Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review
Abstract
:1. Introduction
2. Metallurgy
2.1. Duplex Structure
2.2. Precipitation of Other Phases
3. Properties of Duplex Stainless Steel Weldments
3.1. Pitting Corrosion
3.2. Intergranular Corrosion
3.3. Stress-Corrosion Cracking
3.4. Mechanical Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jarvis, B.L.; Tanaka, M. 3—Gas tungsten arc welding. In New Developments in Advanced Welding; Woodhead Publishing: Witney, UK, 2005; pp. 40–80. [Google Scholar]
- Sun, J.; Chuansong, W. The effect of welding heat input on the weldpool behavior in MIG welding. Sci. China Ser. E Technol. Sci. 2002, 45, 291–299. [Google Scholar] [CrossRef]
- Rondelli, G.; Vicentini, B. Susceptibility of highly alloyed austenitic stainless steels to caustic stress corrosion cracking. Mater. Corros. 2002, 53, 813–819. [Google Scholar] [CrossRef]
- Rondelli, G.; Vicentini, B.; Sivieri, E. Stress corrosion cracking of stainless steels in high temperature caustic solutions. Corros. Sci. 1997, 39, 1037–1049. [Google Scholar] [CrossRef]
- Parnian, N. Failure analysis of austenitic stainless steel tubes in a gas fired steam heater. Mater. Des. 2012, 36, 788–795. [Google Scholar] [CrossRef]
- Betova, I.; Bojinov, M.; Hyökyvirta, O.; Saario, T. Effect of sulphide on the corrosion behaviour of AISI 316L stainless steel and its constituent elements in simulated kraft digester conditions. Corros. Sci. 2010, 52, 1499–1507. [Google Scholar] [CrossRef]
- Chasse, K.; Raji, S.; Singh, P. Effect of chloride ions on corrosion and stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solutions. Corrosion 2012, 68, 932–949. [Google Scholar] [CrossRef]
- Elsariti, S.M. Behaviour of stress corrosion cracking of austenitic stainless steels in sodium chloride solutions. Procedia Eng. 2013, 53, 650–654. [Google Scholar] [CrossRef]
- Alyousif, O.M.; Nishimura, R. Stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions. Corros. Sci. 2008, 50, 2353–2359. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Bonollo, F.; Tiziani, A.; Ferro, P. Welding processes, microstructural evolution and final properties of duplex and superduplex stainless steels. In Duplex Stainless Steels; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 141–159. [Google Scholar]
- Kisasoz, A.; Gurel, S.; Karaaslan, A. Effect of annealing time and cooling rate on precipitation processes in a duplex corrosion-resistant steel. Metal Sci. Heat Treat. 2016, 57, 544–547. [Google Scholar] [CrossRef]
- Srikanth, S.; Saravanan, P.; Govindarajan, P.; Sisodia, S.; Ravi, K. Development of Lean Duplex Stainless Steels (LDSS) with Superior Mechanical and Corrosion Properties on Laboratory Scale. Adv. Mater. Res. 2013, 794, 714–730. [Google Scholar] [CrossRef]
- Alvarez-Armas, I.; Degallaix-Moreuil, S. Duplex Stainless Steels; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bhattacharya, A.; Singh, P.M. Electrochemical behaviour of duplex stainless steels in caustic environment. Corros. Sci. 2011, 53, 71–81. [Google Scholar] [CrossRef]
- Lai, R.; Cai, Y.; Wu, Y.; Li, F.; Hua, X. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding. J. Mater. Process. Technol. 2016, 231, 397–405. [Google Scholar] [CrossRef]
- Baddoo, N.R. Stainless steel in construction: A review of research, applications, challenges and opportunities. J. Construct. Steel Res. 2008, 64, 1199–1206. [Google Scholar] [CrossRef]
- Olsson, J.; Snis, M. Duplex—A new generation of stainless steels for desalination plants. Desalination 2007, 205, 104–113. [Google Scholar] [CrossRef]
- Chandler, K.A. 3—Marine environments. In Marine and Offshore Corrosion; Butterworth-Heinemann: Amsterdam, The Netherlands, 1985; pp. 38–50. [Google Scholar]
