Predicting the Performance of Organic Corrosion Inhibitors
Abstract
:1. Introduction
2. High-Throughput Synthesis and Testing of Organic Corrosion Inhibitors
3. Machine Learning Modelling Methods
4. Computational Models of Corrosion Inhibitory Properties of Organic Compounds
5. Conclusions and Perspective
Conflicts of Interest
References
- Winkler, D.A.; Breedon, M.; White, P.; Hughes, A.E.; Sapper, E.D.; Cole, I. Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors. Corros. Sci. 2016, 106, 229–235. [Google Scholar] [CrossRef]
- Li, J.Q.; Ballmer, S.G.; Gillis, E.P.; Fujii, S.; Schmidt, M.J.; Palazzolo, A.M.E.; Lehmann, J.W.; Morehouse, G.F.; Burke, M.D. Synthesis of many different types of organic small molecules using one automated process. Science 2015, 347, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. The synthesis machine. Science 2015, 347, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.S.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 2015, 55, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Reymond, J.L.; Awale, M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem. Neurosci. 2012, 3, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Walters, F.H. Use of statistical mixture designs to evaluate ternary mixtures of organics as corrosion-inhibitors. Anal. Lett. 1990, 23, 1783–1790. [Google Scholar] [CrossRef]
- Fujita, T.; Winkler, D.A. Understanding the roles of the “two QSARs”. J. Chem. Inf. Model. 2016, 56, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.A. Neural networks as robust tools in drug lead discovery and development. Mol. Biotechnol. 2004, 27, 139–167. [Google Scholar] [CrossRef]
- Winkler, D.A.; Burden, F.R. Robust QSAR models from novel descriptors and Bayesian regularised neural networks. Mol. Simulat. 2000, 24, 243–258. [Google Scholar] [CrossRef]
- Le, T.C.; Winkler, D.A. A bright future for evolutionary methods in drug design. ChemMedChem 2015, 10, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Le, T.C.; Winkler, D.A. Discovery and optimization of materials using evolutionary approaches. Chem. Rev. 2016, 116, 6107–6132. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.A. Biomimetic molecular design tools that learn, evolve, and adapt. Beilstein J. Org. Chem. 2017, 13, 1288–1302. [Google Scholar] [CrossRef] [PubMed]
- Chambers, B.D.; Taylor, S.R.; Kendig, M.W. Rapid discovery of corrosion inhibitors and synergistic combinations using high-throughput screening methods. Corrosion 2005, 61, 480–489. [Google Scholar] [CrossRef]
- Chambers, B.D.; Taylor, S.R. The high throughput assessment of aluminium alloy corrosion using fluorometric methods. Part I—Development of a fluorometric method to quantify aluminium ion concentration. Corros. Sci. 2007, 49, 1584–1596. [Google Scholar] [CrossRef]
- Chambers, B.D.; Taylor, S.R. The high throughput assessment of aluminium alloy corrosion using fluorometric methods. Part II—A combinatorial study of corrosion inhibitors and synergistic combinations. Corros. Sci. 2007, 49, 1597–1609. [Google Scholar] [CrossRef]
- Taylor, S.R.; Chambers, B.D. The discovery of non-chromate corrosion inhibitors for aerospace alloys using high-throughput screening methods. Corros. Rev. 2007, 25, 571–590. [Google Scholar] [CrossRef]
- Taylor, S.R.; Chambers, B.D. Identification and characterization of nonchromate corrosion inhibitor synergies using high-throughput methods. Corrosion 2008, 64, 255–270. [Google Scholar] [CrossRef]
- Kallip, S.; Bastos, A.C.; Zheludkevich, M.L.; Ferreira, M.G.S. A multi-electrode cell for high-throughput svet screening of corrosion inhibitors. Corros. Sci. 2010, 52, 3146–3149. [Google Scholar] [CrossRef]
- He, J.; Bahr, J.; Chisholm, B.J.; Li, J.; Chen, Z.; Balbyshev, S.N.; Bonitz, V.; Bierwagen, G.P. Combinatorial materials research applied to the development of new surface coatings X: A high-throughput electrochemical impedance spectroscopy method for screening organic coatings for corrosion inhibition. J. Comb. Chem. 2008, 10, 704–713. [Google Scholar] [CrossRef] [PubMed]
- White, P.A.; Smith, G.B.; Harvey, T.G.; Corrigan, P.A.; Glenn, M.A.; Lau, D.; Hardin, S.G.; Mardel, J.; Markley, T.A.; Muster, T.H.; et al. A new high-throughput method for corrosion testing. Corros. Sci. 2012, 58, 327–331. [Google Scholar] [CrossRef]
- Shi, P.; Li, B.; Huo, J.; Wen, L. A smart high-throughput experiment platform for materials corrosion study. Sci. Program. 2016, 2016. [Google Scholar] [CrossRef]
