature distribution observed in Figure 6. 

According to the simulated and experimental results, 98% of the particles hit the melt pool 

surface (Figure 10b), although the measured powder efficiency for the three-jet nozzle is about 80.5%. 

Therefore, a substantial part of the powder particles that hit the melt pool surface must have been 

rebounded, as has been reported by Tan [33]. This result contradicts the general belief that all particles 

that hit the melt pool surface are incorporated into it. A more detailed discussion is given in Section 

4.2. 

Figure 10. Transmitted LID (a) and PID (b) for the three-jet nozzle projected onto the track geometry.

This result explains the sickle-like temperature distribution observed in Figure 6.
According to the simulated and experimental results, 98% of the particles hit the melt pool

surface (Figure 10b), although the measured powder efficiency for the three-jet nozzle is about 80.5%.
Therefore, a substantial part of the powder particles that hit the melt pool surface must have been
rebounded, as has been reported by Tan [33]. This result contradicts the general belief that all particles
that hit the melt pool surface are incorporated into it. A more detailed discussion is given in Section 4.2.
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4.2. Particle Adsorption

Since the mechanism for particle rebounding is not well understood, the powder efficiency needs
to be considered in the model, similarly to the absorptivity of the laser radiation.

Particle adsorption for LMD has been investigated by de Hosson et al. [34] and they concluded
that adsorption occurs if the kinetic energy is higher than the interfacial energy for a complete
wetting. Hosson derived a formula for the penetration depth by integration of the momentum
balance for spherical particles under consideration of the Stokes force and the buoyancy force.
The theoretical predictions concerning the penetration depth for SiC particles in the TiAl6V4 melt
have been experimentally verified. Hosson achieved penetration depths up to 1.4 mm, whereby the
particles have to exceed a velocity limit of about 2 m/s to avoid rebounding from the melt.

The median particle velocity can be derived from the average particle intensity in a lighted layer,
the average particle diameter, the specific intensity and the powder mass flow. The median particle
velocity determined for the coaxial nozzle is 11.28 m/s, and for the three-jet nozzle 3.76 m/s. These can
be put into the following formula from Hosson:

dm =
vP, reduced

c
, (2)

c =
9
2
· η

rP · ρ
(3)

with:

dm: particle penetration depth;
vP, reduced: reduced particle velocity;
c: a constant that is decided by η, rP, and ρ;
η: dynamic viscosity;
rP: particle radius; and
ρ: density.

In order for the particles to penetrate the melt, they must overcome the interfacial forces.
The energy necessary for this is taken from the kinetic energy; what still remains is the reduced
particle velocity vP, reduced. This is then the starting condition for a differential equation for a spherical
particle which has already been immersed in the melt and whose velocity is reduced by the Stokes
frictional force and buoyancy force. c is a constant which is derived from the integration of the
differential equation and is determined by the boundary conditions. Under identical experimental
conditions, IN718 powder fed by three-jet and coaxial nozzles have the same kinetic energy loss for the
complete wetting of the particles. With the estimation that has been made, the expected penetration
depth for the three-jet nozzle and the coaxial nozzle are 26 and 500 µm, respectively. For the given
particle diameters and a theoretical continuum (not particle-resolved modeling), the 26 µm penetration
depth in relation to the melting depth means a surface source.

For the coaxial nozzle, the boundary condition for heat exchange between the heated particles and
the melt pool used in the model for the three-jet nozzle needs to be changed from a surface boundary
condition to a volumetric boundary condition.

4.3. HDR-LMD with a Coaxial Nozzle

Based on the adapted model, with the volumetric boundary condition for the process with the
coaxial nozzle, the temperature distribution and the track geometry are calculated, and the results are
shown in Figure 11.
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In Figure 11a, the simulated temperature distribution shows that there is a large region in the
beam interaction zone where the temperature is higher than the evaporating temperature of IN718.
In addition, as can be seen in Figure 11b, the dilution profile in the y-z view is not symmetric, and it
shows a local maximum located away from the middle of the track, which must be caused by the
non-symmetric PID.

Figure 12 shows two metallographic prepared cross-sections of the track deposited with the
coaxial nozzle.
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Figure 12. Metallographic prepared cross-sections of a track processed with the coaxial nozzle at two
randomly-selected positions, which are labeled in the Figure as (a,b).

As is shown in Figure 12a, the calculated dilution profile shown in Figure 11b fits well with the
metallographic prepared cross-section at this position—this proves that the adapted model is suitable
and effective for simulating the process with the coaxial nozzle.

The cross-section shown in Figure 12b illustrates that the local maximum has shifted to the other
side, which means the PID is not stationary and probably time-dependent.

The transmitted LID and PID for the coaxial nozzle projected onto the track geometry are shown
in Figure 13.
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Figure 13. Transmitted LID (a) and PID (b) for the coaxial nozzle projected onto the track geometry.

It can be seen from Figure 13a that the transmitted LID for the coaxial nozzle projected onto
the track geometry shows that the track width is approximately the same as the beam diameter. As
shown in Figure 13b, for the process with the coaxial nozzle, 94% of the particles hit the melt pool
surface, and the calculated powder efficiency based on the experimental results is 92% (see Section 3.3).
This means that almost all the particles that hit the melt pool surface have been caught and absorbed,
which agrees well with the model from Lin et al. [35] for particle catchment.

The melt pool surface shows a large region where the temperature is higher than the evaporating
temperature of IN718, and thereby the interfacial energy for wetting the particles vanishes, which is
probably the physical reason for the high particle efficiency.

5. Conclusions

In this work we have investigated the effects of the powder stream on high-deposition-rate laser
metal deposition (HDR-LMD) with Inconel 718 (IN718).

Initially, LMD experiments with a coaxial nozzle and a three-jet nozzle under identical
experimental conditions were performed. The used nozzles deliver different powder streams
according to their different feeding principles. Afterwards, metallographic analysis was carried out:
the cross-sections of the deposited single tracks were analyzed and the results have been evaluated.
The laser beam and the powder streams have been characterized using the data acquired from a
PRIMES Focus Monitor and an ILT particle intensity measurement system, respectively. Furtherly,
the characterized laser beam and powder streams were used to simulate the processes. In correlation
with the experimental results, suitable models for simulating processes with different powder streams
have been identified, and the mechanism of the effects of the powder stream on HDR LMD with IN718
have been found. Based on the results, the following conclusions can be drawn:

• With the three-jet nozzle, a substantial part of the powder particles that hit the melt pool surface
are rebounded; with the coaxial nozzle, almost all the particles that hit the melt pool surface have
been caught and absorbed.

• Different particle velocity must be the main reason for this result since, with similar PID,
the particle velocity determines the penetration depth of the powder particle into the melt pool.

• Due to the different penetration depth, the model used for simulating the processes with different
power streams should be adapted, using different boundary conditions.

• The powder stream affects the heat exchange between the heated particles and the melt pool:
a surface boundary condition applies for a powder stream with lower particle velocities, in this
experiment, provided by a three-jet nozzle, and a volumetric boundary condition applies for a
powder stream with higher particle velocities, provided here by a coaxial nozzle.
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