- Sarlak, H.; Atapour, M.; Esmailzadeh, M. Corrosion behavior of friction stir welded lean duplex stainless steel. Mater. Des. 2015, 66, 209–216. [Google Scholar] [CrossRef]
- Pekkarinen, J.; Kujanpää, V. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds. Phys. Procedia 2010, 5, 517–523. [Google Scholar] [CrossRef]
- El Bartali, A.; Evrard, P.; Aubin, V.; Herenú, S.; Alvarez-Armas, I.; Armas, A.; Degallaix-Moreuil, S. Strain heterogeneities between phases in a duplex stainless steel. Comparison between measures and simulation. Procedia Eng. 2010, 2, 2229–2237. [Google Scholar] [CrossRef]
- Saha Podder, A.; Bhanja, A. Applications of Stainless Steel in Automobile Industry. Adv. Mater. Res. 2013, 794, 731–740. [Google Scholar] [CrossRef]
- Cunat, P.J. Stainless Steel in Structural Automotive Applications; SAE International: Paris, France, 2002. [Google Scholar]
- Hariharan, K.; Balachandran, G.; Prasad, M.S. Application of cost-effective stainless steel for automotive components. Mater. Manuf. Process. 2009, 24, 1442–1452. [Google Scholar] [CrossRef]
- Pouranvari, M.; Alizadeh-Sh, M.; Marashi, S. Welding metallurgy of stainless steels during resistance spot welding part I: Fusion zone. Sci. Technol. Weld. Join. 2015, 20, 502–511. [Google Scholar] [CrossRef]
- Dur, E.; Cora, Ö.N.; Koç, M. Effect of manufacturing conditions on the corrosion resistance behavior of metallic bipolar plates in proton exchange membrane fuel cells. J. Power Sources 2011, 196, 1235–1241. [Google Scholar] [CrossRef]
- Urena, A.; Otero, E.; Utrilla, M.; Munez, C. Weldability of a 2205 duplex stainless steel using plasma arc welding. J. Mater. Process. Technol. 2007, 182, 624–631. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhou, C.; Chen, S.; Wang, R. Effects of temperature and pressure on stress corrosion cracking behavior of 310s stainless steel in chloride solution. Chin. J. Mech. Eng. 2016, 29, 1–7. [Google Scholar] [CrossRef]
- Rahmani, M.; Eghlimi, A.; Shamanian, M. Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint. J. Mater. Eng. Perform. 2014, 23, 3745–3753. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Shrikrishna, K.A.; Sathiya, P.; Goel, S. The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspects of friction welded duplex stainless steel joints. J. Manuf. Process. 2015, 18, 92–106. [Google Scholar]
- Funderburk, R.S. A look at input. Weld. Innov. 1999, 16, 1–4. [Google Scholar]
- Lai, J.K.L.; Shek, C.H.; Lo, K.H. Stainless Steels: An Introduction and Their Recent Developments; Bentham Science Publishers: Beijing, China, 2012. [Google Scholar]
- Cieslak, M.; Savage, W. Weldability and solidification phenomena of cast stainless steel. Weld. J. 1980, 5, 136s–146s. [Google Scholar]
- Tseng, K.H. Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol. 2013, 233, 72–79. [Google Scholar] [CrossRef]
- KoleniČ, F.; Kovac, L.; Drimal, D. Effect of laser welding conditions on austenite/ferrite ratio in duplex stainless steel 2507 welds. Weld. World 2011, 55, 19–25. [Google Scholar] [CrossRef]
- Medina, E.; Medina, J.M.; Cobo, A.; Bastidas, D.M. Evaluation of mechanical and structural behavior of austenitic and duplex stainless steel reinforcements. Construct. Build. Mater. 2015, 78, 1–7. [Google Scholar] [CrossRef]
- Alvarez-Armas, I. Duplex stainless steels: Brief history and some recent alloys. Recent Patents Mech. Eng. 2008, 1, 51–57. [Google Scholar] [CrossRef]
- Nowacki, J.; Łukojć, A. Structure and properties of the heat-affected zone of duplex steels welded joints. J. Mater. Process. Technol. 2005, 164, 1074–1081. [Google Scholar] [CrossRef]
- Hwang, S.W.; Ji, J.H.; Lee, E.G.; Park, K.-T. Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight. Mater. Sci. Eng. A 2011, 528, 5196–5203. [Google Scholar] [CrossRef]