- Le, T.; Epa, V.C.; Burden, F.R.; Winkler, D.A. Quantitative structure–property relationship modeling of diverse materials properties. Chem. Rev. 2012, 112, 2889–2919. [Google Scholar] [CrossRef] [PubMed]
- Engel, T.; Gasteiger, J. Chemoinformatics: Basic Concepts and Methods; Wiley VCH: Weinheim, Germany, 2018. [Google Scholar]
- Engel, T.; Gasteiger, J. Chemoinformatics: From Methods to Applications; Wiley VCH: Weinheim, Germany, 2018. [Google Scholar]
- Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Gupta, S.; Rawal, R.K. Impact of artificial neural networks in QSAR and computational modeling. In Artificial Neural Network for Drug Design, Delivery and Disposition; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–179. [Google Scholar]
- Montanez-Godinez, N.; Martinez-Olguin, A.C.; Deeb, O.; Garduno-Juarez, R.; Ramirez-Galicia, G. QSAR/QSPR as an application of artificial neural networks. Methods Mol. Biol. 2015, 1260, 319–333. [Google Scholar] [PubMed]
- Winkler, D.A. Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR. Mol. Inform. 2017, 36, 1600118. [Google Scholar] [CrossRef] [PubMed]
- Sastri, V.S.; Perumareddi, J.R. Molecular orbital theoretical studies of some organic corrosion inhibitors. Corrosion 1997, 53, 617–622. [Google Scholar] [CrossRef]
- Ozcan, M.; Dehri, I. Electrochemical and quantum chemical studies of some sulphur-containing organic compounds as inhibitors for the acid corrosion of mild steel. Prog. Org. Coat. 2004, 51, 181–187. [Google Scholar] [CrossRef]
- Ozcan, M.; Dehri, I.; Erbil, M. Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media: Correlation between inhibition efficiency and chemical structure. Appl. Surf. Sci. 2004, 236, 155–164. [Google Scholar] [CrossRef]
- Sastri, V.S.; Elboujdaini, M.; Perumareddi, J.R. Utility of quantum chemical parameters in the rationalization of corrosion inhibition efficiency of some organic inhibitors. Corrosion 2005, 61, 933–942. [Google Scholar] [CrossRef]
- Bedair, M.A. The effect of structure parameters on the corrosion inhibition effect of some heterocyclic nitrogen organic compounds. J. Mol. Liquids 2016, 219, 128–141. [Google Scholar] [CrossRef]
- Saha, S.K.; Hens, A.; Murmu, N.C.; Banerjee, P. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J. Mol. Liq. 2016, 215, 486–495. [Google Scholar] [CrossRef]
- Winkler, D.A.; Breedon, M.; Hughes, A.E.; Burden, F.R.; Barnard, A.S.; Harvey, T.G.; Cole, I. Towards chromate-free corrosion inhibitors: Structure–property models for organic alternatives. Green Chem. 2014, 16, 3349–3357. [Google Scholar] [CrossRef]
- Fernandez, M.; Breedon, M.; Cole, I.S.; Barnard, A.S. Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (comsa). Chemosphere 2016, 160, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations. MATCH Commun. Math. Comput. Sci. 2006, 56, 237–248. [Google Scholar]
- Horner, L.; Meisel, K. Corrosion-inhibitors 23 (1)—Does there exist a structure–efficiency relation in organic inhibitors of aluminum corrosion. Werkstoffe Korros. Mater. Corros. 1978, 29, 654–664. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Muralidharan, V.S. Correlation between structure and inhibition of organic compounds for acid corrosion of transition metals. Indian J. Chem. Technol. 1998, 5, 16–28. [Google Scholar]
- Keshavarz, M.H.; Esmaeilpour, K.; Golikand, A.N.; Shirazi, Z. Simple approach to predict corrosion inhibition efficiency of imidazole and benzimidazole derivatives as well as linear organic compounds containing several polar functional groups. Z. Anorg. Allgem. Chem. 2016, 642, 906–913. [Google Scholar] [CrossRef]
- Zhang, S.G.; Lei, W.; Xia, M.Z.; Wang, F.Y. QSAR study on n-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. J. Mol. Struct. 2005, 732, 173–182. [Google Scholar] [CrossRef]
- Burgazli, C.R.; Navarrete, R.C.; Mead, S.L. New dual purpose chemistry for gas hydrate and corrosion inhibition. J. Can. Petrol. Technol. 2005, 44, 47–50. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, D.A. Predicting the Performance of Organic Corrosion Inhibitors. Metals 2017, 7, 553. https://doi.org/10.3390/met7120553
Winkler DA. Predicting the Performance of Organic Corrosion Inhibitors. Metals. 2017; 7(12):553. https://doi.org/10.3390/met7120553
Chicago/Turabian StyleWinkler, David A. 2017. "Predicting the Performance of Organic Corrosion Inhibitors" Metals 7, no. 12: 553. https://doi.org/10.3390/met7120553
APA StyleWinkler, D. A. (2017). Predicting the Performance of Organic Corrosion Inhibitors. Metals, 7(12), 553. https://doi.org/10.3390/met7120553