- Betini, E.G.; Cione, F.C.; Mucsi, C.S.; Colosio, M.A.; Rossi, J.L.; Orlando, M.T.D.A. Experimental Study of the Temperature Distribution in Welded Thin Plates of Duplex Stainless Steel for Automotive Exhaust Systems. SAE Int. 2016. [Google Scholar] [CrossRef]
- Hunter, A.; Ferry, M. Phase formation during solidification of AISI 304 austenitic stainless steel. Scr. Mater. 2002, 46, 253–258. [Google Scholar] [CrossRef]
- Yan, J.; Gao, M.; Zeng, X. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Opt. Lasers Eng. 2010, 48, 512–517. [Google Scholar] [CrossRef]
- Fu, J.; Yang, Y.; Guo, J.; Ma, J.; Tong, W. Formation of two-phase coupled microstructure in AISI 304 stainless steel during directional solidification. J. Mater. Res. 2009, 24, 2385–2390. [Google Scholar] [CrossRef]
- Eghlimi, A.; Shamanian, M.; Eskandarian, M.; Zabolian, A.; Szpunar, J.A. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal. Mater. Charact. 2015, 106, 208–216. [Google Scholar] [CrossRef]
- Schaeffler, A. Constitution diagram for stainless steel weld metal. Met. Prog. 1949, 56, 680–680B. [Google Scholar]
- Long, C.; DeLong, W. Ferrite content of austenitic stainless steel weld metal. Weld. J. 1973, 52, 281. [Google Scholar]
- Wegrzyn, T. Delta ferrite in stainless steel weld metals. Weld. Int. 1992, 6, 690–694. [Google Scholar] [CrossRef]
- Datta, P.; Upadhyaya, G. Sintered duplex stainless steels from premixes of 316L and 434L powders. Mater. Chem. Phys. 2001, 67, 234–242. [Google Scholar] [CrossRef]
- Suutala, N. Effect of solidification conditions on the solidification mode in austenitic stainless steels. Metall. Trans. A 1983, 14, 191–197. [Google Scholar] [CrossRef]
- Suutala, N.; Takalo, T.; Moisio, T. Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metall. Trans. A 1980, 11, 717–725. [Google Scholar] [CrossRef]
- Baeslack, W.A.; Duquette, D.J.; Savage, W.F. The effect of ferrite content on stress corrosion cracking in duplex stainless steel weld metals at room temperature. Corrosion 1979, 35, 45–54. [Google Scholar] [CrossRef]
- Menendez, H.; Devine, T. The influence of microstructure on the sensitization behavior of duplex stainless steel welds. Corrosion 1990, 46, 410–418. [Google Scholar] [CrossRef]
- Ogawa, T.; Koseki, T. Effect of composition profiles on metallurgy and corrosion behavior of duplex stainless steel weld metals. Weld. J. 1989, 68, 181. [Google Scholar]
- Utu, I.D.; Mitelea, I.; Urlan, S.; Crăciunescu, C. Transformation and precipitation reactions by metal active gas pulsed welded joints from X2CrNiMoN22-5-3 duplex stainless steels. Materials 2016, 9, 606. [Google Scholar] [CrossRef]
- El Koussy, M.; El Mahallawi, I.; Khalifa, W.; Al Dawood, M.; Bueckins, M. Effects of thermal aging on microstructure and mechanical properties of duplex stainless steel weldments. Mater. Sci. Technol. 2004, 20, 375–381. [Google Scholar] [CrossRef]
- Ahn, Y.; Kang, J. Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel. Mater. Sci. Technol. 2000, 16, 382–388. [Google Scholar] [CrossRef]
- Chen, T.; Yang, J. Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel. Mater. Sci. Eng. A 2001, 311, 28–41. [Google Scholar] [CrossRef]
- Chen, T.; Weng, K.; Yang, J. The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng. A 2002, 338, 259–270. [Google Scholar] [CrossRef]
- Wessman, S.; Pettersson, R.; Hertzman, S. On phase equilibria in duplex stainless steels. Steel Res. Int. 2010, 81, 337–346. [Google Scholar] [CrossRef]
- Sieurin, H.; Sandström, R. Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater. Sci. Eng. A 2006, 418, 250–256. [Google Scholar] [CrossRef]
- Kim, S.K.; Kang, K.Y.; Kim, M.-S.; Lee, J.M. Low-temperature mechanical behavior of super duplex stainless steel with sigma precipitation. Metals 2015, 5, 1732–1745. [Google Scholar] [CrossRef]
- Bouyne, E.; Joly, P.; Houssin, B.; Wiesner, C.; Pineau, A. Mechanical and microstructural investigations into the crack arrest behaviour of a modern 2¼Cr-1 Mo pressure vessel steel. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 105–116. [Google Scholar] [CrossRef]
- Santos, T.F.; Marinho, R.R.; Paes, M.T.; Ramirez, A.J. Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds. Rem Rev. Esc. Minas 2013, 66, 187–191. [Google Scholar] [CrossRef]
- Kasper, J. The ordering of atoms in the chi-phase of the iron-chromium-molybdenum system. Acta Metall. 1954, 2, 456–461. [Google Scholar] [CrossRef]
- Byun, S.H.; Kang, N.; Lee, T.H.; Ahn, S.K.; Lee, H.W.; Chang, W.S.; Cho, K.M. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel. Met. Mater. Int. 2012, 18, 201–207. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, J.S.; Kim, K.T.; Park, K.T.; Lee, C.S. Effect of ce addition on secondary phase transformation and mechanical properties of 27Cr–7Ni hyper duplex stainless steels. Mater. Sci. Eng. A 2013, 573, 27–36. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Wu, W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels. ISRN Metall. 2012, 2012, 16. [Google Scholar] [CrossRef]
- Vinoth Jebaraj, A.; Ajaykumar, L. Influence of microstructural changes on impact toughness of weldment and base metal of duplex stainless steel AISI 2205 for low temperature applications. Procedia Eng. 2013, 64, 456–466. [Google Scholar] [CrossRef]
- Wu, H.; Tsay, L.; Chen, C. Laser beam welding of 2205 duplex stainless steel with metal powder additions. ISIJ Int. 2004, 44, 1720–1726. [Google Scholar] [CrossRef]
- Kingklang, S.; Uthaisangsuk, V. Investigation of hot deformation behavior of duplex stainless steel grade 2507. Metall. Mater. Trans. A 2016, 48, 95–108. [Google Scholar] [CrossRef]
- Deng, B.; Jiang, Y.; Xu, J.; Sun, T.; Gao, J.; Zhang, L.; Zhang, W.; Li, J. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101. Corros. Sci. 2010, 52, 969–977. [Google Scholar] [CrossRef]
- Chan, K.W.; Tjong, S.C. Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials 2014, 7, 5268–5304. [Google Scholar] [CrossRef]
- Ajith, P.M.; Sathiya, P.; Aravindan, S. Characterization of microstructure, toughness, and chemical composition of friction-welded joints of UNS S32205 duplex stainless steel. Friction 2014, 2, 82–91. [Google Scholar] [CrossRef]
- Jinlong, L.; Tongxiang, L.; Limin, D.; Chen, W. Influence of sensitization on microstructure and passive property of AISI 2205 duplex stainless steel. Corros. Sci. 2016, 104, 144–151. [Google Scholar] [CrossRef]
- Chasse, K.R.; Singh, P.M. Hydrogen embrittlement of a duplex stainless steel in alkaline sulfide solution. Corrosion 2011, 67, 015002-1–015002-12. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, J.; Li, J.; Jiang, L.; Liu, T.; Wu, Y. Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel. Materials 2014, 7, 6604–6619. [Google Scholar] [CrossRef]
- Sridhar, N.; Tormoen, G.; Hackney, S.; Anderko, A. Effect of aging treatments on the repassivation potential of duplex stainless steel S32205. Corrosion 2009, 65, 650–662. [Google Scholar] [CrossRef]
- Geng, S.; Sun, J.; Guo, L.; Wang, H. Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint. J. Manuf. Process. 2015, 19, 32–37. [Google Scholar] [CrossRef]
- Schmidt-Rieder, E.; Tong, X.; Farr, J.; Aindow, M. In situ electrochemical scanning probe microscopy corrosion studies on duplex stainless steel in aqueous NaCl solutions. Br. Corros. J. 2013, 31, 139–146. [Google Scholar] [CrossRef]
- Ramkumar, K.D.; Thiruvengatam, G.; Sudharsan, S.; Mishra, D.; Arivazhagan, N.; Sridhar, R. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750. Mater. Des. 2014, 60, 125–135. [Google Scholar] [CrossRef]
- Arıkan, M.E.; Arıkan, R.; Doruk, M. Determination of susceptibility to intergranular corrosion of UNS 31803 type duplex stainless steel by electrochemical reactivation method: A comparative study. Int. J. Corros. 2012, 2012, 1–14. [Google Scholar] [CrossRef]
- Zhan, X.; Dong, Z.; Wei, Y.; Ma, R. Simulation of grain morphologies and competitive growth in weld pool of Ni–Cr alloy. J. Cryst. Growth 2009, 311, 4778–4783. [Google Scholar] [CrossRef]
- Łabanowski, J.; Świerczyńska, A.; Topolska, S. Effect of microstructure on mechanical properties and corrosion resistance of 2205 duplex stainless steel. Pol. Marit. Res. 2014, 21, 108–112. [Google Scholar] [CrossRef]
- Bermejo, M.V.; Karlsson, L.; Svensson, L.E.; Hurtig, K.; Rasmuson, H.; Frodigh, M.; Bengtsson, P. Effect of shielding gas on welding performance and properties of duplex and superduplex stainless steel welds. Weld. World 2015, 59, 239–249. [Google Scholar] [CrossRef]
- Hazra, M.; Rao, K.S.; Reddy, G.M. Friction welding of a nickel free high nitrogen steel: Influence of forge force on microstructure, mechanical properties and pitting corrosion resistance. J. Mater. Res. Technol. 2014, 3, 90–100. [Google Scholar] [CrossRef]
- Cárcel-Carrasco, F.J.; Pascual-Guillamón, M.; Pérez-Puig, M.A. Effects of X-rays radiation on AISI 304 stainless steel weldings with AISI 316L filler material: A study of resistance and pitting corrosion behavior. Metals 2016, 6, 102. [Google Scholar] [CrossRef]
- Neissi, R.; Shamanian, M.; Hajihashemi, M. The effect of constant and pulsed current gas tungsten arc welding on joint properties of 2205 duplex stainless steel to 316L austenitic stainless steel. J. Mater. Eng. Perform. 2016, 25, 2017–2028. [Google Scholar] [CrossRef]
- El-Batahgy, A.M.; Khourshid, A.F.; Sharef, T. Effect of laser beam welding parameters on microstructure and properties of duplex stainless steel. Mater. Sci. Appl. 2011, 2, 1443–1451. [Google Scholar] [CrossRef]
- Mohammed, G.R.; Ishak, M.; Aqida, S.N.; Abdulhadi, H.A. The effect of fiber laser parameters on microhardness and microstructure of duplex stainless steel. MATEC Web Conf. 2017, 90, 01024. [Google Scholar] [CrossRef]
- Srinivasan, P.B.; Muthupandi, V.; Dietzel, W.; Sivan, V. An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels. Mater. Des. 2006, 27, 182–191. [Google Scholar] [CrossRef]
- Lothongkum, G.; Wongpanya, P.; Morito, S.; Furuhara, T.; Maki, T. Effect of nitrogen on corrosion behavior of 28Cr–7Ni duplex and microduplex stainless steels in air-saturated 3.5 wt% NaCl solution. Corros. Sci. 2006, 48, 137–153. [Google Scholar] [CrossRef]
- Yasuda, K.; Kimura, M.; Kawasaki, H.; Works, C.; Uegaki, T. Optimizing welding condition for excellent corrosion resistance in duplex stainless steel linepipe. Kawasaki Steel Giho 1988, 20, 197–202. [Google Scholar]
- Jiang, Y.; Tan, H.; Wang, Z.; Hong, J.; Jiang, L.; Li, J. Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints. Corros. Sci. 2013, 70, 252–259. [Google Scholar] [CrossRef]
- Moura, V.S.; Lima, L.D.; Pardal, J.M.; Kina, A.Y.; Corte, R.R.A.; Tavares, S.S.M. Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater. Charact. 2008, 59, 1127–1132. [Google Scholar] [CrossRef]
- Sadeghian, M.; Shamanian, M.; Shafyei, A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater. Des. 2014, 60, 678–684. [Google Scholar] [CrossRef]
- Lundquist, B.; Norberg, P.; Olsson, K. Influence of different welding conditions on mechanical properties and corrosion resistance of sandvik SAF 2205 (UNS S31803). In Proceedings of the Conference Duplex Stainless Steels, the Hague, Netherlands, October 1986; pp. 16–29.
- Łabanowski, J. Mechanical properties and corrosion resistance of dissimilar stainless steel welds. Arch. Mater. Sci. Eng. 2007, 28, 27–33. [Google Scholar]
- Hosseini, V.A.; Bermejo, M.A.V.; Gårdstam, J.; Hurtig, K.; Karlsson, L. Influence of multiple thermal cycles on microstructure of heat-affected zone in TIG-welded super duplex stainless steel. Weld. World 2016, 60, 233–245. [Google Scholar] [CrossRef]
- Busschaert, F.; Cassagne, T.; Pedersen, A.; Johnsen, S. New challenges for the use of duplex stainless steels at low temperatures. Rev. Métall. 2013, 110, 185–197. [Google Scholar] [CrossRef]
- Jang, S.H.; Kim, S.T.; Lee, I.S.; Park, Y.S. Effect of shielding gas composition on phase transformation and mechanism of pitting corrosion of hyper duplex stainless steel welds. Mater. Trans. 2011, 52, 1228–1236. [Google Scholar] [CrossRef]
- Hosseini, V.A.; Wessman, S.; Hurtig, K.; Karlsson, L. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel. Mater. Des. 2016, 98, 88–97. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Q.; Li, Y. Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR. Mater. Des. 2011, 32, 831–837. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z.Z. Study on Weldablity of Dissimilar Steel between 16MnR and S31803. Adv. Mater. Res. 2012, 391–392, 768–772. [Google Scholar] [CrossRef]
- Tavares, S.; Pardal, J.; Lima, L.; Bastos, I.; Nascimento, A.; de Souza, J. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750. Mater. Charact. 2007, 58, 610–616. [Google Scholar] [CrossRef]
- Olsson, C.O.A.; Landolt, D. Passive films on stainless steels-chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Kotecki, D.J. Some pitfalls in welding of duplex stainless steels. Soldag. Insp. 2010, 15, 336–343. [Google Scholar] [CrossRef]
- Dong, W.; Kokawa, H.; Sato, Y.S.; Tsukamoto, S. Nitrogen desorption by high-nitrogen steel weld metal during CO2 laser welding. Metall. Mater. Trans. B 2005, 36, 677–681. [Google Scholar] [CrossRef]
- Lin, C.-M.; Tsai, H.-L.; Cheng, C.-D.; Yang, C. Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel. Eng. Fail. Anal. 2012, 21, 9–20. [Google Scholar] [CrossRef]
- Lu, Z.; Shoji, T.; Meng, F.; Xue, H.; Qiu, Y.; Takeda, Y.; Negishi, K. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water. Corros. Sci. 2011, 53, 1916–1932. [Google Scholar] [CrossRef]
- Lu, Z.; Shoji, T.; Xue, H.; Meng, F.; Fu, C.; Takeda, Y.; Negishi, K. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments. J. Nuclear Mater. 2012, 423, 28–39. [Google Scholar] [CrossRef]
- Yousefieh, M.; Shamanian, M.; Saatchi, A. Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds. J. Iron Steel Res. Int. 2011, 18, 65–69. [Google Scholar] [CrossRef]
- Gideon, B.; Ward, L.; Biddle, G. Duplex stainless steel welds and their susceptibility to intergranular corrosion. J. Miner. Mater. Charact. Eng. 2008, 7, 247–263. [Google Scholar] [CrossRef]
- Tan, H.; Wang, Z.; Jiang, Y.; Yang, Y.; Deng, B.; Song, H.; Li, J. Influence of welding thermal cycles on microstructure and pitting corrosion resistance of 2304 duplex stainless steels. Corros. Sci. 2012, 55, 368–377. [Google Scholar] [CrossRef]
- Silva, E.; Marinho, L.; Filho, P.; Leite, J.; Leite, J.; Fialho, W.; de Albuquerque, V.; Tavares, J. Classification of induced magnetic field signals for the microstructural characterization of sigma phase in duplex stainless steels. Metals 2016, 6, 164. [Google Scholar] [CrossRef]
- Shimada, M.; Kokawa, H.; Wang, Z.; Sato, Y.; Karibe, I. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 2002, 50, 2331–2341. [Google Scholar] [CrossRef]
- Lin, S.X.; Bao, W.K.; Gao, J.; Wang, J.B. Intergranular Corrosion of Austenitic Stainless Steel. Appl. Mech. Mater. 2012, 229–231, 14–17. [Google Scholar] [CrossRef]
- Vlčková, I.; Jonšta, P.; Jonšta, Z.; Váňová, P.; Kulová, T. Corrosion fatigue of austenitic stainless steels for nuclear power engineering. Metals 2016, 6, 319. [Google Scholar] [CrossRef]
- Mirshekari, G.R.; Tavakoli, E.; Atapour, M.; Sadeghian, B. Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel. Mater. Des. 2014, 55, 905–911. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chen, M.S. Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated nacl solution. Corros. Sci. 2000, 42, 545–559. [Google Scholar] [CrossRef]
- Kim, K.; Zhang, P.; Ha, T.; Lee, Y. Electrochemical and stress corrosion properties of duplex stainless steels modified with tungsten addition. Corrosion 1998, 54, 910–921. [Google Scholar] [CrossRef]
- Nilsson, J.O.; Kangas, P.; Wilson, A.; Karlsson, T. Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel. Metall. Mater. Trans. A 2000, 31, 35–45. [Google Scholar] [CrossRef]
- Strubbia, R.; Hereñú, S.; Marinelli, M.; Alvarez-Armas, I. Short crack nucleation and growth in lean duplex stainless steels fatigued at room temperature. Int. J. Fatigue 2012, 41, 90–94. [Google Scholar] [CrossRef]
- Brandolt, C.; Rosa, M.; Ramos, L.; Schroeder, R.; Malfatti, C.; Müller, I. Temperature influence on SCC behaviour of duplex stainless steel. Mater. Sci. Technol. 2016, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Jiao, W.; Feng, H.; Li, X.; Jiang, Z.; Li, G.; Wang, L.; Fan, G.; Han, P. Deformation characteristic and constitutive modeling of 2707 hyper duplex stainless steel under hot compression. Metals 2016, 6, 223. [Google Scholar] [CrossRef]
- Bellezze, T.; Giuliani, G.; Roventi, G.; Fratesi, R.; Andreatta, F.; Fedrizzi, L. Corrosion behaviour of austenitic and duplex stainless steels in an industrial strongly acidic solution. Mater. Corros. 2016, 67, 831–838. [Google Scholar] [CrossRef]
- Tseng, C.M.; Tsai, W.T. Environmentally assisted cracking behavior of single and dual phase stainless steels in hot chloride solutions. Mater. Chem. Phys. 2004, 84, 162–170. [Google Scholar] [CrossRef]
- El-Yazgi, A.; Hardie, D. Stress corrosion cracking of duplex and super duplex stainless steels in sour environments. Corros. Sci. 1998, 40, 909–930. [Google Scholar] [CrossRef]
- Örnek, C.; Idris, S.A.; Reccagni, P.; Engelberg, D.L. Atmospheric-induced stress corrosion cracking of grade 2205 duplex stainless steel—Effects of 475 °C embrittlement and process orientation. Metals 2016, 6, 167. [Google Scholar] [CrossRef]
- Chattoraj, I. Stress Corrosion Cracking of Duplex Stainless Steels. Adv. Mater. Res. 2013, 794, 552–563. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Singh, P.M. Effect of heat treatment on corrosion and stress corrosion cracking of S32205 duplex stainless steel in caustic solution. Metall. Mater. Trans. A 2009, 40, 1388–1399. [Google Scholar] [CrossRef]
- Muthupandi, V.; Bala Srinivasan, P.; Seshadri, S.K.; Sundaresan, S. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A 2003, 358, 9–16. [Google Scholar] [CrossRef]
- Esmailzadeh, M.; Shamanian, M.; Kermanpur, A.; Saeid, T. Microstructure and mechanical properties of friction stir welded lean duplex stainless steel. Mater. Sci. Eng. A 2013, 561, 486–491. [Google Scholar] [CrossRef]
- Reddy, G.M.; Rao, K.S. Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds. Int. J. Adv. Manuf. Technol. 2009, 45, 875–888. [Google Scholar] [CrossRef]
- Kordatos, J.; Fourlaris, G.; Papadimitriou, G. The effect of cooling rate on the mechanical and corrosion properties of SAF 2205 (UNS 31803) duplex stainless steel welds. Scr. Mater. 2001, 44, 401–408. [Google Scholar] [CrossRef]
- Calliari, I.; Straffelini, G.; Ramous, E. Investigation of secondary phase effect on 2205 DSS fracture toughness. Mater. Sci. Technol. 2010, 26, 81–86. [Google Scholar] [CrossRef]
- Ibrahim, O.; Ibrahim, I.; Khalifa, T. Impact behavior of different stainless steel weldments at low temperatures. Eng. Fail. Anal. 2010, 17, 1069–1076. [Google Scholar] [CrossRef]
- Kumar, S.; Shahi, A.S. On the influence of welding stainless steel on microstructural development and mechanical performance. Mater. Manuf. Process. 2014, 29, 894–902. [Google Scholar] [CrossRef]
- Song, T.; Jiang, X.; Shao, Z.; Mo, D.; Zhu, D.; Zhu, M. The interfacial microstructure and mechanical properties of diffusion-bonded joints of 316L stainless steel and the 4J29 kovar alloy using nickel as an interlayer. Metals 2016, 6, 263. [Google Scholar] [CrossRef]
- Mourad, A.H.I.; Khourshid, A.; Sharef, T. Gas tungsten arc and laser beam welding processes effects on duplex stainless steel 2205 properties. Mater. Sci. Eng. A 2012, 549, 105–113. [Google Scholar] [CrossRef]
- Shrikrishna, K.A.; Sathiya, P. Effects of post weld heat treatment on friction welded duplex stainless steel joints. J. Manuf. Process. 2015, 21, 196–200. [Google Scholar]
- Atapour, M.; Sarlak, H.; Esmailzadeh, M. Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints. Int. J. Adv. Manuf. Technol. 2015, 83, 721–728. [Google Scholar] [CrossRef]
- Abdulhadi, H.A.; Aqida, S.N.; Ishak, M.; Mohammed, G.R. Thermal fatigue of die-casting dies: An overview. MATEC Web Conf. 2016, 74, 00032. [Google Scholar] [CrossRef]
- Chagas de Souza, G.; da Silva, A.L.; Tavares, S.S.M.; Pardal, J.M.; Ferreira, M.L.R.; Filho, I.C. Mechanical properties and corrosion resistance evaluation of superduplex stainless steel UNS S32760 repaired by gtaw process. Weld. Int. 2016, 30, 432–442. [Google Scholar] [CrossRef]
Grade | EN No./UNS | Type | Approx. Composition | |||||
---|---|---|---|---|---|---|---|---|
C | Cr | Ni | Mo | N | Mn | |||
2101 LDX | 1.4162/S32101 | Lean | 0.04 | 21.0–22.0 | 1.35–1.70 | 0.3–0.8 | 0.2–0.25 | 4–6 |
DX 2202 | 1.4062/S32202 | Lean | 0.03 | 21.5–24.0 | 1.0–2.8 | 0.45 | 0.18–0.26 | 2.0 |
2304 | 1.4362/S32304 | Lean | 0.03 | 21.5–24.5 | 3–5.5 | 0.05–0.6 | 0.05–0.2 | 2.5 |
2205 | 1.4462/S32205 | Standard | 0.03 | 22–23 | 4.5–6.5 | 3.0–3.5 | 0.14–0.2 | 2.0 |
2507 | 1.4410/S32750 | Super | 0.03 | 24–26 | 6–8 | 3–5 | 0.24–0.32 | 1.2 |
Filler Metal | Temperature (°C) | Heat Input, kJ/mm | |||||
---|---|---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | ||
Sandvik | 25 | - | 2/2 | 2/2 | 0/2 | 0/2 | 0/2 |
22.8.3.L | 30 | - | 2/2 | 2/2 | 2/2 | 1/2 | 0/2 |
None | 25 | 2/2 | 2/2 | 2/2 | 2/2 | 0/2 | 0/2 |
30 | 2/2 | 2/2 | 2/2 | 2/2 | 1/2 | 0/2 |
Samples | Joint A | Joint B | DSS BM |
---|---|---|---|
Corrosion potential/Ecorr (V) | −0.394 | −0.463 | −0.251 |
Corrosion current/Icorr (A) | 0.2932 | 0.3041 | 0.2862 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, G.R.; Ishak, M.; Aqida, S.N.; Abdulhadi, H.A. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review. Metals 2017, 7, 39. https://doi.org/10.3390/met7020039
Mohammed GR, Ishak M, Aqida SN, Abdulhadi HA. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review. Metals. 2017; 7(2):39. https://doi.org/10.3390/met7020039
Chicago/Turabian StyleMohammed, Ghusoon Ridha, Mahadzir Ishak, Syarifah N. Aqida, and Hassan A. Abdulhadi. 2017. "Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review" Metals 7, no. 2: 39. https://doi.org/10.3390/met7020039
APA StyleMohammed, G. R., Ishak, M., Aqida, S. N., & Abdulhadi, H. A. (2017). Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review. Metals, 7(2), 39. https://doi.org/10.3390/met7020039